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THE RIEMANNwLIOUVILLE INTEGRAL AND PARAMETER
SHIFTING IN A CLASS OF LINEAR ABSTRACT CAUCHY

PROBLEMS*

L. R. BRAGG?

Abstract. Many important partial differential equations arising in the applications involve one or
more parameters. A shifting relation for a problem involving such an equation permits expressing the
solution corresponding to one value of a parameter in terms of a solution corresponding to a different
value of this parameter. The Riemann-Liouville integral and its properties are employed to develop a
set of shifting relations for solutions of a class of Cauchy problems involving an abstract version of the
generalized hypergeometric equation. The results are applied to two examples, one of which involves
the Riemann-Zeta function. They are also useful in developing properties of the hypergeometric
functions.

1. Introduction. Let X be a Banach space and let A be a closed linear
operator in X independent of t. Further, assume that the domain of A r, (A r), is
dense in X for r sufficiently large. We shall be concerned with a class of Cauchy
problems of the form

tD, (tD,+/3j-1) -At H (tD,+ci) u(t)=0, t>0,
(1) = i=1

u(0+)= q, q (Ar); c,,/3j real.

By u(0+)= 0, we mean I]u(t)- ql] > 0. There are many relationships existing
t-0+

among the solutions of (1). Included in these are transformations between
solutions of such problems which affect a shift in some one of the parameters a or
/3, 0, -1, -2, -.., while preserving the data. The primary interest in this
paper lies in presenting a unified treatment of such shifting relations.

The class of problems (1) was considered by the author in 1 in which A was a
partial differential operator P(x, D). It was noted there as well as in a more recent
paper by Donaldson [3], that an extensive number of equations of mathematical
physics can be reduced to the form in (1) through changes in the dependent or
independent variables. Among the more notable of these are the wave equation,
the Euler-Poisson-Darboux equation, and the equation of generalized axially
symmetric potential theory (GASPT). In 4 of 1 ], a number of results were given
which involved nonpositive values for the parameters or specific types of shifting
formulas in the parameters. Most of these results were motivated by general
properties of solutions of the generalized hypergeometric equation and one could
extend this set of relations by exploiting the large collection of formulas available
for hypergeometric functions. There are drawbacks to this approach. Firstly,
certain of the formulas which involve specific types of choices for the parameters
are actually connected with shifting, but their forms would fail to suggest this fact.
Secondly, in such an approach, there would be a problem of determining when
two apparently different formulas could lead to the same type of shifting result or
to different interpretations of one shifting procedure. Finally, and perhaps most
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important, one could overlook some basic notion connected with shifting. It
would seem desirable to have a more systematic and unified treatment of the
shifting problem.

In this paper, we present such a treatment based upon a pair of integrals, one
of which involves a continuous shift in the/3 parameter while the other involves a
continuous shift in the a parameter. Through the use of properties connected with
the Riemann-Liouville integral, these integrals can be extended analytically to
handle values of the parameters outside of their usual range for convergence
(except for the values of/3 noted earlier). Many of these extensions lead to results
which agree with those obtained in [1]. The a shifting formulas, other than those
occurring in [1], appear to be new.

The principal notions and results on the Riemann-Liouville integral needed
for this development will be given in 2. These will be employed in 3 to examine
/g-type shifts and in 4 to examine a-type shifts. In this latter case, analytic
extensions can be made to obtain both upward and downward shifting properties.
A precise determination of the number r in (Ar) in (1) will not be given except in
special cases. As we shall see, a restriction on r imposes a limitation on the range of
values of a and/3 which can be considered. Finally, the notions developed will be
applied to two examples in 5. One of these involves the Riemann zeta function.
The shifting properties lead to integral representations for ’(a) for c <0
(but 1, 2, 3,. .).

It should be mentioned that not all parameter shifting formulas fit into the
pattern considered here. For example, the important Weinstein formulas for the
Euler-Poisson-Darboux equation [8],[9] as well as the formula given by
Theorem 4.5 of [1] are not in this class. These fail to have the data preserving
property. Rather, they transform a solution of one equation into the solution of
another equation without regard to fulfilling a specific initial condition.

2. The Riemann-Liouville integral. In this section and the ones to follow, we
consider functions f [a, b] X. Such a function f is said to be strongly continuous
on the interval [a, b] if it is continuous in I1 Ib, at each point of [a, b]. We then write

f C[a, b]. Similarly, we write f C"[a, b] if f has strong derivatives through
order n and these are strongly continuous on [a, b]. When no confusion can arise,
we write f C or f C".

We now summarize the basic definitions and properties of the Riemann-
Liouville integral. This integral and its generalizations by M. Riesz [7] have played
an important role in the study of partial differential equations (also see [4]). The
reader is referred to the Riesz paper for a more detailed treatment of these
notions.

Let f C o an interval which includes the point a. If Re a > 0, define
1

f(cr)(t- o’)- dt.(2.1) If(t)
F(a)

The operator I obtained in this way is called the Riemann-Liouville operator
and it enjoys the following properties:

(2.2a) I"(If(t)) I"+f(t), Re ce > 0, Re/3 >0,

(2.2b) D,(I+’f(t)) If(t), Re a > 0.
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If f(t) C" on an interval containing the point t= a, then the analytic
continuation formula for I"[(t) with Re c > -n is given by

(2.3) "’ f<k)(a)
If(t)

k=o F(a + k + 1)
(t-a)+ + +7’"’(t).

Finally, we have the additional properties

(2:4a) If(t) f(t), f(t) C,

(2.4b) I-"f(t) f’"’(t), f(t) C".

3. Shifts in the parameters. We now discuss shifts in the/3 parameters for
the problem (1). After obtaining a general result from the Riemann-Liouville
integral, we particularize to the case of (1) where p 0, q 1, and 1 . Some of
the properties holding for this special case are also applicable to (1).

It was shown in [1] (corollary to Theorem 3.2) that if u’(t) is a solution to the
problem (1) corresponding to/3q--/3 > 1, then a solution to problem (1) with fl
replaced by/3",/3*>/3, is given by

u*(t)=B(fl, fl,_fl)
(1 o’)*--lo’-lu(tr) dr

---/i [’(/3*-/3)
(t-r)*--’cr-u(cr) dr

Although we shall not prove it here, this relationship holds under the less
restrictive condition/3* >/3 > 0. We will, however, prove the analogous result for
the a shifting in 4.

The upward shifting formula (3.1) clearly shows that the solution u*(t) is a
continuous function of/3* for/3* >/3. The bracketed term in the third member of
(3.1) has a form suggesting the applicability of results on the Riemann-Liouville
integral (if we choose a 0 in 2).

To apply those results, first select /3 1 and set y=/3*-l. Then (3.1)
becomes

(3.2) ut*(t) F(7+ 1)t-Iu(t),
where u(t) is a solution of (1) with/3q =/3 1. In this form, the presence of the
factor F(T + 1) shows that (2.4b) cannot be used for obtaining a solution when y is
a negative integer. Indeed, this choice for y leads to logarithmic solutions which
are outside the scope of this paper. In all other cases, the analytic continuation
formula (2.3) is applicable for assigning a meaning to u*(t). According to that
formula, we get

(3.3) u*(t) F(,+ l)t-{ u(O)t+ }
=o F(y + k + 1)

+ I"+u"(t)

provided that y > n, y not a negative integer. From this and the definition of I"+
we have the following theorem.

THEOREM 3.1. If u (t) C" is a solution ofproblem (1) corresponding toq 1,
then a solution of (1) corresponding to * > n + 1, * not an integer, is given
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by

(3.4) u*(t)=r(/3*){" u(()
_-o F(/3* + k)

where u((") DTu(z).

F(n +/3"- 1)
(1-c)*+"-2u("(t)d

Note. The starting choice /3 1 may appear to be somewhat artificial.
However, we can arrange shifts involving positive values of these parameters
which permit this as we shall see later.

To see how (3.4) ties in with earlier results, we interpret its meaning for the
particular problem

(3.5) D,[tD, + fl 1]u(t) Au(t), u(O) 9.

We shall suppose that uniqueness holds for solutions of this problem if fl > 0 and
that u (t) C"+2 (see, for example, 1], 10]).

Taking u(t) to be a solution of (3.5) with/3-= 1, repeated differentiations
show that u(k-l(t) satisfies the equation

tDZ, uk-l(t) + kD,u--(t) Au-l(t) O, k 1, 2,. ..
From the fact that ku((O)-Au(-(O)=O, we obtain inductively that u((0)

(1 / k )A. As a consequence, the summed expression in (3.4) takes the form

.-1 (tA)
(3.6) F(fl*) =o2 kr(fl- k)"

In order to interpret the integral in (3.4), we must compute u("(t). But by
the repeated differentiation procedure employed to obtain (3.6), one can show
that u("(t) is a solution of the problem

1
tDu’"’(t)+(n + 1)D,u’"’(t)-Au’"(t)=0,

Define v(t) to be .a solution of the problem tDv(t)+(n+ 1)D,v(t)-Av(t)=O,
v(0) . Uniqueness shows that

where we have expressed v(t) in terms of u(t) by means of (3.1) with 1 and

*= n+.l. Inserting the expression for u("(t) in the integral in (3.4) with
replaced by t, the integral in (3.4) becomes

{r(21) (n-]) (1-)"-au(t) d d

ior(*)(ta)- (-)-- (-)"+.*-u(t) .
The strong continuity of A"v(t) has permitted us to remove A" from under the
sign of integration. Again, from (3.1), the inner integral in this last expression is
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From this, we finally see that the integral in (3.4) reduces to

F(fl*)(tA)" Io(3.7)
(n 1)!l-’(n + fl*)

(1-)"-lu"+S*(t)d"

Combining (3.6) and (3.7) we find that

(3.8) uS*(t) r(/3*)
tA kq

k=o k !F(/3 k)

+
(n- 1) !F(/3* + n)

(tA)" (l o-)"-1 U s*+’ (/o-) &r.

This agrees with Theorem 4.2 of [1] for the special problem (3.5) with/3 replaced
by/3*.

It was also shown in [1], by a consideration of the equation in (1), that if/3 0,
then

(3.9) uS(t) (tD, +
If/3 > 0, this follows readily from (3.1). For then

Hence

uS+l(t) flus

D,uS+’(t) -2t-s-1 crS-luS(r) &r + t-uS(t)

fluS+l(t) + flu
Solving this for uS(t), we obtain (3.9). This property is also easily shown to be valid
for negative values of/3*- 1 by using the uS*(t) obtained through the extension
(3.4).

4. Shifts in the a parameters. As we have observed, the formula (3.1) served
as the basic starting point for building up the shifting relations. In the case of the a
parameters, it is desirable to have a similar relating integral. Such an integral will
be given below. To simplify details, we center our discussion around the problem

(4.1) u,(t)-A(tD,+a)u(t)=O, u(0) q,

obtained by selecting p 1, q 0, and al--a in (1). We shall indicate which
results are applicable to the more general problem (1).

THEOREM 4.1. Let uS(t) be a solution of (1) for a, a > 0 for some and let
a* > 0 with a* < a. If Au(t) is strongly continuous, then a solution to (1) with a
replaced by a* is given by

F(a)
*)

o-*-’ (1 o-)-*-1 u (to-) do-.(4.2) u*(t)
r(c*)r(a a
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Note. This formula, which is applicable to shifting down on any one of the p
parameters ai in (1), is analogous to (3.1) except that the unstarred and starred
parameters have been interchanged. This turns out to be significant in that we can
apply the results of 2 in two ways to obtain extensions of this integral.

Proof. We prove this result for the problem (4.1) and note that this proof can
be extended to apply to (1). The general proof for (1) involves the arranging of
more factors and is quite similar to the arranging process carried out in [2] for the
generalization of (3.1) to nonhomogeneous problems.

The condition u*(0 + o is easily checked. Substituting (4.2) into (4.1) with
a replaced by a* in (4.1), we can invoke the strong continuity property to apply
the derivative operators to u under the sign of integration. We can then use the
relation D,u"(o.t)= o.D(,u(o.t) to reduce the differentiations to ones involving
the variable o.t. Using (4.1) with the variable replaced by o.t and the strong
continuity property, the operator A can be removed from under the sign of
integration. Finally, by a conversion of all differentiations to D under the sign of
integration, it follows that the remaining integral has the primative

o.*(1 o-)-*u(to-),

which vanishes at o. 0 and o. 1 for a > a* > 0.
(A) Downward shifting. Although the formula (4.2) permits us to shift down

on a, we are restricted to values of a*> 0. To extend beyond this range, we
rewrite (4.2), through a change of variables, in the form

F(a) tl-’ f,,’ ,-,*-(4.3) u*(t) F(ai(- a*)
(t- o.)"*-lo, u (t- o.) do’.

Strictly speaking, this integral is not in the form required for the application of the
results of 2. This is due to the presence of the variable in the u function in the
integrand. We can circumvent this difficulty by first regarding this variable in u
as a parameter A and then replace A by after applying the Riemann-Liouville
techniques. With this understanding, we observe that (4.3) can be expressed as

F(a)
.)t_i.{t_._,u(, _/)}.(4.4) u*(t)

F(a a

Ifwe take a >0 and replace a* by a -(k + 1), k being a nonnegative integer,
then (4.4) becomes

t-F(a)I-+’{tu (, t)}.(4.5) u-+(t)
kt

In this form, the results of 2 are applicable. We distinguish two cases: (i)
a-(k + 1) a nonpositive integer and (ii) a-(k + 1) a negative noninteger.

Case (i). In this situation, a-(k + 1)=-m, m a positive integer or zero.
Since a => 1, we have rn -< k. Then (4.5) along with (2.4) readily proves that the
following theorem holds.

THEOREM 4.2. If a is a positive integer and if a-(k + 1) is a nonpositive
integer, then

k+l- (m) (- 1)f
(4.6) u-k+’(t) =F(a) [Du(o’)],=o.

,_-o
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In this case, the shift to uS-k+l(t) is determined from uS(t) through its value
and the values of its derivatives at 0.

We now correlate (4.7), which holds for the general problem (1), with results
in [ 1 by using (4.1). Successive differentiations of the equation in (4.1) will show
that DuS(t)l,=o=(a+j-1)AD-luS(t)],=o. By induction, we conclude that
D{uS(t)l,=o=(a)jAJq. Using this and the fact that (k + 1-a)!/(k + 1-a-j)!

(-1)J(a 1-k), we see that (4.6) reduces to

(4.7) uS--(k+l(t)
k+l-s

2 (a-k-1)j(tA)q,
=0

and this is just the solution of problem (4.1) with a there replaced by (a k 1)
(see Theorem 4.1 of [1]). The above discussion requires that q 6 D(A+-s).

Case (ii). We can apply (2.3) directly to (4.5) to get

(4.8)

(t-)-

The first sum clearly reduces to k!uS(A)t"-I/F(a). Using this fact and
replacing A by t, we obtain

THEOREM 4.. Let uS(t)6 C+1 satisfy (1) for some a= a >0. If a is not an
integer, then

(4.9)

satisfies (1) with a a k + 1).
In order to note some interpretations of (4.9), it is useful to rewrite it in the

form

(4.10) uS-(+’(t) uS(t)
(- 1)+1 t’|l oS-’D+’[( 1 o)u(to)] do-.

kt 30

COROLLARY 1. Let uS(t)6 C+’ satisfy (4.1) and let uS-+’(t) be defined by
(4.10). Then uS-t+’(t)=(1-tA)+’uS(t).

Proof. If k =0, the proof is trivial. If uS(t)6 C+’, it follows by (4.9) that
uS-(t)6 Ck+l-for integral l, 0_< =<k. Then us-l-’(t)=(l-tA)uS-(t) bythe first

part of the proof. Successive applications of this formula yield the stated result.
Remark. If A and q were constants in (4.1), then Corollary 1 would reduce to

the trivial relation (1 tA)+’-q (1 tA )+1[(1 tA )-qg], Itl < IA I-’. Corollary
1 shows that what one would intuitively expect to get agrees with the correct

result.
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By applying Taylor’s theorem with remainder to the relationship in Corollary
1, one can readily deduce that

u-+’)(t) q + (o-k-1)i(tA)q)
--1

(a- k- 1)+’A
k!

+’ (t- o-)u (o-) do-,

and this is just Theorem 4.2 of [1] particularized to the case of problem (4.1).
COROLLARY 2 (Upward shifting formula). Given the conditions of Corollary

1, then u-k(t) ( k 1)-l[tD, +( k 1)]u-k-l(t).
Proof. This follows readily from the formula u-(+l(t) (1 tA)u-(t) (see

Corollary 1) by computing [tD,+(a-k-1)]u--l(t)in terms of u--(t) and
noting the equation that u-k(t) satisfies. This upward shifting holds, in fact, if
a - k + 1 (see Theorem 4.4 of [1]) and applies to the general problem (1).

(B) Upward shifting. In order to treat this situation, we replace the variable of
integration o- in (4.2) by o-/t to get

(4.12)

Rather than use (2.3) in its full generality, we shall consider the cases in which (a)
c* c is a positive integer, and (b) 0 < c* cr < 1. Any other shifting relation can
be obtained by using a combination of these two cases.

Case (a). c*-c p. We rewrite (4.12), by means of (2.4b) as

(4.13) u*(t)
Successive applications of D, to +p-1 u (t) give

(4.14)
I’(c +p)

{(tD, + e)(tD, + c + 1).." (tD, + +p- 1)lug(t)

i[(tD’++])+j
u(t) if u(t) C.

By taking p 1, we see that this gives the same type of upward shifting formula as
Corollary 2 to Theorem 4.3.

Case (b).c*=c+l-/x, 0</x<l. From case (a), we have that u+l(t)
--1e (tD, + c)u (t). Then (4.2) shows that

(4.15)

uo+l--(t)
F(cr + 1 -/x)F(/x)

(t-o-)"-’o--"[o-O+cr]u(o-)do-

(tD, + c 1 o’)-1 o’-/Xu (to-) do-.
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The results of cases (a) and (b) are applicable to the general problem (1) since
their developments did not depend upon using properties of (4.1).

5. Applications of shifting. The shifting relations developed in 3 and 4 are
applicable to a variety of problems in operator differential equations. As was
noted in the introduction, the Euler-Poisson-Darboux and GASPT equations are
ones which involve parameters. The author gave an extensive discussion of the
first of these in 6 of [1] and treated the nonhomogeneous GASPT equation in
[2]. In this section, we limit our discussion to two examples, the second of which
involves both an a- and a fl-type parameter.

(A) The Riemann zeta function. Consider the Cauchy problem D,u(x, t)
-Dx(tD,+a)u(x, t)=0, a >0, u(x, 0) eX/(e + 1). This problem has the form
discussed in 4 with A D. It is easy to verify that a solution to it is

O
a-1 eX+(t-1)

u (x, t) Fa) GT_ do-.

From this and [5, p. 20], we find that

l leo o--I
Jo(5.2) u(0, 1)=--7-: do-=(1-2’ )’(a),

+ 1

Re a > 0, in which ’(c) denotes the Riemann zeta function. Even though ’(a) has
a pole at a 1, u(0, 1) is well-defined there. The results on downward shifting
given in 4 are applicable for extending u(x, t) for a _-< 0 (we could consider a

complex but shall not do so here). In particular, (4.7) and (5.2) together show that

(1 2’--(-k-1))sr(a k 1) u-(k+l)(0, 1)
(5.3)

+-1 k -1),(tDx )’-=o j!(a (eX/(e +l))lx:o,,:

for a a positive integer, and (4.11) and (5.2) show that

(5.4)

)jDx{e /(e + l)llx=o(1 2-(--")sr(c k 1) (c k 1
i=O

(a-k- 1)_,
k D+1 (1-- O.)tU’(X o-) do-Ix=o,

if a- k- 1 is a negative noninteger. An evaluation of (5.3) with a 1 and k >=0
leads to the familiar results ’(0)=-1/2, sr(-1)=-l/12, ’(-2)=0, r(-3)

1/120, etc. (see [5]).
To handle (5.4), we observe that if

then

K eX+(’-’)"/(e + 1) e(’-l)(e + e-")-1,

K e(’-l){e-X(e + e-")-2},

K e(’-){ e-(e’ + e-X)-2 + 2e-:X(e + e-")-}.
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Using these in (5.4), we obtain, for 0 < a < 1,

sr(a 1) (1 22-’)-’{ 1+F(a-1) fo {fo (eei)-z- d} do-},
(5.5) sr(a-2)=(1-23-)-1{(l+a)/44 1 I12F(a-2)

(1-o-)

{_, e(,_l)
1

(e + 1)

(B) A Cauchy problem. The Cauchy problem

U,,(x, t)= t"Uxx(x, t)- vt’/2-’Ux(x, t),
(5.6)

U(x, o)= (x), U,(x, o)= O(x)

2
(e,+ ])3} d] do-}.

t>0,1 m=>2,

was considered in [6, p. 182] under the assumption Iv -< m/2. This restriction on v
was removed in [1, p. 232] under the same condition on rn but with (x) 0. We
shall here permit m to assume values in (-2, 0) (but not of the form -2n/(n + 1),
n a positive integer, which leads to the logarithmic case), while permitting v to
take on any real value.

As was shown in [1], the problem (5.6), with q(x)=0, can be reduced,
through changes in the independent variables, to

(5.7)
[Dz(zD +- 1)-Dy(zDz +a)]U(y, z)=0,

u(y, o)= (y),

with a =(m-2v)/(2rn +4) and /3 m/(m +2). If we take (y) C and I111
sup Iq(y)l, then this problem is in the form (1) with A D, and replaced by z.

To simplify the writing, we denote a solution of (5.7) by U"’(y, z). We shall
indicate throughout the corresponding sets of values of tn and v that go with these
U’(y, z).

The procedure we follow is first to obtain a solution of (5.7) for specific
positive choices of a and/3 (and hence for choices of m and e) and then use the
method of 3 to shift on the/3 parameter to/3 n + 3’, 0 ",/ 1 (in which case
2n/(n + 1) tn 2(n 1)/n). Associated with this choice of/3 are the corres-

ponding possible alternatives for a (and hence v), namely (i) a ) 0 or v m/2, (ii)
a 1, a nonnegative integer or v (1 + 1/2)m + 21, and (iii) a + 1,
a positive integer or (1-1/2)m + 2(1- 1) v (1 + 1/2)m + 21.

Select/3 3’ and a 3,/2. From [1, p. 332] we find that

(5.8) U/’(y, z)=
r(/) IO[r(y/2)]

o./2-’(1- o.)/2-1q(y + o.z) do..

In this particular solution, the choice fi corresponds to a positive value of m such
that ml/(ml+2)=y and a corresponds to this same ml with v=0. Then

There is a misprint in [1]. The minus sign rather than the plus sign should proceed u in the

equation corresponding to (5.6).
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according to (3.9),

(5.9)

Note that this shift on fl has forced a shift in v so that the parameter a retains the
value 3,/2. Here, t, was shifted from 0 to -n/(n + 1- 3’).

(i) ce > 0. With m as chosen to obtain the shift in/3 in (5.9), we observe that
ce >0 if we choose v< -(n-y)/(n + l-y). Then a -1/2{(n y) + (n + 1- y),}.
According as a < y/2 or oe > y/2, we must consider different types of shifts.

(a) a<7/2 (or -n/(n+l-,)<u<-(n-y)/(n+l-7)). Under these
circumstances (4.2) shows that

(5.o) u,-"+(y, z)=
r(/2)

F(a)F(T/2- c)
o.’-l(1--O")’12-’-lu’12"-n+v(y, zo.) do’.

(b) c>y/2 (or ,<-n/(n + l-y)). Here we have the possibility that
a- y/2 may or may not be a positive integer. In the first situation, c- y/2 p, a
positive integer, and , -(2p+ n)/(n + l-y). Then by (4.14)

UV/Z+P’-"+v(y, 7.
\ -’YTJ- V’y/2"-n+y( y, Z

In the second situation, c-y/2=p-/.t, 0</.<1. Then ,=-(2p+n)/
(n + 1- 7) +2/,/(n + 1-/) and we obtain, from (5.11) and (4.15),

(5.12)

UVl2+p-t*’-n+V(y, Z)--
F(p + 7/2)

F(p + y/2-/,)F()

o.P+v/2--l(1-o’)*-UV/2+P’-"+V(y, zo.) do..

(ii) a <-0, c an integer. If I, then u (1 + 1/2)m + 21. Using (5.12) with
p 1 and > -y/2 we obtain U"-"+(y, z). Then (4.6) (with 1 and m in
that formula) shows that

u-l’-n+(y, Z) D’,{s’U"-"+’(y, z s)I,=z

(-1)[j)z’D[ "-"+’(y, s)],=o.
1=O

From (5.7) satisfied by U"-"+(y, z), we compute

jtF(v- n)
DU’-"+(y, s)]=o

F(T- n +j)

Hence

=o r(,- n +j)
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(iii) a < 0 and not an integer. In this final case, < a < + 1 or a + -,
0< -< 1. From the results for case (i) above, we determine UT.’-"+(y, z). Then
(4.9), with k 1- 1, shows that

1--7"z
u-"-"+(y, z) u’-"+(y, z)+

(/- 1)!
(5.14)

(z r) +(y, z r)]1D ,lr[o’l--1 UT., dr.

The reader can easily write this solution in the form given in (4.13).
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OSCILLATION CRITERIA FOR
THIRD ORDER DIFFERENTIAL EQUATIONS*

GARY D. JONES,-

Abstract. This paper gives some sufficient conditions for

y’"+ p(x)y’ + q(x)y 0

to have oscillatory solutions.

1. Introduction. By an oscillatory solution of

(1) y"’ +p(x)y’+ q(x)y 0,

we will mean a solution of (1) that has zeros for arbitrarily large values of x. Other
solutions of (1) will be called nonoscillatory. We will say that (1) is oscillatory if it
has a nontrivial oscillatory solution. We will study (1) assuming p, q and p’ are
continuous on [0, + c).

In studying (1), we will make use of its adjoint

(2) y"’ + p(x)y’ + (p’(x) q(x))y 0

and the following easily verified lemma.
LEMMA. If N is a solution of (1) such that N(x)>0 for x>a, then two

independent solutions of (2) satisfy

(3) (y’/N)’ + [(N"+pN/N2]y O.

2. Oscillation theorems. If 2q(x)-p’(x)=-O, then any solution of (1) is a
linear combination of u 2, uv and v where u and v form a fundamental system of
solutions for

(4) y" + (p/4)y =0.

It follows that in this case (1) will be oscillatory if and only if (4) is oscillatory.
Our first result shows that there is a connection between (1) and (4) when

2q-p’ is sign definite.
THEOREM 1. If 2q--p’>--_ 0 (<--O) with 2q-p’= 0 possible only at isolated

points, then (1) is oscillatory if (4) is oscillatory.
Proof. Assuming p’-2q-0, let N be a solution of (1) that satisfies N(a)

N’(a) 0, N"(a) 1. Then N(x) > 0 for x > a _-> 0 [2]. Now letting

FIN(x)]=- S’2(x) 2S(x)S"(x)-p(x)S(x),

we have S’2(x)-2S(x)S"(x)-p(x)S2(x)=F[S(a)]+ (2q-p’)S2. Thus

N’2(x)-2N(x)N"(x)-p(x)N2(x)<-O for x >a
and

2N"(x) N’2(x)
>(5)

N(x) NZ(x -p(x).

* Received by the editors March 18, 1974, and in revised form September 23, 1974..
f Department of Mathematics, Murray State University, Murray, Kentucky 42071.
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Letting y- wN/2, we see that (3) becomes

(6) w"+ p+ N S/J w=0"

Now by (5), p + 1/4(2N"/N- N’2/N2) >= p 31)/4 p/4. Thus by the Sturm compari-
son theorem if (4) is oscillatory, then (3) is oscillatory. Thus since oscillation of (3)
implies oscillation of (2), we have by [2] oscillation of (1).

If 2q- p’_>-0, apply the first part of the proof to (2).
THEOREM 2. Suppose p >-0, q <=0, p’-2q >-0 with zeros possible only at

isolated points. If (p’ 2q) +, then (1) is oscillatory.
Proof. For every nontrivial solution y of (1), let F[y(x)]--- y’2(x)- 2y(x)y"(x)-p(x)y(x) F[y(a)]+ (2q -p’)y. It is clear that F[y(x)]

is decreasing. Suppose (1) is nonoscillatory. Let u, u2, u be a basis for the solution
space of (1). Define w by y,(n)=y’,(n)=0 and such that y,

Cn, Ul "J9" Cn,2U2 -]- Cn,3U3 where C], + C,, + C,3 1. Assume, without loss of
generality, that lim C,,i- Ci for i= 1, 2, 3. Let N= Clul+Cu+C3u3. The
function N is nontrivial since C + C+ C 1. Now F[y,(n)] 0 and F[y(x)] is
decreasing for every nontrivial solution y of (1). Thus, FIN(x)]> 0 for all x. Since
F[-N(x)] FIN(x)] and (1) is nonoscillatory, we shall assume N is eventually
positive, i.e., N(x)>O for x>a. Suppose N’(b)=O for b>a. Then
(NN"+ pN/2)(b) F[N(b)]/2 < 0. Thus N"(b) < 0 and N’ can have at most one
zero after a. If N’(x)< 0 for large x, then N’">= 0 with equality possible only at
isolated points. In that case N" is eventually one sign. If N"> 0 for large x, then N’
is eventually positive, which is a contradiction. If N"< 0 for large x, then since
N’ < 0, N is eventually negative. Thus we conclude that N’(x) > 0 for large x. Thus
if N(C)>0 and N’(x) > 0 on [C, +oo),

0< FIN(x)]= F[N(C)]+ (2q-p’)N

<__F[N(C)]+N2(C) (2q-p’) -oo with x.

Thus (1) must have an oscillatory solution.
We next generalize a theorem of Lazer [3] which applies to the case where

p-<_ 0, q > 0 to apply to the case where p need not be of constant sign. We shall
state our hypothesis in terms of a property of a nonoscillatory solution of (2). Later
we shall give conditions on the coefficients of (1) to guarantee such a solution of
(2).

THEOREm4 3. Suppose q > 0 and (1) is C (see [2]). Suppose there is a point Xo
such that the nonoscillatory solution of (2) z defined by z (x,,) z’(xo) O, z"(Xo) 1
has the property that x, z + oo. Then a sucient condition for oscillation of (1) is
that

IN q- 2(-P)/+I3x/- -N q +oo,

where

N= {x p(x) <-O}.
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Proof. First we observe that two independent solutions of (1) satisfy

(7) (y’/z)’ + [(z"+ pz)/z2]y 0

for x > Xo. Assuming (1) is nonoscillatory, we have that (7) is nonoscillatory. Since

f +c there exists a solution y of (7) and hence of (1) such that y > 0 and
0 for large values of x [1]. Let y’/y. Then

t"+3t’t= -(t3+pt+q).

Thus if p(x)<-_O, -(t3+pt+q)<=-q+2(-p)3/2/3x/- and if p(x)>0,
-(t3+pt+q_<= -q. Thus t’(x)<-t’(C)+3t2(C)/Z-3t(x)/Z-un,c,x) q-
2(-p)3//343 --Nnc,x q" Since the right-hand side goes to -c by hypothesis we
have a contradiction. Thus (1) is oscillatory.

See 1-2] and [3] for various conditions under which (1) is CI. If p is bounded
above, then since (z"+pz)’=qz>O for X>Xo and (z"+pz)(xo)=l, we have
x Xo < z" +pz <= z’(x) z’(x0) + B z, where p(x) < B for all x. Thus if z <

XO XO XO, we have z’(x)- + which implies z +. Thus we state the following
corollary to Theorem 3.

COROLLARY. If q >0, p < B for some real number B and y"+py 0 is
nonoscillatory, a sufficient condition for oscillation of (2) is that

IN q-2(-p)3//3/-+ q= +’
-N

where

N {x p(x) <= 0}.
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CONVOLUTIONS OF ORTHONORMAL POLYNOMIALS*

W. A. AL-SALAMf AND T. S. CHIHARA$

Abstract. In this paper, we determine all pairs of orthogonal polynomial sequences {p.(x)} and
{q,(x)}, such that their convolution,

Q,,(x, y)= p,(x)q._.(y), n>=O,

defines {Q.(x, y)} as an orthogonal polynomial sequence in x for all y. All such triples are determined
explicitly in terms of their three-term recurrence formulas. Generating functions and "explicit"
representation formulas are obtained. The resulting sequences are found to consist of a class of
orthogonal polynomials characterized by J. Meixner (which class includes the Laguerre and Hermite
polynomials) together with a new class of orthogonal polynomials which includes the orthogonal
q-polynomials of AI-Salam and Carlitz. Explicit orthogonality relations are found for one new special
case of this latter class.

1. Introduction. Two rather pretty identities involving the Hermite and
Laguerre polynomials are [6, 10.12 (41), 10.13 (38)]"

2_,,/:H,(x + y)= (n)
,=o k

H(21/x)H"-(21/Y)’

L+’o+I(x + y)-- . L’d(x)L_,(y).
k=0

Notice that the first expresses an orthogonal polynomial as a convolution of
members of the same set, while the second expresses an orthogonal polynomial as
a convolution of members of two different sets of orthogonal polynomials.

In looking for a common basis for such identities, one is led rather naturally to
consider their generating functions. One quickly observes that the class of
orthogonal polynomials characterized by Meixner [7] satisfy such identities.
Meixner’s class consists of the orthogonal polynomial sequences {P,(x)} having
generating functions of the form

A(w) e""w= _, P,(x)w",
n=0

where A(w) and B(w) are formal power series such that A (0) # 0, B(0) 0, and
B’(0) # 0.

In addition to the Hermite and Laguerre polynomials, Meixner’s class
includes the Charlier polynomials c,,(x; a), the Meixner polynomials m,,(x;/3, c),
and the Pollaczek polynomials p(x, b); apart from trivial transformations of
these, no others are included. For these polynomials, see [6, 10.21, 10.24,
10.25].

* Received by the editors July 15, 1974, and in revised form February 28, 1975.

" Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada.
: Department of Mathematics, Purdue University Calumet Campus, Hammond, Indiana 46323.
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From their generating functions, the corresponding "convolution formulas"
are easily found:

(a + b)"c.(x + y; a + b) (n) kb._kc
k=o k

a (x" a)c._k(y; b),

m.(x+y;o+,c)= (n)
=o k

m(x; o, c)m._(y;/3, c),

P+"(x + y, ok)= P(x; 4,)P._(y, 4’).
k=O

The question then naturally arises as to whether there are other polynomials
for which such identities exist. Specifically, are there orthogonal polynomial
sequences (OPS) {p.(x)} and {q.(x)}, such that if we define Q.(x,y)

",=o p,,(x)q._,(y), then {O.(x, y)} is also an OPS in x for infinitely many values
of y?

We shall answer this question by determining explicitly all such triples. The
resulting class of OPS will include previously studied polynomials as well as new
ones. Although we have been unable to determine orthogonality relations for
these in general, we shall obtain them for one new special case.

2. Necessary eontitions. Let {p.(x)} and {q.(y)} be OPS, and let their
three-term recurrence relations be

(2.1) p.+,(x)=(A.x +B,,)p,,(x)-C.p._l(x),

(2.2) q.+,(y) (o,,y + ,,)q,,(y) %q,,-l(y).

Next, let {O.(x, y)} be defined by

(2.3) O.(x, y)= p,(x)q,,_(y).
k=0

Since the coefficients of x" in O,,(x, y) and p,,(x) are identical, {O.(x, y)} will be an
OPS in x if and only if it satisfies a recurrence relation of the form

(2.4) O.+lWl(X, y)= (A,,x + D.)Q.(x, y)-E.O,,_,(x, y).

In all three recurrence relations, n => 0 and the initial conditions are

p_(x) q_,(y)= O_(x, y)= 0, po(x) qo(y)= Oo(X, y)= 1.

Also, A., B., C., a.,/3., y. are independent of x and y; D. and E. are independent
of x, n _-> 0; and A,,C. 4: 0, a.y. 0, E. # 0, n -> 1. The polynomials are orthogonal
with respect to a real distribution on the real line if and only if all coefficients are
real and C,,A.A,,_ > O, y,,a.a._ > O, E.A.A._ > O, n >= 1.

To begin with, we use (2.3) in (2.4) to obtain

n+l

2 Pk(x)q.+l-(Y)=D. p(x)q._(y)-E. p(x)q._,_(y)
=0 =0 =0

+A. A-i’q._(y)[p+,(x)-Bp(x)+Cp_,(x)].
k=O
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Now, pk(X) is a polynomial of precise degree k. In the preceding identity, the
coefficients of all pi(x) are independent of x, so we can equate the coefficients of
pk(x) on both sides of the identity to obtain

q.+-k(y) D,,q,,_k(y)-E,,q,,__k(y)

+A,[1Ak-1 q"+l-k --A----kq"-k
Bk Ok+, ](Y) (Y) +Ak+iq"-k-’(Y)

This identity remains valid for k 0 if we interpret 1/A_ O.
Collecting terms, we then obtain

q,+_(y)= D,-A q,_(y)+ A, -E, q.-1-k(y),
Ak+l

(2.)
k=0,1,-..,n, 1/A_=0.

Setting k n in (2.5) then yields the necessary condition

1- q(y) (D B)qo,

whence

(2.6) D, =B,+(1- A,-1
q(Y)’ n 0.

Thus D,, is at most linear in y.
Next, take k 0 in (2.5) to obtain

Comparing the latter with (2.2), we obtain

C__5 y,,]q,_ (y).(2.7) [ D,, A,,--oo O,,y ,8,,] q,, y [ F,, A,
A

Now, D, is at most linear in y, and hence E, is at most quadratic in y. Since
q,(y) and q,-l(y) have no zeros in common (a well-known consequence of the
recurrence relation), it follows that, at least for n => 3, the coefficients of q,(y) and
q,_.,(y) in (2.7) must both vanish identically. That is, at least for n _-> 3, we must
have

(2.8) D, c,y +/3, + A B0
"Ao’

C(2.9)
A

Comparison of (2.8) with (2.6) then yields (for n => 3):

(2.1o) 1
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Returning to (2.7), we note it reduces to an identity for n 0 if (2.6) is
invoked. For n 1, (2.7) requires

(2.12) E [D- cy -/3- ABo/Ao]ql(y) + C +
while for n 2, it requires

(2.13) D2 kq(y) + c2y +/32 + azBo/Ao,

(2.14) E). kq).(y) + 3’2 +
with k 1-A2/Al-a2/ao.

If we compare (2.13) with (2.6), we then find that (2.11) must hold for
n 2. Further, it is clear that if (2.10) is satisfied for n 1 and 2, then D2 and
reduce to (2.8) and (2.9), while E1 is at most linear in y. But if E is at most linear,
(2.7) would then require D-ABo/Ao-ay-fl=O and E=C+3". Then
reference to (2.6) would show that (2.11) is valid for n 1 also.

Thus our next task is to show that (2.10) is satisfied for n--1, 2. Then
(2.8)-(2.11) are satisfied for n -> 1 and, in particular, E, is independent of y for
n__>l.

3. Independence of E. from y; a characterization of Meixner’s class. Since
we do know E, is independent of y for n -> 3, we can equate coefficients of
in (2.5). This yields

(3.1) 1 0=<k_--<n, n=>3.
Ak-1 Oln-k

Taking k n- 1 and k n in (3.1), we eliminate a and get

(3.2) (ao- a)p, Cop,- + ap,_ O, n >- 3,

where/9, A1.
In this difference equation, ao : c, since otherwise A, A and (3.1) would

require a, 0. Thus, taking c1 ao, we obtain the solution,

1 A-A). 1-q"-
n =>l,(3.3) O, =-+ AA 1-q

where

q=#l.

The case q= l(ao=2a) corresponds to repeated roots of the characteristic
equation and can be treated as the limiting case q 1 (or, equivalently, c o/2).

Thus we have

A,A2(1 -q)
(3.4) A,----1--q ’t2--" 1-- a2"--,at,a)q -" n > 1

Next, use (2.10) to eliminate c, from (3.1). This gives, for n =>3, O<=m<=n,

(1 -A,,/A,,_, o(1
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Using (3.4), we then find

ao(1-q)q"
(3.5) Om m+l m=>0-

1-q

On the other hand, if we use (2.10) and (3.4) to determine c, for n => 3 and
then compare the result with (3.5), we find that consistency requires Al(1-q2)

A2(1 _q3). But this means (2.10) is valid for n 2.
Finally take n 3 and k 1, 2 in (3.1), and eliminate A3. This leads to

Ao(1-q) Al(1-q2), and this means (2.10) holds for n- 1. We can then also
rewrite (3.4) as

(3.6) A,
Ao(1- q)

,+1 n=>0.
1-q

Now that we have shown that E, is independent of y, we can characterize the
orthogonal polynomials of Meixner’s class as those corresponding to q 1. Note
that q 1 is equivalent to a, (aoA;l)A,.

THEOREM. If {p,(x)}, {q,(x)} and {O,(x, y)} are all OPS in x related by (2.3),
and if, cA,, n >-O, in (2.1) and (2.2), then all three OPS belong to the Meixner
class.

Proof. Introduce the formal generating functions

so that

F(x; w)= Y p,,(x)w", G(y; w)= Z q,(y)w",

H(x, y; w)= Z Q,,(x, y)w",

H(x, y; w) F(x; w)G(y; w).

If a, cA,, the recurrence formula (2.4) together with (2.8) shows that
O,(x, y) is a polynomial in x + cy. We can assume without loss of generality that
c 1. Thus we can write (with a slight abuse of notation)"

H(x + y; w)= F(x; w)G(y; w)= F(y; w)G(x; w).

It follows that F(0; w)# 0, and that

H(x; w)= G(0; w)F(x; w), G(y; w)= G(0; w)F(y; w)/F(O; w).

That is,

F(0; w)F(x + y; w)= F(x; w)F(y; w).

Expanding both sides as formal power series in x, y, we compare the coefficients
and conclude that F(x; w) is of the form

F(x; w) A (w) exp {xB(w)}

(which is essentially Cauchy’s theorem). Since p,(x) is a polynomial of degree n,
the conditions A (0) # 0, B (0) 0, B’(0) # 0 are automatically satisfied. Thus F is a
Meixner-type generating function, and (p,(x)}, {q,(x)}, {Q,(x, y)} all belong to the
Meixner class of OPS.
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4. Explicit determination of recurrence formulas. We turn next to the
determination of the polynomials in the general case, q l(co 2c1). As we have
noted previously, we must have

Since E, is now known to be independent of y for all n, we can compare (2.5)
with (2.2) and conclude (with the aid of (2.8), (2.9) and (2.10) that

Odn-- /

(4.2) -,
Using (3.5) and (3.6), we then obtain from (4.1)

(4.4) fl_e_,=q [__ flo (___fl)q_,].a, q- 1 qao ao/

(4.9)

(4.10)
where

Similarly, (4.2) leads to

(4.5) A,,A,_---- Ao(1 q)2 q ; i q,,-1 (1 q"),

(4.6)
a,a,_ ao(l_q)2 a q

q (l-q-").

Introduce the monic polynomials

(4.7) ,(x)=(AoA A._,)-p.(x)=[Ao(l-q)]-"[q].p.(x),

(4.8) 0.(y) (o1 ,_l)-q,(y)=[ao(1--q)]-"[q],q-"("-l)/2q,(y),

where [a]o=l, [a],=(1-a)(1-aq)...(1-aq"-l), n>0.
With the use of (4.3)-(4.6), the recurrence formulas (2.1) and (2.2) can now

be written

0,+(x) Ix +f-aq"]O,(x)-(g-bq"-l)(1-q"),_(x),

(4.11)

1 (B1 B00) 1 (n qno]a=l-q Xl f=l-q 51 Ao/’

1 C2 C1),ao( a -dl g
Ao(1-q) -22

(4.12)
q2

Cro(1- q) 22 qcl
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These coefficients are related by the additional necessary conditions

(1 0)01
B, Bo

which are equivalent to

(4.13) aoC -Aoa,

 IlA ’CZ2 2 AI,

ad AZob.
Note that (4.9)-(4.13) show that , (x) can be obtained formally from 1O, (x) by

replacing q by q-1 and Ai, Bi, Ci+l by a,/3i, y+ respectively (i 0, 1).
Next, introduce the monic polynomials

(4.14) R,(x) (AoA1, ., A,_,)-’ Q, (x, y),

(4.15) Sn(y)’--(OoO,l. On_l)-lQn(x, y).

Use (4.3)-(4.6) together with (2.8) and (2.9) to obtain

(4.16) R,+l(X)=(x +F-Aq")R,(x)-(G-Bq"-)(1-q")R,_I(X),

(4.17) S.+(y)=(y+H-Cq-")S,(y)-(K-Dq-")(1-q-")S._l(y),

where

ao /3-2-/32-(1-q)y F=
1-q

A
Ao(1-q) qa ao

aoq (’)12 qlt

B=ag(l_q) q----,), G=
Ao(1 -q)2

Aoq[BA Bo -)x] H=
q (/3_ q-o)C

ao(q 1) Ao
(1 q

q 1

Ao,q,(C2 C1) q2 (3,22 )D=a2o(1-q)2\qA2 i’ K
ao(1-q)2 qal"

The latter can be simplified to

(4.18)

oA -oo(Y + h), F f,

k, G=g,

(4.19)

C= -A(x +f), H= h,
Olo

Ao]D \-o /
g, K k,

Thus we see that {Q.(x, y)} is, in general, an OPS in y as well as in x. As
before, we observe that {S.(y)} can be obtained from {R.(x)} by interchanging x
and y and making the same replacements that turn {p.(x)} into {q.(x)}. Note
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further the interesting, and perhaps surprising, fact that O,(x, y) is independent of
a, b, c and d.

5. Sufficiency; generating functions. It still remains to verify that these
polynomials do indeed satisfy the convolution property (2.3). This will now be
accomplished by means of generating functions.

We first simplify things a bit by taking (without loss of generality):

ao -ao=(1-q)-’, f=h=O.
Referring to (4.7), we put

P(x; t)=
.=o O.(x)[-.= Yo= p.(x)t".

From the recurrence formula (4.7), we find that

(5.2)

(5.3)

We set

(x; t)-(x; qt) tx(x t) atOP(x; qt) t2[gdP(x t) bdP(x qt)],

P(x; t)
1 at +

CP(x; qt).
1 xt + gt

1 at + bt (1 ct)(1 fit),

1 xt + gt (1 yt)( 1 6t),

with the convention that if b 0 or g 0, we take/3 0 or 6 0, respectively.
Then for Iql < 1, we have

(5.4)

dp(x" t) o 1 atq)(1 fltq)
(1-ytqk)(1-6tq

CP(x; t)=
e(yt) e(6t)
e(at) e(flt)’

where

W
e(w)= II (1-wq")-’= 1-I

,=o ,,=o [q],

Next, referring to (4.8), we set

(5.5) *(y; t)=
,,=o

y" (- 1)"q"("+l)/z"(Y)[-, Yo= q"q,(y)t".

Now, can be regarded as being obtained from (5.1) by replacing q by q-l, A, by
ci, etc. Under this replacement, a, b and g are replaced by c, d and k. Further,
according to (4.13), c a, d b. From (5.2) we thus obtain that

1 aqt + bq2texl(*(y; qt)
1 yqt + k--@-*’y’ t),
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whence, for Iql < 1,

(5.6)

where

(5.7)

and 6’= 0 in case k O.
We then have

xp’(y; t)--
e(aqt) e(qt)
e(y’qt) e(’qt)’

1 yt + kt (1 y’ t)(1 a’t)

(x; t)qt(y; q-t)
e(yt) e(6t)
e(y’t) e(6’t)"

But if we compare (4.16) with (4.9), it becomes clear that the generating function
for {R.(x)/[q],} must be

where

W(x t)
e(y* t) e(6* t)
e(*t) e(*t)’

1- At + Bt2= (1-*t)(1-/3* t),

1 xt + Gt 1 y* t)(1 6" t).

But according to (4.18), A y, B k, G g, and hence, referring to (5.3) and
(5.7), we see that c* y’,/3*= 6’, y*= y, 6" 6. That is,

W(x; t) (x t)qt(y; q-l/),

which shows that (2.3) is satisfied.
Summarizing to this point, we see that if {p, (x)}, {q,(y)} and {O,(x, y)} are all

OPS related by the convolution property (2.3), then either all three belong to the
Meixner class (and O, is a polynomial in x + y) or they are essentially the
polynomials satisfying, respectively, (4.9), (4.10) (related by (4.13)) and (4.14),
(4.15). In the former case, the convolution formula will be essentially one of the
five given in 1.

6. Explicit tormulas; special cases. A further study of the polynomials in 4
and 5 will now be made. To fix the notation, we shall standardize our polynomials
by taking

p.(x)=-P.(x)=-P.(x; q; a, b, g)

as the polynomials satisfying

(6.1) P.+(x) (x- aq")P.(x)-(g-bq"-)(1 -q")P._(x),

where P_a(x) O, Po(x) 1, and q, a, b, g are parameters with q : 1, g- bq- O,
n _-> 1. With this notation, the remaining polynomials are

l.(y)= P.(y; q-; a, b, k),

(6.2) R,,(x) P.(x; q; y, k, g),

S.(y)=P.(y;q-;x,g,k).
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The convolution property reads

where

n] [q],,
k [q]k[q],-k"

We next note the identities (see [2, (1.4), (1.5)])"

e(yt) e(6t) , H,(6/y)(yt)"/[q].,

[e(at) e(/3t)]-1= Y. (-

where

Let

so that (cf. (5.3))

/-/.+, (x) ( + x)/4. (x) x(1 q)I4._,(x),

G.+(x) ( +x)6o(x)-x(-q-")G._,(x).

h,(x) T"H,,(/T), g. =(T’)"G,(6’/T’),

-"a,b,k)

yields

(6.6)

We(w)
[a],,[e(aw) =o -]-,’

P,,(x; q; a, b, g)=

Turning next to orthogonality questions, we first observe that we shall have
orthogonality with respect to a real distribution on the real line in the following
cases (only)"

(6.4) h,,+l(X) xh.(x)- g(1 q")h,_,(x),

g,+,=ag,-b(1-q-")g,_,.

We see that h.(x) is a polynomial (in fact orthogonal polynomial) of degree n. The
generating function (5.4) now produces the "explicit" formula

(6.5) P,(x; q; a, b, g)= ’. [](-1)kq(-l)/2g,h,,_(x).
k=O

With the use of other known series expansions for different rational combina-
tions of e(w), the generating function can be expanded in a variety of ways. For
example, use of formula (1.12) of [2], namely,
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All parameters are real, and
(i) Iq[ < 1, g > b _-> 0,
(ii) 0<q< 1, g>-0>b,
(iii) 1 < q < 0, g > bq > O,
(iv) q>l, b>g, b>_-0.

Referring to (6.1), we write c,=aq
then c, 0 and h, g > 0. According to a theorem of Blumenthal [3], the zeros of
the P,(x) are dense in the interval (-2Yg, 2xg). This conclusion is vacuous if
g 0, but in this case, a theorem of Krein [1, p. 231] says the corresponding
distribution function has a bounded, denumerable spectrum whose only limit
point is 0.

When q > 1, we have A, - o, so the interval of orthogonality is unbounded. If
a 0, a > 0, say, then it can be shown (see [4]) that (i) if 4b < a2, then the set S of
limit points of the zeros is a denumerable set bounded below by min (a, ag/b) and
having no finite limit point, (ii) if 4b a 2, the zeros are dense in (tr, o) where
tr =>min (a, ag/b), (iii) if 4b > a, the true interval of orthogonality is (-o, ).

If q>l and a=0, we have the symmetric case. By considering
{P,(xl/2; q, O, b, g)}, it can then be shown that S is a denumerable set with no finite
limit point.

In a more explicit vein, we note that the case of g 0, ab 0 can be identified
with known OPS. We have

P,(x; q; 1 + a, a, 0)= U(,(x),

P,,(x; q -1", 1 + a, a, O)= Va(x),

where { U(,a)(x)} and { V(,"(x)} are orthogonal with respect to discrete distributions
explicitly found by AI-Salam and Carlitz [2]. (The general case, g 0, can be
transformed to the above by a linear change of the variable x.)

Finally, for the special case a b 0, g >0, Iq[ < 1 we have a new class of
orthogonal polynomials for which a weight function will now be obtained.

7. Explicit orthogonality relation for a b 0. The case a b 0 corre-
sponds to the recurrence formula (6.4):

Let
P,(x;q;O,O,g)=h,(x).

(7.1) h*,(x) g-"/2h,,(2g/2x),
and let x cos 0, 0_-< 0 _-< zr. Referring to (5.3), we then observe that we have

Thus (6.6) yields

(7.2)

3’ g/ e’, 6 /, a =/ 0.

k=O k:O k
e i(n-2k)O
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where T,.(x)=cos mO is the Chebyshev polynomial, and we write T_,.(x)
T,.(x).
We shall now find a weight function w(x)>-0 such that

(7.3) I, h*.(x)w(x) dx 0 for n > 0.

Since {h,*(x)} is known to be an OPS, (7.3) will be sufficient to prove h*,(x) is
orthogonal to h*,.(x), m # n, with respect to w(x) for all m, n. (This is a conse-
quence of the recurrence formula; see, e.g., [5].)

First, let

(7.4) qg(x)= Y. 1,Tz(X),

where

Then, putting

, (- 1)q(2+’2/8 v=0, +/-1, +/-2,-...

(7.5) W(X) (l

we use the well-known orthogonality properties of {T,(x)} to obtain

=0 =0

km

where we have used the fact that

0<k<n.

Now

so that

hm (-- 1)’q(i"+’)2/Srr Z (- 1)q’-W(q-’).
k=0

In view of Gauss’ identity,

=o k
u (1 + u)(1 + uq). (1 + uq"-’),

we see that I2m "--0 for m > 0.
Noting that q(x)(1-x2)-1/2 is an even function, we conclude that I2m+ 0

also. From the recurrence formula, we then obtain

I[ x"h*,(x)w(x) dx 2-"[q],aorr,
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whence we conclude the orthogonality relations,

(7.6) h*,,(x)h*,(x)w(x) dx 7rql/8[q],tm,.

There remains only the task of proving the positivity of w(x). To this end, we
note the identity due to Jacobi l-6, 17.2.2.(16)],

Y’. x2zk= I-I {(1-x2")(l+x2"-lz)(1
k=-c n=l

Taking x ql/, z -ql/ e2i, we get

(- 1)kq/1/ e:’= 1] {(1-q")(1-q" e’)(1-q-1 e-2’)}
k=-o3

=(1-e-’) H {(1-q")ll-q" e2’l}.

Comparing the latter with (7.4) and (7.5), we conclude that

(7.7) w(x)=2q 1/ H (1-q)(1-x2)1/ 1] II-q" e’l.
n=l n=l

Note added in proof. The special case discussed in 7 has been studied
previously by W. A. Allaway [8]. Allaway obtained the weight function in the
form of a sine series which is equivalent to (7.5). He also obtained the correspond-
ing special cases of the recurrence relation (6.1) and the generating function (5.4)
and an explicit formula which is equivalent to a known formula for H,(x) (see
[2, (1, 2)]. However, the closed form (7.7) for the weight function and the
consequent proof of the positivity of the weight function are new.
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ON BIRTH-DEATH PROCESSES WITH
RATIONAL GROWTH RATES

DANIEL P. MAKII

Abstract. Birth-death processes can be described by systems of differential equations together
with certain probability conditions. Karlin and McGregor have shown that these systems of equations
and the probability conditions have solutions which can be expressed by an integral representation
formula which uses an associated set of orthogonal polynomials and the distribution function for these
polynomials. It is shown that certain general results from the study of orthogonal polynomials can be
used to describe this distribution function in most cases where the birth and death rates are rational
functions of the population size.

1. Introduction. Karlin and McGregor have shown ([13, [2]) that there is an
intimate relationship between birth-death processes and distribution functions
with support on a subset of the nonnegative real numbers. They have also shown
[3] that in the case where the birth and death rates are linear in the population size,
the transition probabilities for the process are determined by a distribution function
which is either the distribution function for the Meixner polynomials, the Laguerre
polynomials, or a closely related distribution function which can be obtained by a
direct computation. Thus they are able to characterize all linear birth-death
processes. In this paper we show that a similar characterization can be given
for many birth-death processes with nonlinear, in particular, rational, growth
rates.

In 2 we review the work of Karlin and McGregor and state some preliminary
results which are needed for the study of rational processes. In 3 we characterize
most rational processes in terms of the associated distribution function. In 4
we consider some special cases, open questions and related conjectures.

2. Preliminaries. A birth-death process (henceforth called a b-d process) is a
special type of Markov chain with states which can be identified with the non-
negative integers and transition probabilities which are subject to certain basic
infinitesimal assumptions (the transitions may occur continuously). The prob-
ability Pij(t), of a transition from state at time 0 to state j at time => 0, depends
on the time available for the transition, but it does not depend on how or when
the process arrived at state i. The basic infinitesimal assumptions about the
quantities Piflt) which characterize a b-d process are as follows"

(s)

P._ ,(At)= laiAt + o(At),

Pii(A[)--- OLi -- i)A/--

Pu+ (At) XiAt + o(At),

Pij(At)- o(At), [i- Jl > l,

At - O,

At - 0,

At -- 0,

At - 0.
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In (S) the quantities Li and #i are the birth and death rates, respectively, for
the b-d process. These rates depend on the state of the process, but they do not
depend on time t. These rates are all positive, except possibly for/to which may be
zero. Thus a b-d process is determined by the sequences {,} and {/}, and one
seeks the probability functions P(t), for i,j 0, 1,2, and _>_ 0. For a general
discussion of b-d processes and for applications of this model, see [4, Chap. 7].

In [1], Karlin and McGregor established a correspondence between solutions
of the system of differential equations which follow from (S) and the other assump-
tions of a b-d process and solutions of solvable Stieltjes moment problems.
To be specific, let A (aij) be the matrix with

aii----(,i--//i), ai,i+l--i, ai_l,i--i and aij--O li-jl > 1,

and let P(t) (P(t)). Then the differential equations for a b-d process are sum-
marized as follows"

I. P’(t) P(t)A,

II. P’(t) AP(t),

III. P(0) I (5,2).
In addition to satisfying I, II and III, we also ask that the matrix P(t) satisfy
the natural probability assumptions associated with a Markov chain; namely,

IV. P,j(t) >= O,

V. Pie(t) < i= O, 1,2,... > 0
j=O

VI. P(t + s)= P(t)P(s).
Karlin and McGregor have shown that matrices P(t) which satisfy I -, VI can be
represented by an integral with respect to a special distribution function which
solves a related Stieltjes moment problem. The related moment problem is obtained
as follows.

Let {Q,(x)} be defined by the recurrence formula

9_o(X) =- 1,

(T) -XOo(X) -(o + o)Oo(X) + oO
-xQ,(x) la,Q,-,(x) (, + la,)Q,(x) + ,Q,+ (x), n>__l.

Thus, since 2i > 0, => 0 and/i > 0, > 0, it follows that the polynomial Q,(x)
has degree n, and thus these polynomials can be formally used to recursively
define a sequence of "moments", {M,}ff. The Stieltjes moment problem (S.M.P.)
which corresponds to the sequence {M,} (i.e., the problem offinding a distribution
function such that m, f x"d (x), n 0, 1,...,) is called the S.M.P.
associated with the sequences {/i} and {Xi} or the S.M.P. associated with the
b-d process determined by these sequences. A discussion of moment problems in
general and the S.M.P. in particular can be found in [5].
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A summary of the fundamental results of Karlin and McGregor follows.
(See [1] for proofs and for many interesting and useful related results.)

DEFINITION. A solution ff of the S.M.P. associated with the sequences
and {L.) is called extremal if the Parseval equation

;o If(x)l z dO (x) f(x)Q,(x) dO (x) ,
=0

is valid for each f e Lz(dO). Here {rr,} is the sequence defined by rto and

ft. 0o ),- 1)/(/1 "’"/t,) for n __> 1.
THFOREM 1. The S.M.P. associated with the b-d processes determined by the

sequences {ui} and {)i} is solvable. If is any solution of this S.M.P. and if the
matrix P(t) P(t, (p) is defined by

VII. Pij(t) z e-x’ei(x)Qj(x) dO (x), >_ O,

i,j O, 1, 2,..., then P(t) satisfies I, II, III and IV. In order to satisfy VI, it is neces-
sary and sufficient that qt be extremal.

If lao O, then P(t) given by VII satisfies V whenever k is extremal. If /ao > O,
then there is at least one extremal k such that P(t) P(t, k) satisfies V. This extremal

is characterized by the property that the spectrum of has no points in the interval
(-, ), where lim,_ ,, and 1, is the .first zero of Q..

THEOREM 2. Any matrix P(t) which satisfies I VI can be represented in the
form VII, where is an extretnal solution of the associated S.M.P.

THEOREM 3. In order that there be one and only one matrix P(t) with properties
I VI, it is necessary and sufficient that

n=O

In [_3] the results given above are used to study and classify b-d processes
for which ), and/6 are linear in n. In 3 below we shall consider b-d processes
for which 2, and/, are rational functions of n, subject of course to the constraints
9, > 0, #, > 0, n 1, 2,.-., )o > 0,/o >-- 0. In most such cases we shall show how
to obtain the distribution function for the representation VII and we shall
describe the spectrum of . In order to do this we will need the following results
relating the coefficients in the triple recurrence formula for a set of orthogonal
polynomials to the distribution function of the orthogonal polynomials.

THEOREM 4. (Favard [6]). Let the sequence q).} of polynomials be defined
by the formulas

(R)
qgo(X) 1, (p,(x) (x ao),

q)n+ 1(X) (X a.)q).(x) b,q),_ n>_l,

where {a,,} is a real sequence and {b,,} is a positive sequence. Then there is a
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distribution function / such that the polynomials {q).} are orthogonal with respect
to . Moreover, if the polynomials {(p,} are used to define a moment sequence
{M.}, then is a solution of the moment problem associated with this sequence.
Thus,

nm, n,m 0,1,2,...

n =0,1,2,...

x" dqt (x) M,, n 0, 1,2,

Since all sets of orthogonal polynomials obey a triple recurrence formula
such as (R), Theorem 4 establishes a correspondence between pairs of sequence
(a.} and {b,} with the b,’s positive and distribution functions on (-oe, +
The correspondence is not one-to-one, as many distribution functions may
correspond to the same set of orthogonal polynomials (same pair of sequences
{a,} and {b,}). We are interested in how properties of the sequences {a,} and
are related to properties ofthe corresponding distribution functions q. In particular
we need the following result (see [7, p. 291] for a proof and related results).

THEOREM 5. Let the sequence q).} ofpolynomials be defined by (R) and suppose
the sequences {a,,} and {b.} obey the conditions

(i) a,- as n o

(ii) lim sup
anan-1

Then the polynomials q),} are orthogonal with respect to a distribution function
which is a step .function obtained as follows.
Form the continued fraction

bl b2K(x) =lx a0
]x- al Ix-a2

This continued fraction converges completely to a meromorphic function which has
the representation K(x) All(X-el) where ai+ > ai i= 2,... aii=1

as - , A > O, 1, 2, and i= A 1. Then is the distributionfunction
which is constant on each interval (-, al), (, 2),""", (ai, ai+ ), ", and which
has jump A at ai, 1, 2,.... Moreover i is the limit of the i-th zero of q,, as
n - , and is an extremal solution of the associated moment problem.

Remark. The last sentence ofTheorem 5 is not explicitly stated in [7], however
an examination of the proof of the result given in [7] shows that this fact has also
been established.

We also need the following result about orthogonal polynomials (see [8,
pp. 438--440]).



BIRTH-DEATH PROCESSES 33

THEOREM 6. Let the real sequences {a.} and {b.} of(R) satisfy the conditions

(i) a,- a 4: oo as

(ii) b.>0, n= 1,2,..., b,O as n--,

Then the continuedfraction
b, b2

K(X)=lx a0 Ix-a, Ix-a2
is meromorphic in the complex plane with the point deleted and has the representa-
tion

Ao AiK(x)
XO t’= 1Xi

where o - as c, each A is nonnegative, and Ai converges. Moreover
the polynomials (p,} are orthogonal with respect to a unique distribution function

which is a step function with jumps of size A a , 1, 2,..., and a jump size

Aoat .
Remark. Theorem 6 is a special case of a similar result which holds when the

sequence {a,} is bounded and the derived set of {a,} contains a finite number of
points. The assumption b, -, 0 is retained. See [8, p. 450].

3. Distribution functions for b-d processes with rational growth rates. In
recurrence formula (R) the polynomials {q%} are monic (the leading coefficient
is one) while in formula (T) the polynomials {Q,} are not monic. Thus in order to
use Theorems 5 and 6 to study b-d processes, we must first normalize the poly-
nomials {Q,} to be monic. The formula for this normalization is quite simple and
it is given by the following lemma.

LEMMA 1. Let the polynomial set {Q,} be given by (T). Then there is a nonzero
sequence {k,} such that the polynomials qg, k,Q, satisfy jbrmula (R), where the
sequences {,}, {/t,} and {a,}, {b,} are related by

a, Z, + lu., n O, 1,2,...,

b, ,_ l#n, n 1,2,

Proof The proof follows directly by taking ko 1, k -o and

k, (-1)n,0l ’n-1"
We now consider b-d processes with rational rates of growth. We adopt the

convention that Ap(x), B(x), G(x) and D(x) are polynomials of degree p, q, r, s,
respectively. We also assume that these polynomials are such that Ap(x)/B(x)
and C,(x)/D(x) are positive for x 1, 2, 3,..., Ap(O)/Bq(O) > 0, and C,(O)/D(O)
=> 0. Finally, we let a, b, c, d be the coefficient of the highest order term in Ap,
Bq, C, and D, respectively. In this setting we have the following results.

THEOREM 7. Let Ap(x), Bq(x), C,(x) and D(x) be as described above and consider
the b-d process with , Ap(n)/Bq(n) and #, C,(n)/D(n), n 0, 1,2,.... If
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p -q and r = s and p + r < q + s, then the S.M.P. associated with this b-d
process has a unique solution /, the system I VI has a unique solution P(t) P(t, ),
and is a step function obtained as in Theorem 6.

Proof. From Lemma l, the sequences (a.} and (b,} are given by

and

(nt C(n+ n>__O,a. Bq(n) D(n)’

Ap(n-1) Cr(n)
b, n>l.

Bq(n l) D(n)’

Thus, since p =< q, r =< s and p + r < q + s, we see that as n --. o, b,---, 0 and
a, e, where e is finite. Thus, by Theorem 6, the continued fraction K(x) con-
verges and has the expansion

Ao AiK(x)= + 2.,
X O t’= 1X Oi

whereAi>0,i-0,1 2,.-. o A converges, andeieasioe. Alsothei=0

polynomials {qg.} (and hence {Q.})are orthogonal with respect to a unique
distribution function which is a step function with a jump of size Ai at ei,

1, 2,..., and a jump of size Ao at e. Now, if the set {Q,} is orthogonal with
respect to a unique distribution function , then the associated S.M.P. has a
unique solution given by , and by Theorems and 2, the system I-VI has a
unique solution given by P(t) P(t, ). Q.E.D.

THEOREM 8. Let the sequences {,,} o and {/,} of the b-d process be given by
2, Ap(n)/Bq(n) and p, Cr(n)/D(n), n 0, 1,2,..., where Ap, Bq, Cr and D
are polynomials as described above. Then in each of the following cases, the b-d
system I VI has a unique solution P(t) P(t, ), where is given as in Theorem 5

p>q, r<s

2. p<q, r>s

3. p>q, r>s, p-q#r-s,

4. p > q, r > s, p- q r- s but ad bc.

(Recall that a, b, c, and d are the leading coefficients of Ap, B, C and Ds, respectively).
Proof Since a, ), +/, and b, ),_ p,, the sequences {a.} and {b,/

(a,a,_ )} o are of order Inp-q nt- n-] and n(P-q)+(r-s)/[nP-q + nr-S] 2, respectively.
Thus in cases 1, 2 and 3 we immediately have a, ---, oc and b,/(a,a,_ x)---’ 0 as
n oe. Hence, in these cases the hypotheses of Theorem 5 are true and the poly-
nomials {qg,} (and {Q,}) are orthogonal with respect to a distribution function q
given as in Theorem 5. As noted in Theorem 5, this distribution function has support
on the interval [, oe), where lim,_oo ., and , is the first zero of Q,. Since
the polynomials {Q,} are known to be orthogonal over (0, oe) (Theorem 1), all
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zeros of these polynomials are on (0, o), and hence _>_ 0. Thus, since is an
extremal solution of the S.M.P., by Theorem 1, the matrix P(t) P(t, ) satisfies
the b-d system I VI. In order to show that this is the only solution of this system
we use Theorem 3. By the ratio test, in case 1, o n. o, and in case 2,
1/(.n,) o. Thus in both these cases the solution P(t)= P(t, /) is unique.
The same result holds in case 3, where the ratio test shows that if p q > r s,

1/(,.re.)= oz Hence in case 3,thenre, m while ifp-q<r-s, theno
the solution is also unique.

In case 4, the situation is slightly more complicated. Clearly, a, --, however
in this case we do not have b,/(a.a._ l) O. Instead, since both b. and a,a._
are of the order of n(p-q)+(r-s), the ratio b,/(a.a,_ ) has the limit ((a/b). (c/d))/
[(a/b) + (c/d)] 2, where a, b, c and d are the leading coefficients of Ap, Bq, C and
Ds, respectively. Also, since 9. > 0 and/. > 0 for n > 0, we can assume without
loss of generality that a, b, c and d are all positive. Therefore the inequality

(a/b)(e/d)
[(a/b) + (c/d)] 2 4

is true if and only if [(a/b) (c/d)] 2 > 0. Equivalently, if ad :/: bc, then

lim b. abcd
.-oo a.a._ lad -+- bc] 2 < -’

and hence Theorem 5 can again be used to describe a distribution function ,
which provides a solution P(t, ) of system --* VI. To show that this solution is
unique we note that

and similarly,

lim ft.+ lim
L,

lim
Ap(n)/Bq(n) a/b ad

,-oo re. ,-,oo #. ,-oo Cr(n)/Ds(n) c/d bc

lim ""re" bc
.-(R) .+ ire.+ ad

Since ad :/: bc, either ad/bc > or bc/ad > 1, and thus by the ratio test, either

Z re, or . 1/(,.re.)= o. In either case, ’, (re, + 1/(L,re.))= , and by
Theorem 3 the solution P(t, q,) is unique for system I VI. Q.E.D.

As an immediate corollary of Theorem 7 we have the following result about
polynomial growth rates.

COROLLARY. Let ,. Ap(n) and p, C,(n), n O, 1, 2,..., where Ap(x) and
C(x) are polynomials of degree p and q, respectively, with leading coefficientsa and c,
respectively, and satisfying Ap(n) > 0, C,(n) > 0, n 1,2,3,..., Ap(O) > 0,
C,(O) >__ O. Then, if p :/: r or if p r and a 4: c, then the b-d system I-VI with birth
and death rates {L,} and {kt,}, respectively, has a unique solution P(t, t) with

given as in Theorem 5.
Proof This is Theorem 8 with q s 0 and b d 1.
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4. Special cases, open questions and conjectures. Theorems 7 and 8 do not
include b-d processes with rational rates of growth in which either of the following
occurs (we use the notational conventions of 3)"

1. p>q,r>s,p-q =r-s, andad =bc.
2. p=qandr =s.

In case 1, an ; however, limn. bn/(anan-1) 1/4, and hence Theorem 5
cannot be used. In this setting, if p r and q s 0, then ?n and/, are
linear in n, say Ln an + k and/t, cn + l, and this is the situation considered in
detail by Karlin and McGregor in [3]. They have shown that, as predicted by
Theorem 8 for a 4: c, there is a unique distribution function such that P(t,
solves the b-d system VI and q has a discrete spectrum with no finite limit
points. In fact Karlin and McGregor recognized from the recurrence formula
for the polynomials {Q,}, that when a 4: c, these polynomials are essentially the
Meixner polynomials and thus a complete description of k can be given. If a c,
then Theorem 8 gives no information about ; however, Karlin and McGregor
recognized from the recurrence formula for the set {Q,} that these polynomials
are essentially the Laguerre polynomials and thus ff is absolutely continuous and
d(x) e-X/x for some > 0. This linear case and general result about the
moment problem suggest the following.

COYJECrURE. If p =q + 1, r s + and ad bc, then there is a unique
solution to the system I VI given by P(t, d/), where is absolutely continuous on

(0, v). If p > q, r > s, p + r > s + q + 2 and ad bc, then there are infinitely
many solutions of I VI.

In case 2 above, both. {),} and {/t,} (and hence {a,} and {b,})have finite
nonzero limits. Thus neither Theorem 7 nor 8 applies. As a special case of this,
consider 2, =/n 1/2 for all n => 0. Then b, 1/4 for n __> 1, and a, for
n >_ 0. The recurrence formula (R) is then a translation of the formula for the
Chebyshev polynomials and hence the related distribution function is unique
and absolutely continuous on a bounded interval. This leads us to the following.

CONJECTURE. lfp q and r s, then there is a unique solution P(t, )for the
system I --, VI, where d/ is an absolutely continuous distributionfunction defined on a
bounded interval.
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ASYMPTOTICALLY VANISHING OSCILLATORY TRAJECTORIES
IN SECOND ORDER RETARDED EQUATIONS*

BHAGAT SINGH

Abstract. Conditions have been found on a(t), r(t) and f(t) to ensure that all oscillatory solutions
of (r(t)y’(t))’ + a(t)y(t-’(t)) =f(t) approach zero asymptotically where 0< a =< and a is a ratio of

odd integers.

1. Inlroduetion. The literature is very scanty about the asymptotic nature of
the solutions of nonhomogeneous retarded equations. Usual techniques for
corresponding ordinary differential equations do not often carry over to retarded
equations. Recently Hammett [3] studied an equation of the type

(1) y"(/) + p(t)y(t) f(t)

and showed via a theorem of Bhatia [1] that, if p(t) >- k >0, and f(t) is continuous
and integrable on some positive half-line, then all nonoscillatory solutions of (1)
approach zero asymptotically. This author and Dahiya [6] extended Hammett’s
results to equations of the type

(2) (r(t)y’(t))’ + a(t)y(t-’(t)) f(t),

after observing an example due to Travis [7] in which Bhatia’s theorem and
consequently Hammett’s technique did not apply to (2). In fact the equation (see
Travis [7])

sin
(3) y"(t)+y(t- r) 0

2 sin

has y--2 +sin as a nonoscillatory solution. But, by Bhatia’s theorem, all solu-
tions of the equation

sin
(4) y"(t)+y(t)=O

2 sin

are oscillatory since

sin

sin

Our purpose here is to find conditions on a(t), r(t) and f(t) to ensure that all
oscillatory solutions of (2) tend to zero asymptotically. As it stands, one of the
conditions is

* Received by the ecitors April 26, 1974, and in revised form January 8, 1975.
Department of Mathematics, The University of Wisconsin Center, Manitowoc County, Man-

itowoc, Wisconsin 54220.
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where r(t)> 0. This excludes a very important class of equations, namely,

(5) y"(t) + a(t)y(t- r(t)) f(t).

The latter part of this paper singles out a significant class of oscillatory solutions
not shared by (4) and (5).

In thoroughly searching the literature we find that very little has been said
about the asymptotic nature of oscillatory solutions of (2) and (5). The results of S.
Londen [5], T. Burton and R. Grimmer [2], R. S. Dahiya and B. Singh [6], R.
Terry I-8] and other authors only seem to enhance asymptotic results about
nonoscillatory solutions of (1) and (2).

High speed mechanisms which are mathematically associated with retarded
equations, are very susceptible to oscillations caused by the delay term (see
Minorsky [4, p. 518]). Therefore, given the delay term, it is important to know
what additional controls are necessary to ensure that oscillations die out.

2. Definitions and assumptions. Throughout this paper it is assumed that R is
the real line; r(t), ’(t), r’(t), a(t) and f(t) are continuous on R. In addition,
0 -< z -< M, and r(t) > 0 on some positive half-line ItS, 3), t > 0.

We call a function h(t) C[to, ] oscillatory if h(t) has arbitrarily large zeros
in It[, ]. Otherwise we call h(t) nonoscillatory.

The term "solution" below will apply only to continuously extendable
solutions of equations under consideration on some positive half-line.

3. Main results. Our first theorem gives conditions when oscillatory solutions
of (2) are bounded.

THEOREM 1. Suppose:
(i) oo [1/r(t)] dt <

(ii) oo If(t)] dt <
(iii) jo [a(t)l dt <

Then oscillatory solutions of (2) are bounded.
Remark 1. The condition j[1/r(t)]dt< is severe and eliminates

obvious cases of application, such as variable mass problems where r(t) is usually
bounded. This specialized case gives a set of preliminary results for unbounded
r(t), which we believe can be extended to a more practical situation where r(t) is
bounded. Section 4 presents a partial extension of a situation where r(t) is
bounded.

Proof Let T-> t, be sufficiently large that for >= T, r(t)>0. Let y(t) be an
oscillatory solution of (2). Let t2 > t > T be two consecutive zeros of y(t) and,
without any loss of generality, suppose y(t)>0 in (tl, t2). We can also assume,
without any loss, that T is sufficiently large that

(6) la(t)l< 1,

(7) If(t)l< 1,

(8) [ 1/r(t)] dt < -.
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Let Mo max y(t), t6[tl, tz]. Also, let to(tl, t2) be such that

(9) Mo y(to).

Now Mo jl, y’(t) dt, which implies that

(10) Mo <- ly’(t)ldt.

Also Mo =-Jio y’(t) dt so that

(II) Mo<= ly’(t)ldt.

From (10) and (11),

(12) 2Mo--< ly’(t)l dr,

from which it follows that

(13) 2Mo_<- .[r(t)]-/[r(t)]/ly’(t)l/. ly’(t)l /dt.

Squaring (13) and applying Schwarz’s inequality, we have

(14) 4Mg <- [1/r(t)] dt r(t)y’(t) y’(t) dr.

Integrating the second integral by parts, we have from (14) that

If,’2 t][ f,’2 t](15) 4M <- [1/r(t)] d y(t)(r(t)y’(t))’ d

since y(tl)= y(t2)= 0. Making use of (2) in (15), we have

4M [1/r(t)] d <-_ y(t)a(t)y(t-(t)) dt- y(tff(t) dt

--< y()la(t)lly(-’())1 de / y()l/(t)l de.

This yields the inequality

(16) I; [1/r(t)] dt
la(t)lly(t-r(t))l dt+ If(t)l dt

since y(t) _-< Mo for 6 [tl, t2]. Let q > p be large enough consecutive zeros of y(t)
such that

p-M>T.

Suppose

(17) Mq =max ly(t)], t[T, q].
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Now if y(t) is not bounded, then lim sup,_ ly(t)]--o. Let r > q be the smallest
number such that

(18) ly(r)l=M+l.

Let T1 be the greatest zero of y(t) less than r, and let T2 be the smallest zero of y(t)
greater than r. Then

(19) q <- Tl < r < T2,

and TI<T2 are consecutive zeros of y(t). Let M2=maxly(t)],t[T1, T], and
M2 ]y(tM2)[, tM2 [T1, T]. We shall show that

M- max [y(t)[, t[T, T].

To see this, let

L ]y(s)] max ]y(t)[,

By definition, M2-> ly(t)l, t[T, T2]. In particular, r6[T, T2], so that

M2 _-> [y(r) Mq + 1

t6[T, T2].

(20) ly(t--(t)l<=M

for 6 T, T2]. From (16) and (20) we obtain

(21) ITT[1/r(t)] dt=M2 la(t)l dt+ If(t)l dt.

Dividing (21 by M, we have

4 I x +TT If(t)[dt(22) TT [1/r(t)] dt <-.!T la(t)] dt
m2

Since M2 > 1, (6), (7) and (8) contradict (22). The proof is complete.
THEOREM 2. Suppose conditions (i)-(iii) of Theorem 1 hold. Let y(t) be an

oscillatory solution of (2). Then y(t) 0 as - o.
Proof. Let Tbe the same as in the proof of Theorem 1. If lim,_.oo y(t) : 0, then

(23)
lim inf [y(t)] 0,

> Mq max
IT,q]

_->[y(/)[, [T, q].

Moreover, maxtq.T,[y(t)[<--Mq + 1, for otherwise the definition of r would be
contradicted, since Tl<r. Thus M-->maxtT.T[y(t)[. But M=lY(t,2)[, where
t6[T, T2] IT, T2]. Thus M2=L.

In the inequality (16), we replace tl and t by T and T, respectively. We have
t-z(t) >-_ t-M, since M>= -(t) >-0. Thus, for 6[T, T2], t-z(t)6[T, q] by virtue
of (17). Hence
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and

(24) lim sup ]y(t)] > 2d > 0.

Owing to (5), (6) and the oscillatory nature of y(t), there exist arbitrarily large
consecutive zeros T and T4 such that

(25) d < D max ly(t)l, IT3, r4], T3 > T,

(26) If(/)l dt < -,
(27) [a(t)lly(t-(t))l dt <-
and

1
(28) - dt < d.

We note that (27) is made possible by the boundedness of y(t) from Theorem 1
and condition (iii).

Replacing t and t2 by T3 and T respectively, and Mo by D, we obtain

(29) I]
<- la(t)l[Y(t-’(t))l dt + If(t)[ dt.

Substituting in (29) from (26), (27) and (28), we have

4d 1
d-2 2"

This contradiction proves the theorem.
Example 1. Consider the equation

(30) (ety’(t))’ + e-’-2=y(t 7r) e -3’ sin + e-’ sin t- 3e-’ cos t.

All the conditions of Theorem 1 are satisfied. In fact, (30) has y(t) e -2’ sin as a
solution that satisfies the conclusion of Theorem 2.

Remark 2. The following example shows that it may not be possible to
weaken the condition - d < oo

if all other conditions of Theorem 1 are satisfied.
Example 2. Consider the equation

(31) y,,(t) +4y(t sin (logt t)_ cos (logt t)_ sin (logt4
t), > 0.
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Here, all the conditions of Theorem 1 are satisfied except condition (i) on r(t).
Equation (31) has y sin (log t) as an oscillatory solution that does not approach
zero. However, this solution is bounded. The next example shows that a solution
need not be bounded if the condition on r(t) is violated.

Example 3. Consider the equation

1 5 sin (log t)
(32) y"(t) +y(t) 4t3/2

t>0.

Except for the condition on r(t), all other conditions are satisfied. Equation (32)
has y x/ sin (log t) as an unbounded solutioil.

Remark 3. The technique of the proof is applicable to a more general
equation.

THEOREM 3. Suppose conditions (ii) and (iii) of Theorem 1 hold. Let y(t) be an
oscillatory solution of
(33) (r(t)y’(t))’ + a(t)y(t-’(t)) f(t),

where 0 < a <-_ 1 and a is a ratio of odd integers. Then y (t) - 0 as -.Proof. We proceed as in the proof of Theorem 1. The inequality (16) becomes

(34) I; [1/r(t)] dt= la(t)lly(t-(t))l dt + If(t)l dt.

Proceeding further as in the proof of Theorem 1, the inequality (21) becomes

(35)

which yields

4M2 -<M la(t)l dt + If(t)l dt,

4 f If(t)l dt
(36)

M-1 [1/r(t)] dt
<-_

jr, la(t)l dt +
M

Since a =< 1, (36) gives the right contradiction, and the boundedness of y(t) is
proved.

From here on, the proof of Theorem 2 applies verbatim if we replace (27) by

(37) la(t)lly(t-’(t))l dt < -.
The proof is now complete.

The following example justifies Theorem 3.
Example 4. Consider the equation

(38) (e’y’(t))’ + e-’-/7(y(t 7r))5/7 -e-17’/7 sin5/7 (t) + e-’ sin t- 3e-’ cos t,

which has y(t)= e-2’sin as a solution. All the conditions of Theorem 3 are
satisfied.

4. On y"(t)+a(t)ya(t-’(t))=f(t). In this section, we shall prove that as
long as the distances remain finite between consecutive zeros of an oscillatory
solution of
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(39) y"(t) + a(t)y(t-z(t))= f(t),

where 0 < a -< 1 and a is a ratio of odd integers, then such a solution approaches
zero. Let y(t) be an oscillatory solution of (39). We define a set Zy by

Z, {yo- Xolyo > Xo and yo and Xo are consecutive zeros of y (t)}.

THEOREM 4. Let y(t) be an oscillatory solution of (39). Suppose conditions
(ii)-(iii) of Theorem 1 hold. Then y(t)o0 as t-m if the associated set Zy is
bounded.

Proof. We proceed as in Theorem 1. The inequality (16) becomes

(40)
t2 It t2Mo < la(t)lly(t-z(t))l dt + If(t)l dt.

t2--tl

Let Ky _-< C for any K e Zy. We now replace (6) and (7) by

(41)

and

1
(42) If(t)l<.
Inequality (21) now yields

4 I rr f(t)l dt
(43) M-I(T2 T1"-<) Jr la(t)[ dt+ M’
which gives

1 1 2
(44) 4(M-1 C)-1 <- +

MC- C"

Since M2 > 1 and a < 1, (44) gives a contradiction. The proof is now complete.
Remark 4. Returning to Example 3 and Example 4, the solutions

y sin (log t) and y =,/} sin (log t), respectively, are such that the distance
between their consecutive zeros tends to infinity. In fact, sin (log t) vanishes at

t, exp (nTr),. n O, 1, 2,. ,
and

lim [t,+l- t,] oo.

Examples 3 and 4 justify Theorem 4 on the boundedness of the set Zy.
Example 5. Consider the equation

(45) y"(t) + e-’-"y(t- 7r) -2e-’ cos t- e -2’ cos t.

All conditions of Theorem 4 are satisfied. Thus all oscillatory solutions of (45) of
which the associated sets Z, are bounded, approach zero. The solution y e-’ sin
is one such solution satisfying the required conditions.
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CONTINUOUS PARAMETER DEPENDENCE
IN A CLASS OF VOLTERRA EQUATIONS*

KENNETH B. HANNSGEN?

Abstract. Conditions are found under which the solution of the Volterra integral equation

x’(t)+ a(t-s,A)x(s)ds=k, x(0)= x0,

is continuous in A, uniformly in {0 =< < oo}, when a(t, A is nonnegative, nonincreasing, and convex as a
function of t, for each A. The main theorem concerns the case where the kernel has a special piecewise
linear form and solutions are asymptotic (t eo) to nondegenerate periodic functions. This is the case
excluded in similar earlier results of the author.

The significance of these results for certain related Volterra equations in Hilbert space is
summarized.

1. Introduction. Suppose

(HI) a(t) is nonnegative, nonincreasing and convex on (0, oo), a(t)a(oe),
0< a(0+)-<oo, and ’ a(t) dt<o,

and consider the equation

(1.1) x’(t) + a(t-s)x(s) ds k, x(0)= xo,

(’= d/dt), where k and Xo are prescribed constants. In [1] we showed that
x(t)- k o a(t) dt (--0 if the integral is infinite) as t- o, except in the special
cases where

(H2) a(0) a(0+) < oo and a(t) is piecewise linear with changes of slope only at
integral multiples of to 2r/x/a(O).

If (HI) and (H2) hold, then

(.2 x(t-, a( dt

where Xl x Xol- k2 with

(.3)

(1.4)

(t- ),

1)1(t) 2T-1
COS wt, )2(t) 2(3’W)- sin wt,

3’ 3--(a(oO)/a(O)), oo [(0).

In this paper, we permit a(t)= a(t, A) to depend on a real parameter
Ac R 1. Then x(t)=x(t, A). It is clear from (1.2) that x,(., A) belongs to the
Banach space BC of bounded, continuous functions on [0, ) with supremum
norm. Our main result is the following.

* Received by the editors August 13, 1974, and in revised form February 14, 1975.
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THEOREM 1. For each A A, suppose

(1.5) (H1) and (H2) holdfora(t)= a(t, A) and

(1.6) a(m, A) 0.

Suppose in addition that

(1.7) A (A) 1 a(t, A) dt is continuous on A and

A - a(’, A) is continuous as a mapfrom A toLl(O, R)foreachfiniteR >0.

Then the map A - x( A) from A to BC is continuous.

The analogous result when (H2) does not hold is as follows.
THWORE:a 2. For each he A, suppose (H1) and (1.6) hold, but not (H2).

Assume (1.7) and (1.8). Then the map a -> x( A) from A to BC is continuous.
Theorem 2 differs from Theorem 4 of [2] only because the latter requires a’(t)

to be continuous. The proof here is virtually the same (the necessary alteration is
indicated in [3]), so we shall prove Theorem 1 only.

We have not determined whether (1.6) is necessary in Theorems 1 and 2, or
whether it could be replaced by

(1.6a) a(c, A) is continuous.

A simple modification of our proof below shows that (1.6a) is sufficient for
continuity at a point a Ao, where a(m, ao) > 0, and that (1.6a) is always sufficient
if k 0. For this reason we shall write y, even though Y 3 when (1.6) holds.

In 2, we discuss a Volterra equation in Hilbert space, the study of which led
us to consider the parameter dependence of (1.1). We prove Theorem 1 in 3.
The proof contains much in common with the proof of Theorem 4 of [2] and with
parts of [1]. In the remark at the end of 3, we indicate a correction for [1].

2. Consequences tot equations in Hilbert space. Consider the equation

x(t)+ L(t-s)x(s) ds t+{,

where { and +l are prescribed elements of a Hilbert space , and L is a densely
defined self-adjoint operator on with spectral decomposition

L(t) a(s, A) ds dE,,

and the spectral family {E} corresponds to a fixed self-adjoint operator Lo with

spectrum A.
Assume (HI), (1.8), and (1.6) (A A), and let A* and Ao denote respectively

the subsets of A where (H2) does and does not hold.
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(2.2)

where

We write x XoU + kw, where u(t)[w(t)] is the solution of (1.1), with Xo 1,
k 0[Xo= 0, k 1]. We showed in [3] that x(t) has the representation

x(t) [u(t, A) dE + w(t, A) dEa 1],

provided a(t, A) satisfies a certain growth condition in A and

(2.1) lu(t,)l/lw(t,;)l<-_<, 0_-<t<,

If, moreover, the conclusions of Theorems 1 and 2 above hold on A A* and
A Ao respectively, we have (see note following the proof of Lemma 3.3 below)

fix(t) l-(t)i[n 0, c,

l(t) Ia* [f(t, A) dE +fz(t, A) dE I]+L-’()q.

We gave sufficient conditions for (2.1) in [3]. Professor Robert E. L. Turner has
pointed out to the author that the conclusions of Theorems 1 and 2 are not
necessary for these Hilbert space results. In light of the boundedness theorems of
[3], one may simply apply Lebesgue’s dominated convergence theorem to

fa[U(t, A)--O,(t, A)] dE +[w(t, A)-fz(t, A)-A(A)] dE q

(Dj(t, A) 0 if A Ao) to obtain the following general result.
THEOREM 3. Suppose a(t)= a(t, A) satisfies (HI) forA A. Assume (1.8), and

suppose there are positive numbers Tand Msuch that o a(t, A) dt >-M(A A). Then
with L(t) and (t) as above, the function x(t) given by our representation formula
satisfies (2.2).

The case of (2.2) where A-Ao is essentially the result of [2]; our present
results deal with a limiting case. To illustrate (2.2) with nonempty A*, we let

S" 1
min{t,k}

b(t)

with 6 >0,

___
8 =47r2,

__
k6 =c. Then b(t) satisfies (HI) and (H2) with

to 1, and o b(t) dt= 3. Set

a(t, A )= Ab(x/t).

The hypotheses of Theorem 1 hold with a a, A [1, ).
As a first example, let L2(0, 7r), L f(y) =if(y), with boundary condi-

tions f(0)= f(Tr)= 0. Then with a a, and (for simplicity) = 0, we get

2
(sin ny)r, sin 27rnt/2rn,(t) D,l(t) ,___,

where the ft, are the Fourier sine coefficients of O.
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For an example with continuous spectrum, take YG=L2(1, ), L2f(y)
yf(y). With a al, we get (2.2), with 11= D, and

fl(t) cos (27rtx/y)sC(y) + sin (27rtxy) r/(y )/37ry.
If a were modified slightly so that the special condition (H2) held on a proper

subset A* of A(A* necessarily closed, by [3, Lemma 2.1]), the sum in 1), would
include only those n with n26 A*. 2 would be multiplied by the characteristic
function XA*(Y) of A* (which would make D,,2(t) zero as an element of L2(1, eo) if
A* were discrete).

Further discussion, examples, and references to related work on problems in
Hilbert space will be found in [2] and [3].

3. Proo[ o[ lheorem 1. The parameter dependence of a,%w, to and others
will often be suppressed in formulas below.

Fix A A, and set ul u-f, w w-2. In all statements below, Ix A is
understood. By superposition, it is enough to show that u(t, Ix)- u(t, A) and
w(t, IX)- w(t, A) (IX - A) uniformly in {0 < o}.

We recall from 1] that when (H 1 and (H2) hold, a (t, Ix) may be expressed

(3.1) a(t, IX)= ak(ix) 1-min {t, kto(ix)}

= kt,,(ix

where a (ix) 0 and a (0, Ix)
We begin with the representation

(3.2) 7ru,(t, Ix)= lim_,o + Re {e"U,(i", Ix)} dr,

(valid for >0) which we developed in [1, p. 549]. Here Ul(s) is the Laplace
transform of u(t), which one computes as

(3.3) U,(s)
1 2s

s + a(s) ,,,(s + o)

with 6(s)= a(t)exp (-st)dt. g(s) is analytic in {Re s >0} and continuous in
{Re s => 0, s # 0} and

(3.4) s + (i(s) : 0, Re s > 0, s +ko.

The representation (3.2) follows from the complex inversion formula for Laplace
transforms and a contour shift.

Fix 0 >0. We shall find finite numbers A,T such that (3.2) may be decom-
posed as

where

rru,(t, Ix)= g(t, Ix)+2=, f.(t, Ix),

(3.6) [.g(t, Ix)l<-O, T<-t<o,

whenever

e S. N.(0) {]g-al <A, e A},
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and

(3.7)

Then choose 8 < A so that

uniformly in {0 _--< < oo}.

and

lu,(t, )- u,(t, ;)l< 0, O<__t<_T,

((3.8) can be ensured: the uniform continuity in of u and W1 on compact
intervals follows from (1.8), by means of a standard argument for Volterra integral
equations.) Then 1/21u,(t,p)-u,(t,A)l<O(O<-t<oo, Itz-Al<8, /zeA); and
t -> u,(.,/z) is continuous at z A as asserted, since 0 is arbitrary.

It will be convenient to develop conditions on A, T, and a third positive
number (all three depend on 0) as we proceed. These conditions give positive a
priori upper bounds on A, , and a lower bound on T. These conditions could be
taken in the following logical order:

(i) (3.12), (3.14), and

(3.9) w(A)-/>0.

(ii) (3.25), (3.29), and (3.39) (/z e N,).
(iii) (3.13), (3.15), (3.16)(/J, e N,), and (3.40).
The following two convergence principles will be used in establishing (3.7).
LEMMA 3.1. Suppose 0 <-a <-_ <-_ oo and

h(’,/z) h(’, A) in LI(O, ) as t.6 --> A.

/ff (t, )= h(’, A) e i’ dr (or iff is the real or imaginary part of this integral), then
(3.7) holds.

Proof. If(t,/z)-f(t, a)l =<l]h( ,/z)-h(., A)]{,.
LEMMA 3.2. Let 0 u < h , O, and suppose
(i) h(,) j h(, A) d ( A).
(ii) For O<6<-a,h(,)h(,A)(A) uniformly on
-1}.

en (3.10) holds.
If u , this is Lemma 6.1 of [2]. The general proof is similar (and straightfor-

ward) and we omit it.
In the next lemma we clect several facts about a and fi and their depen-

dence on .
LEMMA 3.3. (i) a(O), to,w,% and a (1 k <) are continuous functions of

at A. (ii) 6(ir, ) is continuous in at A, uniformly on compact subsets of
{0< r<}. (iii) fi(ir, ) O(r-) (r) uniformly for N,.
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Proof. By (H1), (H2), and (1.8),

min {a(0, IX)/2 rr/a(0 Ix)}=1a(0, Ix) min {1, to(ix)} < a(t, Ix) dt

i- a(t, a dt( --, .
Then to(ix) 2r//-(0, Ix) is bounded away from zero near Ix A, and it follows
easily from (1.8) that for IIx- A < A1, say, we have

(3.11) a(0, IX)< 4 a(0, I).

We require

(3.2) A<A,,

so that (3.11) holds in N. Then to(ix) > to(A)/2 (IX e N). It is then clear from (1.8)
(R to(A )/2) and (H2) that a(0, IX) --> a(0, , (ix --> A ). Using (1.4) and (1.6), we see
that to, w and 3’ are also continuous at Ix A. A simple induction argument using
(1.8) now shows that a(kto(ix), Ix)--> a(kto(A), A) (ix --> A,k 1, 2,... ), from which
we easily deduce the continuity of the a. This proves (i).

The uniform continuity of h(it, Ix) in Ix follows from (HI), (1.6), and (1.8) by
taking real and imaginary parts, since, for instance,

Im (i-) a (t) sin ’t dt

<= a(t + kTr/’) sin ’t dt

<= rra(kTr/r)/r.

For more details, see [2, Lemma 6.2]. This proves (ii).
Finally, by (H1) and (3.11), Jim a(i’,ix)[<=4rra(O,A)/’(ix6N,), and simi-

larly for Re 6(i’, IX). This gives (iii) and completes the proof of Lemma 3.3.
Note. R. K. Miller (private communication) has kindly pointed out that in the

proof of Lemma 2.1 of [3], the assertion that {a,(0)} is bounded is not justified by
the argument given there. In proving Lemma 3.3 above, we began by showing that
a(0, Ix) is bounded near Ix =,. If (H2) is not assumed to hold at Ix , this
estimate still shows that a(0, Ix) is bounded in a deleted neighborhood of Ix A;
this argument suffices to close the cited gap in [3].

By Lemma 3.3, we can choose A so that

(3.13) )-7/2 < w(ix) < w(a)+ 7/2,

3’(IX) to(ix) w(ix)(3.14) "9<y(A)’ to(At’ o(A)
<1"1 (IXeN,).

Let

fl(t, IX)= Re {e ’’ U,(i’, IX)} dt.
(x)+n
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After a little calculation, (3.3), Lemma 3.3 and Lebesgue’s dominated con-
vergence theorem show that

U(ir,

where (3.10) holds with c w(a)+rb/3 =m, h P,. Since

Re {e" i/} dr x -1 sin x dx
(l+n [(/+n]

is bounded on {0 N < m} and () (I) > 0 ( I), we conclude, with the help
of Lemma 3.1, that (3.7) holds, ] 1.

Note that by (H1),

ir+ d(ir)] -r- Im d(ir) + Re d(ir)
/

-r + a (t) cos rt dt

a(t) dt.

Choose to, 0 < ro w(a), such that

-ro+ a(t, A) dt> a(t, A) dt.

Then by (1.8), may be chosen so that > N implies

(3.15)

By (3.4) and Lemma 3.3,

lir+ a(ir, ,)l-’ lir+ a(ir, )l--’,
uniformly on {to r (a) }. Thus in choosing k, we may ensure that there is a
constant M <m such that

(3.16) D-’(r, )lir+a(ir, )1-’ M,, 0< r(a)- n.
Now it follows easily that

Then

f,_(t, tz)= Re {e ’’ U,(ir, /x)} dr
-’0

satisfies (3.7).
Taking transforms in (3.1), we see that

o 1
fi(s)=+ Z a,, -,o 1)

s -ilk=, ktoI’e
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A little calculation shows that

(3.17)

where

ir + t(ir) iT(r- 0))-(r- 0))2i[7"-1 + (7" -k 0))/7"2]

+ r-2[iS(r 0))- C(r-

S(o-) ak(sin ktocr- ktocr)/kto,

C(r) Y a(cos ktor- 1)/kto.
k=l

It is clear that

(3.18) C(o-, t,) C(-o-, tx)= C(o-+ 0)(t,), t,)-< 0,

(3.19) oS(m/x) =-6rS(-cr,/x) <- 0.

Term-by-term differentiation and (3.11) show that

OS OC((3.20) orV-("/x) + o’,/z) _-< 12a(0, A),

when/x 6 N, -<o<.
The following property is more difficult to prove.
LEMMA 3.4. Given e >0, there exist positive numbers rl(e), A(e) such that

(3.21) IS(o’,/x)l + IC(m ] < e

Proof. By symmetry, we need only consider >0. Let n() denote the
greatest integer such that n() 1. Then

(3.22) C()+ iS() + (eikt(’- 1 ikto) 1+2.
k=l k=n()+l

Then by Taylor’s formula,

k=l

, 2 fo
t(()

(The last inequality follows from (3.1), since

"’"()a(t)dt>- ’""() )a 1-min{t’kt dr= akto/2.
o = kto =

Term-by-term estimation of the summand shows that

(3.24) ]Z2I Y [(2a/kto)+o’ak]<--o(l+Z/to) Z
=n(o’)+l =n(tr)+l

Ok.
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Given e, choose /(e) so that I0-1 < r/(e) implies

f to(A)/(or)

2e<)(to(A)(0-))- a(t,A)dt+(l+2/to(A))
ao

Y ak(A) < e/3.
rl(tr)+

By continuity, we can find A(e), so that this inequality holds with A replaced
by/x, e/3 replaced by e/2 and [/x A[ < A(e). Our result then follows from (3.23)
and (3.24).

Using Lemma 3.4, we shall select our numbers r/and A so that

(3.25) 1S(0-,
when x N,. Then we see also that

(3.26) O’--1 S(O’ /J,)"--> O’--1 S (O’, A ), O’--1 C(O’, /J,)---> O’--1 C(O’, A ),

in the L-norm on {]0-1-<-}. This follows from (3.11), the continuity of ak(/) and
to(/) and the dominated convergence theorem.

Using (3.17), one finds after simplifying that

Re U i’r C T to "r to 3" / ’r P ’r to + Q1(’r

where

(3.27) P(0-,/x) ")/4([.)04 -- ’)/2(j[a[,)(3)-4(L[,)o-2[C2(o’, 1,)-- 82(0
-1- 2 3’ (lt) to -2(ltj,) 0-3S (0-

and Ql(r,/x) is a certain function continuous in/x at/x A, and such that

(3.28) Q(r,/x)[r-to(/x)]-5 is uniformly bounded on {/x

Lemma 3.4 and the continuity of 3’ and to show that we may choose r/and A in
such a way that

(3.29) 4
O" 3’4(A < P(0-,/z) _-< 20-43’4(A), 10-[ <

whenever/x e N,. It follows that

(3.30) Re Ul(ir)=-C(r-to)(r-to)23"2/to2p(r-to)+Q2(r),

where

(3.31) Q(.,/x) Q(., A) in Ll(to(A)-r, to(A)+rt) as/x- A.

Similarly (with the formulas slightly more complicated),

(3.32) Im U(ir)= R(r-to)+C2(r-to)(r-to)3"/toap(r-to)+Q3(r),

where

(3.33) R(0-) 3"0-S(0-)[3’0- + S(0-)/to2]/to2P(0-),

and (3.31) holds with 03 in place of 02.
By Lemma 3.1, (3.7) holds for

o(X)+n

f3(t, ix)-- [O2(r, ix) cos rt- O3(r, x) sin rt] dr.
-’o(,)-n
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Set

(3.34) g(t,/z) -lim_,o+ f R(’-ro(l),l)sin’td’,
(u, e)

where I(tx, e)=I(tx){Ir-o(tx)l>-e} and I(tx) is the largest subinterval of
[w(X)-rt, w(X) + rt] which is symmetric about w(tz). Then

f(t, t)=- I R (’- to(tx), tx) sin rt dr
(a)\t()

clearly satisfies (3.7). To establish (3.6), we first develop some facts concerning
R(o-). By (3.18), (3.19), and (3.27),

(3.35) R(r) -R (-r).

Next we show that there is a number M2 < such that

(3.36) Io-2R’(o-)l + IrR (r)l < M=lS(r)/rl < M2, Io-I <= rl, i

_
S,.

In fact, using (3.14), (3.25) and (3.29) we see that

Io-R (o,/z)[--< (8[y(A)+ w-2(A)]/w 2(A)3’3(A))lo--’ S(o-,
Differentiating (3.33) and using similar estimates, we arrive at (3.36).

From (3.34) and (3.35) we see that
n()

(3.37) g(t,/z) -2 cos [to(/z)] R(o’,/x) sin o-t do’,

where r/(/x) half the length of I(/z) => n/2. The integral exists, since Isin o-tl =< o-t
and (3.36) holds. Clearly,

(3.38) g(0 +, Ix) 0, /x 6 N,.

The argument establishing (3.6) is essentially the same as that in [1, p. 551].
Choose p > 0 so that 2M2 < 00/6. Using Lemma 3.4, restrict rt and A so that

(3.39) IS(o-, < 0/60M2,

when e N,. Finally, choose T so large that

(3.40) 2M2/rlT< 0/6 and 2o/T<
Then for _-> T, integration by parts and (3.36) show that

R(o-,)sino-tdo- <-t- Ie(q(tz),tz)]+lR(p/t, lx)l+M o--do-

<= 2M[p- + Trl )- < O/3,

while

/’

R (o-, tx sin o-t do" o-R (o’). o’-’ sin o-t do"

<- 0/60 do"= 0/6.
aO
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This proves (3.6).
Referring to (3.2), (3.30), and (3.22), we see that (3.5) holds with

-fs(t,/) lim + {hl(’, ) cos -t + h2(7",/) sin rt} dr,
e0 o()- o()+e

hi C(’- w)(a’- w)y/wP(a’- oo), h

Setting to(/Z)= 2r/to(/z)in (3.2), we find that

(3.41)
4

ru,(to(l), I)= g(to(l), I) + E f(to(/),/)
j=l

+ f hi(r, ) cos rto() dr
a(X)- a()+e

h2(’,/) sin [(’- to(/))to(/)] d’,

since the last integrand is O(1) (-- o(/z)) by (3.25) and (3.29). Since h, =<0 and
cos ’to->1/2 near -=o(/z), we conclude that h,(-, tz) (and hence also h2(-,
belongs to L I(I(A)) as a function of " (tz e N). Letting 0 in (3.2), and using
(3.38) and (3.7) (1 -<_ j _-< 4), we see that

hi(T,/.) d’= [2y-’(/)- 1]r+ E f(0+, )
(,) j=l

Then by Lemma (3.2),

(3.42) hi(’,/)--> h,( , A) in L’(I(A)), t -> A.

Since h2/h, is uniformly bounded, we also have

(3.43) h2(’,/z) h2(’, A) in L’(I(A)),

Thus (3.7) is true for j 5. This completes our proof that u(’, tz) u,(t, A)(tz A)
uniformly in {0 _--< < }.

Set V(s) W(s)- A/s, with

1 2 U,(s)
W,(s)

s(s + a(s)) y(s+ o) s

A Laplace transform argument, similar to the one establishing (3.2) (cf.[2, Lemma
4.4]. The fact that V(s) o(s-) (s - O, Re s _-> 0) is used) shows that

(3.44) r[w,(t,/)-A()] lim + + Re {ei’V(i", p)} d’r
e,pO (p) (a)+’O

for > 0, where

J(0) [,o(A)-n, o(#)-p]u[(#)+p,

Here we again fix A and 0, and choose positive A, , and T according to
appropriate restrictions. The proof that Iw,(t, t)- w,(t, A)] _-< 0 for e N and all t,
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will be based on the decomposition

12

(3.45) zr[w,(t, /z)-A(/z)] G(t, tz)+- Z f(t, Iz), >=0+,
/=6

in place of (3.5).
It is clear that

satisfies (3.7), as does

f6(t,/.)---- Re {e’"V(i-)} dz
()+0

fT(t,/z) -A (/z) I Re {e’"/iz} d’.
(,

From (3.30) and (3.32), we see that

(3.46) Re {ei"Wl(iz)} w-l{cos zt[R (z- w) + h2(’)]-sin -t

where Lemma 3.1 shows that

satisfies (3.7).
Let

fs(t, tz)=- I, O4(t, z, tz) dr
(;

+ O.(t, -, ),

and T will ensure that

(3.47)

Moreover,

(3.48)

Now write

]G(t,/x)[_-< 0, t_-> T,

G(0+,/z) 0.

V(s)
1 -Aft(s) A 2
s(s + a(s)) s + a(s) v(s+,o)

fg(t, tz)= o)-l(j[.) / [h2(7",/z) cos zt- hl(’t’,/.) sin -t] dr.
-i(a)

By (3.42) and (3.43) and Lemma 3.1, (3.7) holds, j 9.
As in (3.34) and (3.37), we write

() R(z-w, ) cos zt= G(t, )+f,o(Z, ),
()

where (3.7) holds (j 10) and

G(t, )= -2w-’() sin [tw()] R(, ) sin gt d.

Then from our analysis of g(t, ), we conclude that suitable restrictions on , A,
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and set K o(A)- . Using Lemma 3.3 and (3.16) as with f2, we see that

lim Re {e’V(i", Ix)} d’=f(t, Ix) +fl2(t, Ix),
e0

where

I u

{ i’r(i’rlA(i’)}+ti (i’))
(3.49)

f,z(t) lim Re e i*’ d-
o

and (3.7) holds with j 11. We now have the decomposition (3.45), and we need
only show that f12 satisfies (3.7).

Taking real and imaginary parts in (3.49), we obtain

f2(t)=lim()cst oRe o()cst
o TD2(T)

d7
D2(7

d7

(3.50)
sin t

+ r) [() Re O(r)-(0(r)-) Im O(r)] dr,

with O() 1-A(i), Re , 0 -Im , and D from (3.16).
The passage to the limit e 0 in the second and third integrals in (3.50) is

justified as follows. Clearly O()12. Since (3.16) holds, the second integral
exists. Now r-1 sin tl N t, while (r) and -(r) are, respectively, the real and
imaginary parts of ir + (ir), so that + 0()I)/D() 2. Thus the third
integral exists as well.

(3.45) and (3.50) together are essentially the same as (4.9) of [2]. The fact that
piecewise linear kernels are excluded in [2] makes no difference in the rest of our
argument, which follows that running from (6.9) to the end of 6 in [2].

By Lemmas 3.1 and 3.3 and (3.16), the second integral in (3.50) is continuous
in at I, uniformly in 0 N <.

Because of (H1), 0() 0; thus the first term on the right in (3.50) may be
written as I -lD-(r)() cos t d, and the coecient of cos t in the integrand
must belong to L(0, K). Letting 0" in (3.45) and using (3.48), we see that

(0+,D(r, ) Jo D(r, ) =
Thus the left-hand side is continuous in at I, and Lemmas 3.2 and 3.3 and
(3.16) show that

(3.5) I, 4(r, ) (, )
rD(r, tx) rD(r, A)

d-+ 0, Ix-+ A.

Thus the first integral in (3.50) is continuous in tx at Ix A, uniformly in t.
Finally, we sketch the treatment of the third integral in (3.50). See [2] for

specific estimates and more details.
Writing

qg(’) a(t) cos -t dr --- q,(-) + q9 (-),
/2r
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we decompose the third integrand in (3.50) as

(-,/x)--’ sin -t + E(-, ) sin ’t,

where (-) [q-’ (-)- A ]. Using Lemma 3.3 together with (3.51) and several
estimates involving q, , q, (2 and D, we find that

Finally, we show that (-) 0 (- $ 0); and a direct argument, using the second
law of the mean, shows that

I, .-1(.,/x) sin -t dr

is continuous in/x at/x A, uniformly in {0 < < oo}. This proves that f,2 satisfies
(3.7) and completes the proof of Theorem 1.

Remark. The formula at the bottom of page 551 in 1 is incorrect; the second
term on the right-hand side should have expression (3.46) as the integrand in place
of w-Re{ .}. The conclusion that this term is o(1) (too) then follows,
because the coefficients of the trigonometric terms are known to be in
-rt, w + r/), except that R(--w)cos -t must be treated as shown above in this
paper.
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NEW IDENTITIES FOR LEGENDRE ASSOCIATED FUNCTIONS
OF INTEGRAL ORDER AND DEGREE. I*

S. R. SCHACH

Abstract. The identities for Legendre associated functions P’(x) of nonintegral order v, known as
Dougall’s identities, are extended to give several new identities for Legendre associated functions

P(x) of integral order and degree. Such identities are required in the simplification and evaluation of
expansions arising from the use of Green’s functions. The uniform convergence of each new identity
is considered in detail.

1. Introduction. In the solution of the boundary value problems of mathe-
matical physics in a separable 3-dimensional coordinate system, the shape of the
boundary of the space may be such that the Green’s function of the second order
differential operator can be expanded as an infinite series of orthogonal functions.
In many coordinate systems (such as the spherical, spheroidal and some cyclidal
systems), these expansions are given in terms of Legendre associated functions of
integral order and degree.

Starting with Dougall’s identities for Legendre associated functions of non-
integral degree [1, 3.10(6)(8)(9)], new identities for infinite series of Legendre
associated functions of integral degree are derived. Uniform convergence of each
new identity is investigated in detail, so that interchange ofsummation and integra-
tion may be performed when required.

This paper is the first in a projected series. In the second, the results and
techniques will be generalized, and a sufficient condition found under which a
generalized orthogonal function which satisfies Dougall’s identity will also satisfy
the new identity. This theorem will be applied to the Legendre associated function,
the generalized Legendre associated function [3] and to the Jacobi function.

2. The fundamental identities. In the course of deriving our identities, we
have to differentiate infinite series term-by-term. We start therefore with two lemmas
on uniform convergence.

LEMMA 1. For all v R I, andfor all m N, the series

() S(O) (-1)"y.,,,,P(cosO)p’.m(o){1/(v- n)- 1/(v + n +

is uniformly convergentfor 0 < 0 < --n, and

(2) $2(0 (-1)"y.,mPm.(CosO)P(O){1/(V- n)- 1/(v -t- n + 1)}
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is uniformly convergentfor 0 < 0 < re, where )n,m is defined by

(3) }’,,m F(n- tn + l)/F(n + rn + 1),

and P’,m(o) is the derivative of P"(x) at x O, i.e.,

(4) P(O) xx P(x) x----O

and

(6)

Proof We know that

P-"(x) (- 1)’7,,,,P,"(x),

P’.m(o) (m + n)P"_ 1(0).

Further, a bound on P’(cos 0) is given by 2, p. 303].

n-raP,re(COS 0) (1/2nrc sin 0)-1/2 cos {(n + 1/2)0 re/4 + 1/2mz} + O(n-3/2),
(,7)

0<c<0<Tr--c, n> 1, n>>m,

where O(n-3/2) depends on c. Combining these three results we deduce

7n,mPt(COS O)p’,m(o) C sin {1/2(n + m)t} cos {(n + 1/2)0 /4 1/2mt} + O(n-1),
(8)

0<<0<rc-c, n> 1, n>>m,

for large n, where C is a constant independent of c, and where O(n- 1) depends on
Now define u, and v, by

(9) u,(O) (- 1)" sin {1/2(n + m)r} cos {(n + 1/2)0 7r/4 1/2ran},
(10) v, 1/(v- n)- 1/(v + n + 1).

By summing the series we can show that
M-1

(- 1)" sin (nff + a)
cos (1/2q){sin (a 1/2if) (- 1)M sin ( 1/2ff + Mq)}

.=0 + cosff
and hence obtain the bound

M-I

(i) Z u,(O) < K if0<0<
n=O

From definition (10), we see that

(ii) v, > 0 and decreases with n for all n > vl,

(iii) v.0asn.
Then by Dirichlet’s test, $1(0) of (1) is uniformly convergent for 0 <

as required.
Now consider $2(0). Using (5) and (7) we derive the result

I(--1)"+mT.,mP.(csO)P(O){1/(v- n)- 1/(v + n + 1)}l K/n2 + O(n-3),
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where O(n-3) depends on e, but where K is a constant independent of e.
Hence by Weierstrass’ M-test, $2(0) is uniformly convergent for 0 < 0 < n

as stated.
LEMMA 2. For all v e R I, m N and x (0, 1),

(11) P(x)= P(O) (-1)"+"7.,mP(x)P’."(O){1/(v- n)- 1/(v + n + 1)}
?l--m

(12) pm(o (_ 1)n+,,,T,,mP.(x)P.(O){1/(v- n)- 1/(v + n + 1)},

and both series are uniformly convergent over their range of validity.
Proof Consider Dougall’s third identity 1, 3.10(9)],

(13)
P(cos O)pTm(cos ) {sin (vzr)/rc} (- 1)"p,m(cos O)pm(cos )

{/(v- n)- 1/(v + n + )},
Substitute for P-m(cos ) and P-m(cos ) from (5) into (1 3), and differentiate

with respect to " set 1/2ft. We obtain (writing x cos 0)

7v,,,P’(x)P(O) {sin (vrr)/rr} (- 1)"7,,m
(14)

P(x)P"(O){1/(v n)- 1/(v + n + 1)}, 0 < x < 1.

Validity of the term-by-term differentiation of (13) follows from the uniform
convergence of (14), which was proved in Lemma 1.

Using definition (3) and results [1, 3.4(20)(22)], namely

(15) Pm(0)= 2"rt-1/2 COS {{-(V + m)zt}V(1/2 + 1/2v + 1/2m)/F(1 + 1/2v -31m),

(16) Pm(0)= 2m+ lrr-,/2 sin {{-(v + m)rt}F(1 + 1/2v + 1/2m)/F(1/2 + 1/2v- 1/2m),
we find

(17) 7v,,,Pm(0)P"(0) (- 1) sin (vzr)/rr.

We have used Legendre’s duplication formula for gamma functions,

(18) F(Zz) 22z- lzr-1/2r(z)F(z + 1/2).

Equation (11) is now obtained by multiplying both sides of (14) by P(0)
and using (17). Similarly, if we multiply (13) by P(0) and set 1/2n, a second
application of (17) leads immediately to (12).

Uniform convergence of both (11) and (12) follows from Lemma 1, giving the
required result.

We are now in a position to derive our basic new identities, which we do in
the following theorem.
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THEOREM 3. For all m, e N, >__ m, andfor all x e (0, 1),

P’(0) (1)"+"7,,mP,(x)P, (0){1/(/ n) 1/(l + n + 1))
(19) :/:

4- )l + P’[’(x)

n’lm(O) (--1)"+mT,,,mn(x)n(o){1/(l- n)- 1/(l + n + 1)}
(20)

1/2{ (- l) +m}pn(x).

The convergence is uniJbrm.
Proof. Consider (1 l). For some __> m, we may write it in the form

pyre(X) 1)/+mP(O)I,,,PI (x)PI (0){1/(v- l)- 1/(v + + 1)}
(21)

+ P(O) (-1)"+"y,,,,,,P(x)p’,m(o){ 1/(v- n)- l/(v + n + 1)}.
n=rn
,l

We now wish to go to the limit v e N. The only piece of (2 l) for which this
limit is not smooth is the first term of the dexter. Using (3), (15), (16) and (18),
we can show that

lim l)/+mP,, (O)Tl,mP (x)P (O)/(v l)
vl

(22) (_ 1)/+m sin2 {l + m)n}P’f(x)
{ (-- l) +m}

whence taking the limit v e N of (21), we see that limit exists, and gives

)l-I-PT(x) -{1 -(-1 "}P’(x) + PT(O) (-1)"+

(") 3)

P’(x)p’,m(o){ 1/(l n) 1/(1 + n + 1)).

Rearrangement of (23) gives (19). Proof of its uniform convergence follows
similar lines to that of Lemma 1; we can allow v of Lemma to be an integer
because the term n has been excluded from the summation in (19).

We turn now to (12). Again separate out the term for n l, and take the limit
v N. The nonsmooth term is (using (15) and (16) as before)

(24)

lim Py(0)(- 1)/+ m7l,mPt(x)Pt(O)/(v l)

(__ 1)! +rn COS2 {l + m)n}PT’(x
1/2{1 + (-l)t+m}Pt(x).

Substitute this limit into the term for n l" equation (12) then gives identity
(20) as required.
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COROLLARY 4. From (15) and (16) we deduce that

Pm,(o) 0 unless (m + n) is even

and

ey(o) o
whence (19) and (20) become

unless (m + n) is odd,

(26)

P’{’(O) y.,mP(x)P"(O) 1/(1 n) 1/(l + n + 1)}
::

(25) -1/2{1 + (- 1)t+m}PT’(x),

P;m(o) y,,,mP’(x)P(O) 1/(l n) 1/(l + n + 1)}
nl

1/2{1 --(--1)l+m}Pt(x), 0 < X < 1.

COROLLAP,Y 5. Equations (19), (20), (25) and (26) holdfor 0 < x < 1. However,
if- < x < O, then 0 < -x < 1, and (-x) may be substituted into these four
equations. Using

(27) p.m(_ X) (-- 1)m+"Pm.(x), 0 < X < 1,

we obtain for < x < O,

PT’(O) 7,,,mP(x)P(O){1/(l- n)- 1/(1 + n + 1)}

(28)
i{ + (- )’ +’}PT’(x),

P’"(O) ",,,.,P(x)P’(O) 1/(l n) 1/(l + n + 1)}
nl

(29)
-1/2{ (- )’+}pT’(x).

pT’(o) )"+"7,,,mP,,(x)P,, (O){1/(/- n)- 1/(l + n + 1)}
n:l

(o) -- + )+"

p’,(o) )"+-7,.,p, (x)p, (o) /(t ,) /(t +, + )}
n:l

(3)
-{ (- )’+’}PT’(x).

and the convergence is uniform.
Note that the dexters of (28)-(31) are opposite in sign to those of the corre-

sponding identities for 0 < x < 1.
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3. Extension of range of validity of identities to (-1, 1). Having defined
identities uniformly, convergent for 0 < Ixl < 1, we now investigate whether we
can extend our results to include the points x 0, + 1.

COROLLARY 6. Equations (19), (20), (25), (26) and (28)-(31) cannot be extended
to include the points x +_ unless m 0, in which case they reduce to

(32)

P(O) (-1)"P’(O){1/(l- n)- 1/(1 + n + 1)} 1/2{1 + (--
n=O

P’(O) (-1)"P,,(O){1/(1- n)- 1/(l + n + 1)} 1/2{1 -(--
n=O

:/:

P(O) P’.(O){1/(l n)- 1/(l + n + 1)} -1/2{1 + (-1)’},
n=O

=/:

P’/(O) P.(O) 1/(1 n) 1/(1 + n + 1)} 1/2{ 1)/}.
n=O

Proof From the behavior of Legendre associated functions near the singular
points [1, 3.9.2_], we deduce for rn > 0,

P(x) 0 as x 1,

and our identities become trivial at x 1, while

(- 1)"7.,raP.re(X) P-"(x) by (5)

oe asx-l,

and we cannot extend our identities to the point x if m > 0.
If m 0, we use

P,(1) 1, P,(-1) (-1)"

to obtain (32)" the validity of substituting x _-_+ 1, in this case, comes from the
fact that identities (32) can be derived starting from (13) using the methods of
Theorem 3.

COROLLARY 7. The sinisters of relations (19), (25), (28) and (30) are identically
zero, if we set x O.

Proof From (15) and (16), we immediately obtain the identity

(33) P.m(o)pm(o) 0.

This completes the proof.
Since by Corollary 7 the point x 0 appears to be a point of discontinuity

of our identities, at this stage we recall the following theorem from the theory of
Laplace series for Legendre associated functions, which we label as Theorem 8.
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THEOREM 8. The Laplace series

2n + ddP2 dO2 sin 02f(02, (/)2)Pn(cos
,=o 4rt

(where cos cos 01 cos 02 + sin 0x sin 02 cos {b $2}) in which f(O2, $2) has

an absolutely convergent integral (Lebesgue) over the spherical surface, will converge
at (0, ) to the value f(O, ), (0, ) is a point of continuity of the function
with respect to (0 , 1), or to the value

the point (0, ) is such that there passes through it a line of discontinuity such
thatj(0, ) and f2(O, ) are the limits of the function at the point taken from the
two sides of the line, provided that the function if(7), which is the mean value of the
function f(O 1, ), for each .fixed value of over the small circle jbr which has that
value, has bounded variation in the whole interval (0,

Proof. See, for example, 2].
We are now in a position to combine all our above results for 2 identities valid

over the entire range (-1, 1). We do this in the following two theorems.
THEOREM 9. The series

P’im(o) y,,P(x)P(O){1/(l- n)- 1/(l + n + 1)}
nl

is uniformly convergent on the interval (- 1, 1) to

{1 --(--1)l+m}P(x), X > O,

0, x =0,

--{1 --(--1)l+m}p(x), x < O.

Proof Definef(O 1, 1) by

P(cos 01) cos (m

(34) f(01, 1)= 0 01 /2, 0 1 2,

0, /2<01, 02u.
Choose 0 0, the line of discontinuity off(01, 1). Theorem 8 then gives

{0 + P(0) cos (m 1)} Y,,m2n + 1)
n=O

dx P(x)P(x P(O) cos (m4 ),

whence we obtain

P(O) 7t,P(O)pim(o){1/(L- l)- 1/(L + + 1)}P(O)
(3)

+ v.,e(O)pm(o) /(Z n) /(Z + n + )}p(o).
nl
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We have used (6) as well as [1, 3.12(1)], namely,

(v ))(v + ) + 1) dz Mm(z)M’(z)

(36) [z(v ))M"(z)M(z) + () + m)M(z)M’_ (z)

-(v + m)M"+ l(Z)M’(z)]b.
(M(z) and MT(z) are any two solutions of Legendre’s equation.)

Taking lim-*N of (35) we obtain

P’lm(O) 2 Tn,mPn(O)P(O){1/( n)- 1/(1 + n + 1)}

(37)
1/2{1 (-1)+m}PT’(0 (by (24))

0 (by(15)).

Define Sire(x) and F(x) by

and

S,,n(X) Pin’(o) 7n,mPmn(x)pn(o){ 1/(l- n)- 1/(1 + n + 1)},

1/2{ (- l)+"}PT(x),
F(x) O,

1/2{ (- l)/+ m}PT(x),

x>0,

x=0,

x<0.

By Corollaries 4 and 5, Sire(X) is uniformly convergent to F(x) on (0, 1) and
(-1, 0), respectively. From (37) we see that Sm(O)= F(0). Further from (15)
it is clear that

lim F(x)= lim F(x)=F(O)=O.
x-*O x-*O-

Hence Slm(X is uniformly convergent to F(x) on (- 1, 1).
THEOREM 10. The series

P’(O) n,mP’2(x)P"(O){ 1/(l- n)- 1/(1 + n + 1)}
nl

converges on the interval (- 1, 1) to

1/2{ + (- 1)I+m}P’(x),
O,

1/2{1 + (--1)/+m}P’(x),

x>O,

x =0,

x<O.
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The convergence is uniform on any interval which excludes the origin.
Proof Define Tm(X) and G(x) by

and

Tm(X =- P(O) ’,,,mP’2(x)p’.m(o){ 1/(l- n)- 1/(l + n + 1)}
nl

--1/2{1 + (--1)t+m}P’(x), x > O,

G(x) =- O, x O,

1/2{ + (- 1)’ +"}P’(x), x < O.

Uniform convergence of Tlm(X to G(x) on (-1, 0)U (0, 1) was proved in
Corollaries 4 and 5. From Corollary 7 we see that

rA0 0 (0),

since each term of T,, is zero.
However, for (l + m) even, using (15) we deduce the limits

lim G(x)= -P’f(O) 0
x0

and

lim G(x)= PT(O) 0
x--,O

(for (1 + m) odd both sides are identically zero).
Hence no uniform convergence is possible in any neighborhood of the origin.

4. Summary of results. We can express the results of Theorems 9 and 10 in a
compact form, if we define c(x) by

(38)

4-1,

(x)= 0, x=O,

-1, x<O.

Then Theorems 9 and l0 become

(39)

and

P’(O) 7,,,,,,P’2(x)P’.’(O){1/(1- n)- 1/(1 + n + 1)}
nl

-1/2{1 + (- 1)l+m}e(x)g,(X), --1 < x < 1,

(40)
P’tm(O) E 7,,,,,,P(x)P(O){1/( n)- 1/(l + n + 1)}

nl

1/2{ (- 1) +m}pT(x)e,(x), < x < 1.
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A third, related, identity is found by differentiating (40) with respect to x, giving

(41)

P;m(o) y,,,mP(O)p’.m(x){1/(l- n)- l/(l + n + l)}
:=

{ (- 1) +m}e,l,,,(x)e(x), < x < 1.

That this step is a valid one follows from the uniform convergence of (41) in
(-1, 0) U (0, 1), which is proved analogously to Lemma and Corollary 5. The
series vanishes at x- 0, as can be seen from Corollary 7. Setting x -x in
(39) and (40) gives

(42)

(43)

P’[’(O) (-l)"+my,,,mP’(x)P’.’(O){1/(l- n)- 1/(1 + n + 1)}
nl

{1 q- (--1)l+m}pT(x),(X), --1 < X < 1.

Pi"(O) (-1)"+my,,,.,P(x)P’(O){I/(I- n)- 1/(l + n + 1)}
nl

1/2{ (- 1)/+’’}PT(x)e(x), < x < 1.

A similar result can be derived from (41).
In many applications we are required to evaluate rather than ,m"

nl

To do this we merely reinsert the n term which we have evaluated, using limits
(22) and (24). We obtain

(44)

(45)

PT’(O) 7,,,mP"](x)P(O) 1/(l n) 1/(l + n + 1)}

--1/2{1 + (--l)’+m}PT(x)(x 1/2{1 -(-1)I+’}PT(x),

Pim(O) Z n,mPn(x)P(O){1/(l- n)- 1(/+ n + 1)}

{ (- 1)’ +m}p,(x)e(x) + 1/2{ + (- 1) +m}pr(x),

-l<x<l,

and setting x -x,

(46)

(47)

PT(O) (- 1)" +m)’,,,,,,P’2(x)P’."(O){ 1/(1 n) l(/+ n + 1)}

{1 + (-1)l+m}PT(x)e,(x + 1/2{1 (--1)+m}Pg(x),

P’l’(O) l)" +’’7,,,,,,P,, (x)P,, (0){ 1/(l n) 1/(l + n + 1)}

{1 (-- 1)l+m}pt(x)e.(x + 1/2{1 + (- 1)t+m}pt(x),

l<x<l,

l<x<l.

Similar identities follow from (41).
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Uniform convergence for equations (39)-(47) is the same as that of the res-
pective parent equation from which each is derived.

5. Applications. The author has applied these identities to certain boundary
value problems of mathematical physics.

Suppose we are working in an orthogonal curvilinear system of coordinates
(/,/1, U2, U3), in which Laplace’s equation 721//(U 1, U 2, /3 3) 0 is separable [4].
The solution can be expressed in the form

I//(ul, U2’ U3) 1(ul)O 2(/’/2)1//3(/’/3)
If at least one of the functions q(ui) is a Legendre associated function P’(XL),

XL being a function of u alone, then our identities are applicable to bodies bounded
by two surfaces, one of which is given by XL 0, and the other is defined in-
dependently of XL.

Consider the half space z >= 0. In spherical polar coordinates (where the
solution to Laplace’s equation takes the form r"P."(cos 0)cos {mb}), the bounding
surface z 0 is given by x cos 0 cos {1/2rt} 0, the other surface being the
hemisphere at infinity; the identities have been applied successfully, thereby
providing a solution which could not otherwise be obtained formally.

Another example which has been dealt with is the interior of the prolate
hemispheroid, where the solution to Laplace’s equation is given in prolate spher-
oidal coordinates (, r/, qS) in the form

BnmPnnn(rl)Q()cos {mb}, Bnm constant.
tl,m 0

Here the plane surface of the hemispheroid is given by xL r/= 0" the curved
surface is defined by > 1. The explicit verification of an identity obeyed by
the Dirichlet Green’s function of the interior of the prolate hemispheroid has
been accomplished using these new identities [5].

These applications may also be regarded as alternative proofs (of special cases)
of Theorem 3.

Acknowledgment. I should like to thank Prof. G. B. Brundrit for his helpful
criticism and constant encouragement.

REFERENCES

[1] A. ERDLYI, W. MAGNUS, F. OBERHETTINGER AND F. G. TRICOMI, Higher Transcendental Functions,
vol. 1, McGraw-Hill, NewYork, 1953.

[2] E. W. HoBsoN, The Theory of Spherical and Elliptical Harmonics, Cambridge University Press,
Cambridge, 1931.

[3] L. KUIPERS AND B. MEULENBELD, On a generalization ofLegendre’s associated differential equation,
Proc. Kon. Ned. Akad. v. Wet., A60 (1957), pp. 436-443.

[4] P. Moon AND D. E. SPENCER, Separability conditions jbr the Laplace and Helmholtz equations,
J. Franklin Inst., 253 (1952), pp. 585-600.

[5] S. R. SCHACH, Some applications of new identities for Legendre associated fimctions of integral
order and degree. (To appear as a report from the University of Cape Town.)



SIAM J. ON MATH. ANAL.
Vol. 7, No. 1, February 1976

NONLINEAR PERTURBATIONS OF THE ORR-SOMMERFELD
EQUATIONuASYMPTOTIC EXPANSION OF THE
LOGARITHMIC PHASE SHIFT ACROSS THE

CRITICAL LAYER*

RICHARD HABERMAN’

Abstract. The equation governing the connection formulas across the critical layer is solved in the
case in which the viscous effects asymptotically dominate the nonlinear effects in the critical layer. The
dependence of the logarithmic phase shift across the critical layer on the amplitude of a wave
disturbance to a parallel flow is calculated to the first order that includes nonlinear effects. The
resulting asymptotic expansion of the phase shift agrees with a previous numerical calculation even
when the viscous effects are only mildly more important than the nonlinear effects.

1. Introduction. Linearized disturbances to a parallel flow tT(y) satisfy the
Orr-Sommerfeld equation. For an inviscid fluid, the order of the differential
equation is reduced. For large Reynolds number (corresponding to a nearly
inviscid fluid), the resulting singular perturbation problem is more difficult than
usual, since the inviscid equation (called the Rayleigh equation) has a singular
point for neutrally stable waves at any critical point where the phase velocity of the
wave c equals the mean parallel flow tT(yc)= c. For an excellent account of the
solution of the Rayleigh and Orr-Sommerfeld equations the reader is referred to
Lin [11], [12]. More recently the method of matched asymptotic expansions has
been utilized to obtain equivalent results (Eagles [6] and Reid [16]). One
well-known result is that the inviscid solution, obtained by the method of
Frobenius, contains a logarithmic singularity log (y- yc) at the critical point. In
order to calculate the neutral stability curve, connection formulas relating the
solution above the critical point to the solution below must be determined. By
reintroducing the viscous terms in a small region near the critical point (called the
critical layer), Lin [11], [12] and others have shown that terms with log (y- y)
should be analyzed as log [y ycl + ib below the critical layer, where 4 -Tr. b is
called the logarithmic phase shift.

Benney and Bergeron [2] and Davis [5] independently observed that the
Rayleigh equation is the result of two limiting processes not one. The Reynolds
number R is large, but the fluid dynamical equations (Navier-Stokes) are
linearized and hence the amplitude of the disturbance e is small. They suggested
that the inviscid singularity could be resolved by including the nonlinear terms
near the critical point rather than including the viscous terms. One result of this
nonlinear critical layer theory was that the logarithmic phase shift vanished in
contrast to the viscous theory in which 6 =-Tr.

These two theories were connected by Haberman [9], who extended Benney
and Bergeron’s [2] analysis to allow for the dynamical balance in the critical layer
between both the viscous and the nonlinear terms. It was shown that the

* Received by the editors June 25, 1974, and in revised form January 14, 1975.
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parameter of importance was ,, the inverse of the local vertical Reynolds number,

(1.1)
aR(eB)3/2’

where a is the wave number of the neutrally stable finite amplitude wave,
u’c du/dy evaluated at y yc, and eB is the amplitude of the stream function of
the disturbance evaluated at y y using the Frobenius solution valid away from
the critical layer. The logarithmic phase shift depends only on h, its functional
relationship being determined by a numerical solution of the asymptotic problem
formulated in 2. In order for the viscous theory to be a valid approximation, the
amplitude of the perturbation cannot be too large; in particular, the condition
h >> 1 must be satisfied, in which case 4 - -r. As h-(), the theory of the
nonlinear critical layer applies and 4) -> 0. Analytic results were obtained for the
logarithmic phase shift in the case in which h is small.

In this paper, the effect of nonlinear perturbations are considered. For h
large, that is, for values of h such that the viscous critical layer theory is nearly
valid, the logarithmic phase shift across the critical layer is shown to be given by
the following asymptotic formula:

(1.2)

where F(x) is the Gamma function. It is shown that this formula agrees with
numerically obtained values even when X is not very large. By methods described
in [9], formula (1.2) can be used to determine an analytic formula for the
amplitude dependence of the asymptotic behavior of the upper branch of the
neutral stability curve for nearly linear, long wave perturbations.

The connection formulas relating quantities above and below the critical
layer are determined by the solution of a partial differential equation with
subsidiary conditions provided by the method of matched asymptotic expansions.
In 2 a perturbation expansion in the case of A being large is introduced to solve
this problem. The first few ordered terms are most simply represented as
quasi-Fourier integrals as derived in Appendix A. The logarithmic phase shift
across the critical layer is then determined by using formulas derived in Appendix
B for the asymptotic expansions of the necessary types of integrals.

2. Formulation and asymptoti solution for A large. The logarithmic p.hase
shift across the critical layer,

(2.1) 4,=-C+-C_,

need not always equal -,r. Haberman [9] showed that it is determined by solving
the following linear partial differential equation valid in the critical layer:

(2.2) VXIxvv +sin Xvvv tXIvvYY,

with asymptotic conditions provided by the method of matched asymptotic
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expansions

(2.3a) xI* --+ y log [Y] cos x + 0 as Y-+ +oo,

y3

-ff + (H_ H+) y2 + y log [Y] cos x + (A_ A+) Y cos x

(2.3b) +(C_-C+)Ysinx

+ (B3__/2 B + (D3/2 D /2) sinx+O3+/2) COS X 3+ as Y-

Y is the stretched vertical coordinate in the critical layer based on the scaling
developed for the nonlinear critical layer theory by Benney and Bergeron [2],

(2.4) y y sgn (u’) (]e/)
’/2

u’

The difference between + and expressions represent unknown jump or
connection formulas. Equations (2.2) and (2.3) are derived by considering
weakly nonlinear perturbations to the Navier-Stokes equations. The diffusive
term A qtrrrr represents the linear viscous effect in the critical layer, where is a
higher order stream function which incorporates part of the mean flow. The terms
Yxltrr and sin Xqrrrr are also present in the linear theory, but in that theory the
term sin xrrr is simplified as qtrrr is only due to the parallel flow contribution to
xI,, i.e., q*= y3/6. These terms represent the interaction between the known
parallel flow and the neutrally stable periodic wave perturbation. In the nonlinear
theory, the term rrr arises not only from y3/6, but also from the rest of the
terms in (2.3). It is due to the additional weak nonlinear interaction between the
linearized wave and itself, no longer ignored as in the linearized procedure. The
notation is that usedby Haberman [9], to which the reader is referred for details of
this nonlinear stability theory.

For a solution to this problem, the following relationships among the jumps
were shown to exist for all a [9]:

(2.5)

H_-H+=(C_-C+)/(4),

B3.__/?- B3+/2 -2(H_- H+) -(C_- C+)/ (2a ),

D3_/2- D3+/2 O.

Thus the only independent jump conditions remaining unknown are A+- A_ and
C+-C_. They are functions of a and must be determined such that (2.2) is
satisfied along with matching conditions (2.3).

In this paper, solutions are sought to this proNem for a large. In the viscous
critical layer theory, a-+oo, the viscous term a qtrrrr is of the same order of
magnitude as the inertial term Yxltrr. For large , this suggests the scaling

(2.6) y=/.1/3,
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in which case (2.2) becomes

(2.7) "OXltxnn XItnnnn --A -2/3 sin xXP,,,,.
Equation (2.7) expresses the fact that for large A the term representing nonlinear
wave interactions, sin x,,,, is small in an asymptotic sense. The thickness of this
viscous critical layer is determined by letting r/= O(1) and yields the well-known
result

(2.8) y yc O{(outcR)-l/3}.
We thus will calculate the weakly nonlinear corrections to the viscous theory.

Equation (2.7) can also be derived from the Navier-Stokes equations by
directly considering the critical layer dynamics based on (2.8) with A >> 1 and the
method of matched asymptotic expansions. However, the derivation is lengthy
and the result is mathematically equivalent to the viscous limit (A >> 1) of (2.2) and
(2.3).

It is concluded that the expansions for large A of the jump conditions across
the critical layer are

( C-- C+ C0 + ,-2/3 C1 -]- -4/3C2 +/-6/3C3 -1-
(2.9)

A_-A Ao+ A-2/3A -4/3A2-- A q" A-6/3A3 -[--

since these quantities are functions of A and since/-2/3 is the small parameter of
(2.7) (furthermore the asymptotic conditions also suggest an expansion in powers
of/-2/3), From the viscous theory, A oe, it is well known that Co 7r and Ao 0.
Expansions (2.9) are based on this fact, but in this paper these values of the leading
order jump conditions will be rederived; in particular, the nonlinear corrections to
these values are desired.

The scaling (2.6) when applied to (2.2) and (2.3) imply that qt has the
asymptotic expansion

(2.10) xF---A--+(A log A)r/cos x - A 1/3

(XI "- /. -2/33"I’ "t-/ -4/3’kIJ "-1-/. -6/3’kI-f4 -- ") as A - oo.

The asymptotic behavior as r/- +/-oe for each qi is as follows"

q =J’rt log Irll cos x + O(1/rt) as

rt log Ir/I cos x + C,r/sin x + Aon cos x + O(1/n) as

j’O(1/n) as
(2.11)

Coq/4 +Aq cos x + C,/sin x + 0(1//) as

=O(1/) as r +oo,
(n-->3) " .C.-2 /4+A._lrtcosx+C._lsinx-C._3(cosx)/2+O(1/rt)

as "r/ --o(3.

The equations for . are

(2.12a) Flx..-1 =-sin x,

(2.12b) rt.... , =-sin xXP,__l (n _->2).
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It is easily shown that all solutions which are periodic in x of the related
homogeneous equation,

rtXIrx,, ,,,,,,, 0,

are exponentially growing either as rt +oo or rt -oo (except for certain cubic
polynomial solutions in rt). Therefore it follows that solutions to the
nonhomogeneous equation (if they exist) are unique. Clearly from (2.12a) and
(2.11),

a,(r/) cos x +/3,(r/) sin x.

Since the equation for 2 is forced by -sin xl.... 2 will consist of only a mean
term and a second harmonic,

2 eo(l) + e2(l) cos 2x +/32(rt) sin 2x,

in other words, only even harmonics. By continuing this argument it is seen that,
for n odd will contain only odd harmonics, while xIr, for n even will contain only
even harmonics. Consequently, without an explicit solution, it is concluded from
the asymptotic behavior of, as 1 oo that A, C, 0 for n odd. Thus although
the expansion of involves powers of -2/3, the jump conditions across the critical
layer are expanded in powers of -4/3,

-4) C_ C+ C,, + -4/C+ ,-/C4 + ,
(2.13)

A_-A+ Ao+A-4/3Az-F -8/3A4.F

To determine the jump conditions, xIr, will be first calculated. Although
Lommel functions can be used as the representation of the solution of (2.12a),
they are not the most convenient. Instead, an integral representation of the
solution exists"

(2.14) 1,,. =-Im e e-’ e -’/3 dt

as derived in Appendix A. An integration of (2.14) yields

(2.15) e d +f(x)
-it

where fl(x) is the "constant" of integration equal to XIrl,, at r/= 0. The asymptotic
expansion for large rt of this integral will be sufficient to determine Ao and Co and
will verify that Ao 0 and Co r. Appendix B developes the asymptotic expan-
sion of integrals of the kind in (2.15), which are related to Fourier type integrals.
Applying these results yields

(2.16) qJ,,=cosx(loglrtl+J)--(sgnrt)sinx+f,(x)+O
as rt +oo, where

1 rt>0,
sgn
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and where

e--t3/3 COS 1
J= dt (log3+2y)

(y being Euler’s constant). In order to satisfy the asymptotic conditions given by
(2.11), both as /--> +c and as /-->-, it follows that

f(x) + J cos x- sin x 0,

f,(x) + J cos x+ sin x Co sin x + Ao cos x.

Consequently, by eliminating fl(x), the well-known viscous critical layer results
are rederived, Co 7r and Ao 0.

The perturbation expansion (2.10) must be calculated at least through the q3
term in order to determine the nonlinear corrections to this essentially viscous
result. Using (2.14), the equation for q2 becomes

(2.17) "qq2x- q2 Im- e-i’’ e -’3/3 dt

An integral representation of the solution to (2.17) is obtained by again using the
results of Appendix A, namely,

lIosinr/t -,3/3 I e-i,, -,/6e2iX
e dt- Im e

2 \4, t)7" e -3/6 dr d + g2,

where integration by parts has been used and where g2 is an arbitrary constant
corresponding to the cubic polynomial in rt solution. It can be verified that g2 can
be determined in order to satisfy the asymptotic conditions on

The solution of the linear partial differential equation for 3 (following from
(2.12b)) has an integral representation obtained by again using the results of
Appendix A:

(2.19) +e

Equation (2.16) can also be obtained directly from the asymptotics of integrals of Lommel

functions (see Luke [13]).
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The arbitrary constant from the quadratic mean term of 3 is ignored since
q3,,- 0 as r/- +c. The third harmonic term, e 3ix, is not necessary in order to
determine the jump relationships at the order of magnitude of interest. Integrat-
ing with respect to r/introduces an arbitrary function of x, f3(x), and transforms
terms of the form

e

in (2.19) into

Using the asymptotic expansion developed in Appendix B (equation (B.7)) yields

3=ImL8i
_3/6 dr dT

dt

(2.20)

q-e -ix sgn r/

2
e -2T3/3 dT sin____t dt

4i

+f3(x)+O() as n+oo.

The terms involving sgn r/ again clearly indicate differences in the asymptotic
expansions as rt +oo. Comparing this asymptotic behavior of 3, as r/ +oo
with (2.11) implies that

(2.21) A cos x + C sin x Im e- e-r/3 dT
sin

dt

and consequently,

(2.22)
-2T3/3 dT fo sin____tt dt.

Explicitly evaluating both integrals yields

7r(3) /3

(2.23) C2=- F(4/3).

Thus it is concluded that

(2.24) -4 C_- C+ -- F(4/3)A -4/3 + O(I -a/3)

and

(2.25) A_- A+ O(/-8/3).
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Based on numerical calculations, it has been hypothesized (Haberman [9])
that A_ A+ for all A. This has not yet been proved. In this paper it has been
shown that it is O(A -/3) for large A. Presumably further calculations could show
that A_-A+ O(A-") for arbitrarily large n.

Values of the logarithmic phase shift were computed based on numerical
solutions of (2.2) and (2.3) and extrapolated as a smooth curve (Haberman [8],
[9]). The calculation of the phase shift by (2.24) compares quite well with the
computer values even for A not very large as illustrated in Table 1.

TABLE
Logarithmic phase shift

10
5
2
1.5

from (2.24) computer [8]

-3.067
-2.954
-2.504
-2.206
-1.536

-3.07
-2.96
-2.63
-2.45
-2.12

Appendix A. An integral representation oi a certain class of nonhomogene-
ous problems. Equations (2.12) have the form of the following nonhomogeneous
linear partial differential equation"

(A.1) "rt x,,,, ,,,,,,,, h (x, "q ).

In this appendix an integral representation of the solution will be obtained which
is convenient for determining its asymptotic behavior for large . The periodicity
requirement in x suggests Fourier series techniques in x. The boundedness as- +/-oo of the x-dependent part of ,, suggests Fourier transform techniques in

for the x-dependent Fourier coefficients.
To indicate the simplicity of the solution, first assume

(A.2) h(x, "q)= e ’’"

where is a parameter (the Fourier transform in variable). Thus by letting

(A.3) ,,, e’"XS(rt; t),

it follows that

(A.4) iaS- S,,, e-".

Equation (A.4) must be solved for all values of t. Using a linear operator notation

(A.5) L(S)=e-",

where

0
(A.6) L -= - ian,
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it is seen that

(A.7) L(t2S-aS,-e-i")=O.

Since there are no nontrivial bounded solutions of the homogeneous equation
L(S) 0, then S must solve the first order differential equation in t"

olSt S -e -int.(A.8)

Consequently

(A.9) S(rt t)
eP/3 (|’ e-’ e -,3/" dT" + S (r/; 0) e’3/3".

However, the solution corresponding to 0, S( 0), can be obtained by solving

(A. 10) iaS S,, 1.

Furthermore, the solution to this equation is directly needed in 2. (A. 10) can be
related to a nonhomogeneous Airy equation which has been frequently studied.
Solutions are called for example Lommel functions (Nayfeh [14]), related Airy
functions (Abramowitz and Stegun [1]), or Scorer’s function (Olver [15]).
Nonhomogeneous solutions can be obtained by variation of parameters (Watson
18], Lin 11 ], 12], Holstein 10]), but an integral representation will be advan-
tageous. An integral representation is known for a similar equation (Nayfeh 14],
Tumarkin [17], Olver [1.5]) and can be applied to (A.10) yielding

(A.11) S( 0) --i,sgn= e e dr,

as can be verified by substitution. Consequently, from (A.9),

f e-"e-’/3 d, a >0,

(A.12) S(n; t)=
e P/3a f e-’, e-,/ d, a < 0.

Formula (A. 12) is used frequently in 2. It is convenient for obtaining asymptotic
expansions as . An alternate form of this result is

( ) eP/, e-in -.3/31alS (sgn a), (sgn a)t e dz.

In summary, (A.1) has a simple integral representation since the h(x, t) of
interest in 2 have a Fourier series in x which can be Fourier transformed in .
The solution to

,,-,,,, e’ f(a, t) e-"" dt

,,, E e’ f(a, t)S(rl t) dt,
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where this formula must be modified in a straightforward manner for a 0.
Asymptotic expansions for large n of these expressions are calculated by first
integrating by parts. Solving for q, by direct integration yields quasi-Fourier
integrals, such that the results of Appendix B are needed.

Appendix B. Asymptotic expansion of some quasi-Fourier integrals. Inte-
grals of the form

(B.1) I(n) F(t) e-i"’- 1
dt

appear frequently in the analysis of 2. In this appendix, asymptotic expansions of
this type of integral will be calculated. It is assumed that (B.1) is a convergent
integral, that is, F(t)/t is integrable for large t. Furthermore, although it is more
restrictive than necessary, F(t) will be assumed regular for 0 <_-t < oe since the
functions of interest in 2 have this property. Integrals of a slightly different kind
have been asymptotically evaluated by Benney and Saffman [3] and Benney and
Newell [4].

Before evaluating (B.1), the well-known asymptotic result for ordinary
Fourier integrals derived by repeated integration by parts is noted"

(B.2) e-i"F(t) dt Z i"-F(")(O)(-in) - + o(n as n
0

(see, for example, Erd61yi [7] or Olver 15]). It is only assumed that F(t) is N times
continuously differentiable for 0_-< < and F"(t)--> 0 as t-> oo for n 0,
1,. , N- 1 and provided F"(t) is integrable over 0

Integrating (indefinitely) this integral with respect to n yields

N-1 F(-)(0)e -i"’- 1.. dt -F(0) log ]nl + Z (-iT)-" + d+/-(B.3) F(t)
-it ,=, n

+ o(r/

where d are constants of integration (possibly different constants as n - +eo and

n - -oo). Thus the entire asymptotic expansion of (B. 1) is determined except for
the values of the two constants d+ and d_. In fact the matching problems discussed
in 2 depend in an important manner on the difference between d+ and d_.

Unfortunately the integration by parts technique used to derive (B.2) cannot
be extended to (B.1). Instead d+/- are determined in the following way. First it is
noted that

e-"’ 1 _,,, F( t) F(O)
dtF(t) dt e

(B.4) fo F(O)cos nt-F(t)
dt iF(O) fo sin nt dr.

d

The Fourier integral asymptotic formula can be directly applied to the first
integral on the right-hand side since

d" F(t)- F(O) F("+I)(O)
dr" ,=o n + 1
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It is this term which yields all the terms of (B.3) which asymptotically tend to zero
as r/- +. Thus applying the well-known integration formulas

cos rt cos
dt

sin qt
dt

7r

--f-- - sgn (),

yields

r ( F(0) cos t-F(t)
(B.5) iF(O) og Iwl- id iF(O) log Ir/]- iF(O)- sgn (r/)+

d+ and d_ are thus determined as

dt.

I F(0) cos t-F(t)
dt(B.6) -id =-i F(O) sgn (r)+

or

(B.7)

-i(d+- d_) -irF(O).

In summary, it has been shown that as r/ +oo

rE(t) dt=-iF(O)log [r/[+F(0) sgn (rt)

+ Io F(0) cost t-F(t)
where the complete asymptotic expansion (if needed), represented by the expres-
sion O(1/rt), is contained in (B.3).
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THE BESSEL POLYNOMIALS AND THE STUDENT t DISTRIBUTION*

MOURAD E. H. ISMAILt AND DOUGLAS H. KELKER$

Abstract. The quotient

2Fo(-n + 1, n;-;-1/2x) P,_,(x)
,,/’-x2Fo(-n,n+ 1;-;-1/2x)- P.(x)

arose in connection with the problem of the infinite divisibility of the Student distribution. It is shown
that P,_,(x)/P,(,,Ux) is completely monotonic in [0, oo) for n 4, 5 and 6. This implies that the Student
distribution is infinitely divisible for 9, 11 and 13 degrees of freedom. We show that certain power

sums of the zeros of the simple Bessel polynomials are zero. This is then used to show that for every
n =0, 1, 2,. ., there exists a 0,>0 such that the inverse Laplace transform of P,_,(qx)/P,,(4x) is
nonnegative in [0,, oo). This supports our conjecture that P,_,(,,/-x)/P,(x) is completely monotonic in
(0, oo) for all n, and that the Student distribution is infinitely divisible for odd degrees of freedom.

1. Introduction. Theorems related to random variables and probability
distributions are often proved by examining the Fourier transform of the distribu-
tion. The Fourier transform of the Student distribution involves the simple
Bessel polynomials. These polynomials, in Luke’s [12, p. 194] notation, are
defined by

(1.1) Q,(1, z)= z"2Fo(-n, n+l;-;-1/z), n =0, 1,....

Krall and Frink [9] define them as

(1.2) y,,(Z)=zFo(-n,n+l;-;-z/2), n=0,1,....

We shall study the polynomials

(n+k)! z
(.3) Po(z)

=o (n-k)’. ;i’
n=0, ,. .,

which are related to O,(1, z), y,(z), and the modified Bessel function
by

P,,(z) z"y, O,(1, 2z)= e n+(1/2)(Z)

Using the above notation, the problem of showing that the Student distribution is
infinitely divisible reduces to showing that the quotient P,_(x)/P,(x) is com-
pletely monotonic in (0, oo); that is, its inverse Laplace transform is nonnegative
there. We conjecture that this is true for all n. Kelker [8] proved it for n 1, 2, 3.
We show that for every n 0, 1, 2,..., the abovementioned inverse Laplace
transform is nonnegative in [0,, oo) for some 0, > 0, and we give an estimate for 0,.
Therefore for a given n, the computer may be used to prove the result for
x e [0, 0,]. In particular, we prove the result for n 4, 5, 6.

* Received by the editors June 7, 1974, and in revised form January 25, 1975. This work was
supported by the National Research Council of Canada and the University of Alberta.

Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1.
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G 1.

82



BESSEL POLYNOMIALS AND STUDENT DISTRIBUTION 83

In the course of our investigation, we prove that certain power sums of the
zeros of the simple Bessel polynomials y,(z) are zero.

We note that quotients of hypergeometric polynomials similar to
P,_,(x)/P,(x) have been used in Pad6 approximations (VanRossum [16]).

2. Notation. We shall use (r) to denote the ascending factorials

(cr) { 0

o’(o" + 1)’" (o’+j- 1)

if j=0,

ifj=l,2,’"

The hypergeometric series 2Fl(a, b; c; x) is defined by

(a)(b)x2F,(a, b; c; x)= Z
(c)i!

while 2Fo(a, b;-; x) is defined by

2Fo(a, b;-; x)= ’. (a)i(b)x(
i=o j!

The only 2F1 and 2Fo that are used in this paper are terminating ones; that is,
one of the parameters a or b is a negative integer and the defining series reduce to
polynomials; hence are defined for all x.

For other definitions and notation, the reader is referred to Feller [6],
Rainville 14] and Widder 18].

3. The Bessei polynomials. It is known (see Grosswald [7], Luke 12, p. 194]
and Olver 13]) that the zeros of the simple Bessel polynomials, in either notation,
are distinct, they all lie in the left half-plane, and there is only one real zero for
odd-degree polynomials and none for even-degree polynomials. The smallest
absolute value of any of the zeros of O,(1, z) is asymptotically equal to 1.32548n.
The zeros of the first fifteen Bessel polynomials O,(1, z) are given in Krylov and
Skoblya [10, pp. 52-55].

From the orthogonality of the Bessel polynomials we get the difference
equation

(3.1) P,(z)=(2n-1)P,_l(Z)+z2P,_2(z), n=2,3,4,....

This equation can be obtained from the recurrence relations for the Bessel
functions as found in Watson [17], as can the relationship

d
(3.2)

dz
e P.(z)=-z e

For more properties of the Bessel polynomials, the reader is referred to
A1-Salam ], [2], A1-Salam and Carlitz [3] and Rainville 14, p. 293].

LEMMA. Let a,,j, j 1, 2,. , n, be the roots ofP, (z). Then the partialfraction
decomposition of P,-1 (z)/P, (z) is

j=l
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Proof. Let P._(z)/P.(z)= j=, A..j/(o.,i-z). Then

A., lim (a,,,- z) P,,_,(z) lim
(c.,i- z)P._,(z) e 1_..... P. (z) ..; P. (z) e

by virtue of l’H6pital’s rule and (3.2).
THEOREM 1. Let ce,,, j 1, 2," , n, be the zeros ofP,(z), (which ofcourse are

also the zeros of K.+(1/2)(z)), with n >-2. Then the sums

-k(3.3)
j=l

vanish for k 3, 5,..., 2n- 1.
Proof. Let

P._,(z)
A.,i/(a..i- z).

p.(z)

Since P.(0)# 0, P._,(z)/P.(z) will have a power series expansion in a neighbor-
hood of the origin. The coefficient of z in the Maclaurin series of P._(z)/P.(z)
will therefore be ., From the above lemma A., .,, so that the
coefficient of z will be S.,+.

We now proceed, using induction on n. The relation (1 + x)-==o (-x),
]x < 1, will be used repeatedly. For n 2 we have

P,(z) l+z
Pa(z 3 + 3z + z= 1 +3(i z)

(3.4)
1 z z4[

)=? - (-+=L(-
0 0

Since &,3 is the coefficient of z in the power series expansion of P,_l(z)/P,(z), we
conclude that 82,3--0,

Now assume S,,k 0 for k 3, 4,. ., 2n- 1. Using (3.1), we get

Sn,j+2 Zj.(3.5)
e.(z) (2n 1)

1 +
(2n 1)e._ (z)

Clearly &,-l/(2n-1), and the induction hypothesis is
j 3, 5, , 2n 1 and Sn,2n+l z O. Therefore

P.(z) 1 [1+ z_p,,_l(Z) }-1.(3.6) P,+(z------ 2n +-------’ (2n + 1)P,(z)

for

that is,

(3.7) Sn+l.j+2zj
1

1
z2 z4

S.,j+:zJ + S.,j+:z
=o 2n+ 1 2n+ 1 j=o

_
Note that the first nonzero coefficient of an odd power of z in the right-hand side
of (3.7) is the coefficient of z 2"+1. Thus S.+, =0 for ]=3, 5,..., 2n+ 1. This
completes the proof.
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COROLLARY. The simple Bessel polynomials Q,(1, z) with zeros
j 1, 2,..., n, and the Krall and Frink Bessel polynomials y,(z) with zeros
j l, 2,. , n, have the property that

fl,-,=0 and i "y,,=0 [ork=3,5,...,2n-1.

This follows since/3,,= 2a,, and y,, 1/a,,.
THEOREM 2. Let c,,i be as in Theorem 1. Then ]:or n >= 2, we have

(3.8) S,,,+ (- 1)"/{3- 5... (2n 1)}:

and

(3.9) S,,,+3=(-1)"/(2n 1){3.5... (2n- 1)}.
Proof of (3.8). We shall use induction on n. For n 2, the coefficient of z in

the power series expansion of Pl(z)/P2(z) is $2,5. Relation (3.4) implies that this
coefficient is 1/9. Thus S,5 1/32.

Now assume that (3.8) holds for some n. Using (3.6) and (3.7), we see that the
coefficient of z 2"+3 in the power series expansion of P,(z)/P,+(z) is
+ 1)2; that is

S,+1,2,+3 =-S,,2,+,/(2n + 1)2,

and (3.8) is proved.
Proofof (3.9). The proof is very similar to that of (3.8). The coefficient of z in

the power series expansion of P(z)/P2(z) is, by (3.4), 1/2(1/2-). Thus S2,v 1/3 3.
Now assume the result for an n > 2. Equating coefficients of z"+3 in both

sides of (3.7), we get

2
S"+l’2"+ (2n + 1)2S"’2"+3-1- (2n + 1)

(--1)
1}2{(2(2n+ 1)(2n- 1){3.5... (2n+ 1

n+ 1)-2}

(2n+ 1){3.5... (2n+ 1)}

by the induction hypothesis. This completes the proof.
As an immediate corollary we have the following.
COROLLARY. The zeros fl,,, j 1,. ., n, of the Bessel polynomials Q,(1, z)

and the zeros ,,, j 1,. , n, of the Bessel polynomials y,(z) satisfy

=,
"’J 8(2n-1) )!

’3g12n’+l--’(--l)ng2n( v! 2
j=l \(2") !//
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and

’]/2n’}+3=
--11 (2)!j=, (2n

Remark. The properties of the zeros of the simple Bessel polynomials
indicated in Theorem 1 do not hold for the generalized Bessel Polynomials of
A1-Salam 1 ].

We shall postpone the proof of the next theorem until the end of 4.
THEOREM 3. The simple Bessel polynomials Q.(1, x) have the property that

Qk(1, x/x)/Q,(1, x) is completely monotonic in (0, oo) for 0<= k < n, 1 <= n <=6.

4. The Student t distribution. The information on infinitely divisible dis-
tributions that we use can be found in Feller [6, pp. 425-428]. A variance mixture
of the normal distribution has the form (e-X/2"/,fru) dG(u), where G is the
mixing distribution. This mixture is infinitely divisible if G is infinitely divisible. G
is infinitely divisible if and only if the Laplace transform of G is of the. form e-x

with h(0)= 0 and the derivative h’(x) completely monotonic on (0, o).
The probability density function for the Student distribution with k degrees

of freedom can be written as

F((k + l)/2) (l +X:2-)-(’+l)/2",/krrF(k/2) - x/2 (/

(k/2)k/2 Io e-x2/2’
(4.1t --r-k-2)

U
-(k+2)/2 e -/2" du.

For odd degrees of freedom, say n 2k + 1, the Laplace transform of the mixing
distribution is given by, say,

k! (k + r)! (nt)(k-r) 2k!o --2-=exp (-nt) (2k)!P( nt)=-e-h’"(-x/-),2k)[ (k r)! r!
exp

To show that h(t) has a completely monotonic derivative it is sufficient to
show that -log (e-’C;P (v/})) has a completely monotonic derviative. We shall give a

general procedure for showing this, with the details worked out for k 4, 5 and 6.
For the cases k 1, 2 and 3, the complete monotonicity was established by Kelker
[8] using direct differentiation.

Using relation (3.2), we get

d Pn-- (/))
--(-log (e-’/rP,(x/)))=
dt 2P, (x/)

Recall that the partial fraction decomposition of P,,_l(V%x)/P,,(4x) is given by

Pn--1 (X) L 1

To show that a function is completely monotonic on (0, oo), it suffices to show that
the inverse Laplace transform of the function is nonnegative on (0, oo). This
follows from Bernstein’s theorem (see Widder [18, p. 161]). The inverse Laplace
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transform of P,_,(,,[xx)/P,(x)is (see [S, p. 233])

(4.2) Y. exp (a2.., x) erfc (-a., +xa"j=l

The object is to show that the expression (4.2) is nonnegative for all
nonnegative x. Applying the method of integration by parts (Copson [4, pp.
13-14]) to the error function integral, we obtain the following asymptotic
expansion:

e erfc (a)-- 1 +
a ,._- 2"a2"

with the remainder after k terms, say Rk, being,given by

Rk(a)
(--1)k-13 5" (2k- 1) --2ke u e du.V 2-

With the asymptotic series of k terms with the remainder R, the expression (4.2)
becomes

1 k-1 (-1)’3.5... (2m-l)
(4.3) ,21 2"x "+1/

S,,+, + E R(-a,,,).

Let Re (a) denote the real part of a and remember that Re (a,,)< 0. It is easily
shown that

exp (x],) u-+ e-" du,,,
-(k +3/2)

X ,, /Re (-,,).
2 i=l

Now let k=n+l in expression (4.3). From the lemma, S,,:+=0 for
m 1, 2,. ., n- 1. Hence, the expression (4.3) is positive if

(4.4) (- 1 )" 3.5...2,x"+’/:(2n 1
S, :,+, > 3.5...i(2n+ 1

la,, [-’:"+’/Re
2n+l

Applying Theorem 2 and simplifying, we get

2n+l
(4.5) x (3.5... (2n- 1)) [a,,[-’"+/Re (a,,).2

Inequality (4.5) gives a very reasonable lower bound on x for small values of
n, but we shall show that as n increases, the lower bound for x approaches +
Since little is known about the behavior of Re (a,,) for large n, we will use another
approximation for the remainder integral:

exp (x],) u-+ e-" du__
x-(k +1)

C[n,] l-(2 +2).
2
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Inequality (4.5) is now

+
(4.6) x>,,(2n 1)(3 5 (2n- 1)) 2 la,,l -’2"+2

Since P,(x) O,(1, 2x), the smallest of the norms of the roots of P,(x) is asymp-
totically equal to (1.32548/2)n. Replace la,.] in (4.6) by the asymptotic value;
then the term on the right becomes

1.32548
(2n + 1) (3 5 (2n 1)2)n

2
n

((2n),)2 n
2/--Tr(2n + 1)\ n! (1.32548n)2"+2"

On using Stirling’s formula to approximate the factorials, we find that (4(2n
+ 1)/(1.32548)2)(4/1.32548e)2". Thus the right side of (4.6) approaches -oo as n
approaches oo. We were unable to find a better approximation for the remainder
integral than the one used.

For n 4, 5 .and 6 we computed the roots of P, (x) to twelve significant digits.
For n 4, inequality (4.5) becomes

9(3.5.7)
x > i Ic4,,I-’/Re

We get -2=, Ic4.,I-l/Re (c4,,)- .155769 10-4. Solving, we see that the inequal-.
ity is satisfied if x>.78. For n=5, we get
=. 144177 x 10-6. Inequality (4.5) with n 5 is now satisfied if x > .71. For n 6,
we have -j=l I,,I 14/Re (c,,)=.965467 x 10-, and inequality (4.5) becomes
x >.68.

For n 4, 5 and 6 the computer was used to evaluate expression (4.2) over
the interval (0, 1), and it was found to be positive and decreasing over the interval.

Since we can explicitly evaluate the first two nonzero terms of the asymptotic
series, we can set up an inequality using the first two terms and the remainder. But
the bounds for x given above are smaller than the bounds obtained using the first
two terms and the remainder. However, for large n, let k n + 2 in expression
(4.3); apply Theorem 2, the second approximation for the remainder integral, and
Stirling’s formula; then expression (4.3) becomes

2n+l
X
3/2

X
1/2

2(2n- 1)
4x/--,rr(2n + 1)(2n + 3)( 4 )

2"

n3(1.32548) 1.32548e

For large n this inequality will give a smaller lower bound for x than the bound
obtained using the first term and remainder of the asymptotic series.

Therefore for n 4, 5 and 6, we have that expression (4.2) is positive for all
positive x, and this implies that P,_I(,])/P,(4x) is completely monotonic in
(0, oo), which implies that the mixing distribution in (4.1) is infinitely divisible, and
this implies that the Student distribution with 2n + 1 degrees of freedom is
infinitely divisible. Adding the known cases, we now have the following result.
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THEOREM 4. The Student distribution is infinitely divisible for 1, 3, 5, 7, 9, 11
and 13 degrees of freedom.

For any odd number of degrees of freedom, the method of attack used above
should work for showing whether or not the Student distribution is infinitely
divisible; but a different approach appears to be necessary for the general case.

THEOREM 5. Let X2 be a chi-square variable with k degrees of freedom. Let
Yk (X)-. Then Yk is infinitely divisible for k 1, 3, 5, 7, 9, 11 and 13.

Proof. For any positive integer k, the probability density function of
((1/k)x)- is (k/2)k/2F(k/2)-x-/2- e -/2x, and this is the infinitely divisible
mixing distribution of the Student distribution for k 1, 3, 5, 7, 9, 11 and 13.

We are now ready to prove Theorem 3. Qo(1,,f-XX)---1. Ql(1,4x)
=(1 +(x/2))-’, which is completely monotonic in (0, co). To prove that the
Student distribution is infinitely divisible, in the cases considered here and in the
cases considered in Kelker [8], it was shown that P,_,(x)/P,(,xx) is completely
monotonic. Thus

Q._,(1, x)
O,(1, x) P, (x/2)

is completely monotonic for n 2, 3, 4, 5 and 6. Now for 0-< k < n, _-< n _-< 6, we
have that

Qn(1, X) Qn(l, X) Qn--l(l, X) Qk+l(l, %/X)"
Each factor on the right is completely monotonic, so the product is completely
monotonic. The conclusions of Theorem 3 are obviously still true if x is replaced
byx with0<s <.

5. Concluding remarks and a conjecture. As we have seen in the previous
sections, we have very strong reasons to believe that

Pn-- (X) Kn-(1/2)(X/r-X)
Pn(X) %iXKn+(I/2)(NX)

is completely monotonic on (0, oe) for n 1, 2, . As a matter of fact, we believe
the following conjecture is true.

Conjecture. The quotient K(v/-x)/v/-xKv+l(X/-x)is completely monotonic on
(0, oo) for v--> O.

Note that the conjecture will be false if vx is replaced by x. Indeed, the second
derivative of

K3/2(x)
xKs/2(x)

changes sign on (0, oo).
One might be tempted to prove the conjecture by trying to show

K,,(x/-x)/K,,/(x) is completely monotonic on (0, oe), as is x-l/2; hence the result.
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This is the wrong approach. It is known that K(x)/Ku(x) is continuous, increasing
and positive on (0, o) for 0 =< v < u. This is Theorem 3 of Lorch 11].

Recently Trlifaj 15] computed the asymptotic expansion of K.(x)/xK+l(x)
for v > 0 and x => 0 as x -. This particular quotient of Bessel functions appeared
in solving Schr6dinger’s equation with a rectangular potential well. The same
quotient also occurred in the nuclear model of K-harmonics. For references see
Trlifaj 15].

We will conclude with an alternative proof of Theorem 1. From (1.3) it is
clear that

(2n)! (I (1 xc.-,).P.(x) fi (x a.,j)
2"(n !)

Taking the logarithm of the right side we get

(2n)! x
(5.1) log P.(x) logi0 S..k

and

(5.2)
(2n)! kS

x
log P.(-x) logii) k=,2 (-1) .,k--.k

Subtract (5.1) from (5.2) to obtain

x2k+l
log P"(-x) 2 Y

P.(x) k=,, 2k+l

which is equivalent to

P(-x) P(x) exp 2 S,2k/,
=0

Since S., 1, the above formula becomes

(5.3) e:xp.(-x) P.(x) exp 2 S.,2k+l
x:k+

_- 2k+l

Let H,I and ]-l,2 be the coefficients of x in e2xp,(-x) and P,(x), respectively. The
coefficients depend on n also, but we suppress this dependence for ease in
printing. The crux of the proof is to show that I-[j,1 I-I,2 for 0 =< j =< 2n.

Observe that for 0<_-j<=2n, ,, is the same as the coefficient of x in
{E=o (2x)l/l!}P,,(-x)"

2J-"(2n -/)!(-1)’
t= (j- l)lll(n-

2-"(2n)!
--2F,(-j, -n -2n; 1),

since p!/(p-I)! (-1)’(-p) for p, 1= 0, 1, 2,.... Using Gauss’ theorem in the
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form 2F1( j, b; c; l) ( b)i/(c)i, j 0, l,. (see Rainville 14, p. 69]) we get

2-" (2n)!(-n)
n!i!(-2n)

2-" (2n -j)!
j!(n-j)!

fr 0=<J<- n’

0 for n <j<=2n.

Therefore 1-[i,, [I,2, j 0, 1,’’’, 2n.
On the other hand, (5.3) implies that exp{2 ]k= S,,2+1(x2+1/(2k + 1))}

does not contribute to the coefficient of xj, j=l,2,...,2n in
(x2k+lP.(x) exp {2 =1S.,+1 /(2k + 1))}. This can only happen if the coefficients

of x 3, x 5,.. x2"- in the power series expansion of exp {2]=1 Sn2k+l(X2k+l,
(2k + 1))} vanish. The coefficient of x in this series is (1/3)S,,,3. Therefore S,,3 0.
By very easy induction we get S,, 0, 3, 5,’.., 2n- 1. This completes the
proof.

Remark. The power sums S,,,+1, S,,2,+3 can also be evaluated from (5.3). This
follows from equating coefficients of x 2"+’ and x 2"-’ in both sides of (5.3).

Acknowledgment. The above alternative proof was communicated to us by
L. Carlitz of Duke University.
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CONSTRUCTION OF A FAMILY OF POSITIVE
KERNELS .FROM JACOBI POLYNOMIALS*

M. RAHMAN?

Abstract. Starting with the Jacobi polynomials 2F(-n, n + a +/3 + y + 6 1; a +/3; x) over [0,
with a, 6 > 0 and/3, 3’ > , a symmetric, positive definite square-integrable kernel is constructed. For
1-<_/3 < y, this kernel is also found to be continuous. Special limiting kernels are obtained by
considering the limits, a 0+, 6 0+, 3’ and 6 c. All these kernels are shown to have stochastic
properties. As a by-product, some bilinear formulas are obtained with the Jacobi and Laguerre
polynomials.

1. Introduction. Recently we adopted a method of differential and integral
ladder operators (also known as shift operators) to obtain some bilinear formulas
involving associated Laguerre and Jacobi polynomials and their discrete counter-
parts, namely, the Meixner and Hahn polynomials (Cooper, Hoare and Rahman
[10]]). However, the class of operators considered in that paper was allowed to
shift one parameter at a time, for example, the Laguerre polynomial L(x) was
allowed to shift to L+l(x). Likewise, for the Jacobi polynomials

(C),,
2F1 (--n, tr/-t- a" c"P("c-l"-)(X)

n! l-x)
only the parameter c was seen to jump by +1 or -1 in one operation without
changing n or a. The idea of one-parameter ladder operators for second order
Sturm-Liouville problems is quite an old one (see, for example, Morse and
Feshbach [29]), and the method is intimately connected with the factorizability of
Sturm-Liouville operators (for references in this area see [10]). It would seem
natural to extend this method to multiparameter ladder operators, but, to our
knowledge, no serious attempts seem to have been made in this direction. For one
thing, the relative simplicity of the one-parameter case changes abruptly when
one tries a two-parameter ladder operator; secondly, it seems rather difficult to
treat a family of multiparameter ladder operators in any general way. Needless to
say, we did have a serious look at this problem, but failing to obtain any concrete
result generally, we felt it is worth reporting, nevertheless, a rather interesting set
of special results involving the Jacobi and Laguerre polynomials.

Starting with the Jacobi polynomials J,(a++y+6-1, a+/3; u/E)
2F(- n, n + a +/3 + 3’ + 6 1; a +/3; u/E), where a, /3, 3’, 6, E are strictly

positive parameters and 0 _-< u -< E, we first construct a fairly complicated positive
kernel, study its properties, obtain a whole set of positive-valued special kernels
by considering special limiting values of the parameters, and finally exploit
well-known theorems in Jacobi series to obtain some bilinear formulas. The

* Received by the editors August 5, 1974, and in revised form March 11, 1975.
t Department of Mathematics, Carleton University, Ottawa, Canada. This work was supported in

part by the National Research Council (Canada) operating Grant no. A6197 and in part by a Science
Research Council (U.K.) travel grant.
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reason for using a rather nonstandard definition of the Jacobi polynomials is that
we make heavy use of the hypergeometric functions, and it seems more con-
venient to work on the interval [0, 1] rather than the usual interval [-1, 1] for
U,a’b)(x). Needless to say, our results can be translated in terms of standard
notations and definitions through obvious transformations.

It should be stressed that our search for an extension of the ladder-operator
method did not "accidentally" lead us to the discovery of the general kernel
KE(u, v; a, , y, 6). This kernel and most of its special forms that we have
discussed here have, in fact, been known through the works of Hoare [18],
Hoare and Thiele [19], Cooper and Hoare [11] and Cooper [12] on a class of
stochastic models. We wish to make this acknowledgment more specific in a
special note at the end of this paper. Our work simply gives an alternative
mathematical approach of reproducing this family of kernels starting from their
eigenfunctions.

It appears that after about 30 years of relative quiet, there has been a sudden
burst of active interest in Jacobi polynomials and Jacobi series, thanks largely to
the works of R. Askey, [2]-[5], G. Gasper [4], [14]-[17], T. H. Koornwinder
[22]-[27] and others. We would like to thank Professor Askey for drawing our
attention to this rather substantial volume of recent literature. A survey of this
work is available in Orthogonal Polynomials and Special Functions by R. Askey.
This monograph will be volume 21 in the SIAM series of Regional Conference
Lectures.

However, the problem and approach of this paper are somewhat different
from those of Askey-Gasper-Koornwinder, although there is an underlying
common interest in the positivity of the kernels and the corresponding bilinear
sums. Our approach seems to be more akin to that of Popov [30], who also derived
some bilinear sums for Jacobi polynomials by first showing that these polynomials
are the eigenfunctions of a certain kernel. Our method is quite elementary, based
on a few well-known properties of the Gaussian and generalized hypergeometric
functions (see, for example, Bateman Manuscript Project [9], Slater [32], Bailey
[6].

2. The general kernel. Let us consider the Jacobi polynomials

+/3 +3/+6- 1, a +/3; x)=2F,(-n, n +a+ +7+6- 1; a +/3; x),

n=O, 1,2,-...

We have deliberately introduced four parameters a,/3, 7, 6, so that special results
can be obtained for their special values. For the moment, the only assumption that
we are making is that they are all positive. The polynomials J,(a +/3 + y+ 6
-1, a +/3;x) are known to be orthogonal with respect to the weight function
x+’-l(1-x)+-1, and they form a complete orthogonal system on L2(0, 1). (See,
for example, Morse and Feshbach [29].)

Let us perform the following operations: multiply 2F,(- n, n + a +/3 + ",/+ 6
-1;a +/3; y) by (y-z,)-(z2 y)-’ and integrate over y from z to z2, where



94 M. RAHMAN

0_-<z<z -< 1. We get

)’- )"-’2F,(-n, + +/3 + + 6 1" cr +/3" y)dy(y-z, (z2 y n a y

(z2-zl)+’- dyy-(1-y)’-2Fl(-n,n+a++7+6-1;a

(2.2)
dy ym+O-(l_ y

)+,_,
(-n)(n+a++y+6-1)

(Z2 Z

m=O m
where

B(a, b)= F(a)r(b)/F(a + b)

is the beta function.
Note that the integral in (2.2) diverges as z - z2, unless/3 + y- => 0. As we

shall see later, this fact has important bearing on the square-integrability of the
kernel that we are about to derive.

Our aim is to perform a series of operations on J,(a +/3 + y + 6 1, a +/3; y),
so that the end result is J,,(o + +y+6- 1, a +/3; x). Since the weight function
associated with J,(a +/3 +y+6- 1, a +/3; x) is x+-l(1 -x)+--, the next obvi-
ous step is to divide (2.2) by (z2-z,)+,-’, multiply by (1-z2)-l(z2-x)’-1, and
integrate over z2 from x to 1. Thus

(2.3)

(1--Z2)-’(Z2--X)v- Iz2

iz----z-)-d+%--_ dy (y Zl)Ci--l(z2 y)’y--1

zF,(-n,n+a++y+6-1;a+; y)

dz2z’(1-z2)-’(z2-x) v--’

=(l_x)V+_
(-n)(n+a+8+y+6-1)

,=,, (c + t?)s!

i (S)B(m+,s-m+y)z-"
,,,--o rn,,

k
B(k+3,, m-k+6)xm-.
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-l(x z )/3-1 and integrate over z from 0 toThe final step is to multiply this by z
x. We have

(2.4)

say, where

(2.5)

dzlzT-l(x-zl dz2
(Z2 Z1)/3+v-1

z2

)/3-1dy(y-zl (z-y)’-lF,(-n,n+o+fl+y+6-1;a+fl;y)

x+/3-(1-x)+-IM,(x),

(-n),(n+a++y+6-1).,
M,(x) 2

,=o o + l ),s

",,Y"(=om)B(m + B’ s- m + y)B(s m + a’ )

:o k
B(k +% m-k +6)x-’.

(2.6)

The operations on the left-hand side of (2.4) can be seen as

y)

--X)V-l(z2--y)v-l(l--z2)-1dz, dz2 zT-l(x z1)/3-’(y z,)t-’(z2
(Z2-- Z1

H(x z,)H(y z,)H(z2- x)H(z2- y)

dyFl(-n,n+o++y+(3-1;a+; y)

min(x,y)

dt t-(x t)/3-1(y t)
-’0

where

(1-z)-’(z-x)’-’(z-Y)’-’
dz

t)/3+_ax(x,y) (Z

Hence if we denote

K(x, y; a,/3, y, 6)=

(2.7)

0 if t<0,
H(t)

1 if > 0.

X-’-/3+l(1 X)-V-+’

B(a, )B(, T)B(T, 6)
min(x,y)

dt t-l(x t)/3-1(y t)/3-
0

dz
ax(x,y) (Z t)
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then it follows from (2.4) that

fo’dY K(x, y; a, , % 6)J,(a + + y+ 8-1, a +; y)

(2.8)
M.(x)

B(a, )B(, y)B(% 6)"

It is obvious from (2.5) that M,(x) is a polynomial of degree n. What we shall
now prove is that M,(x) is a multiple of J,(a +/3 +y+8- 1, a +/3; x) itself.

For a nonnegative integer p such that 0 _-< p _-< n, the coefficient of x" in M, (x)
is, clearly,

(2.9)

(-n)(n+oe+fl+’y+a-1) ( s)( m )B(m+,s-m+y)rn s p

B(s-m+a,)B(s-p+% m-s+p+6)

(-n)"(n +c +fl +Y+6-1)VB(a. fl)B(fl, y)B(y. 6)S(n; p).
(+).p!

where

S(n;p)=
1 "p(-n+p),(n+ ++y+a+p- 1),

U(, )B(, y)B(y, 8),=o ? 3-7;,(p + 1),

k=,, k+l
B(k+l+,p-k+y)B(p-k+a,)

.B(l+%k+6).
After some simplifications, this reduces to

p___2___.

{2.)
.4F [, -n+p, n+++y+f+p-l,+k, y

k++p, +y+p, y+a+k

where

4F3[a, b, c, d
(2.12) / e,f,g

We show in the Appendix that S(n; p) is, indeed, independent of p, and therefore
equal to S(n; 0).

is a generalized hypergeometric function.
If we set p 0 in (2.11), we obtain
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Thus from (2.8) and (2.9) it follows that

(2.14)
dyK(x, y;o,, y,)J(a++y+8-1, o+; y)

S(n; 0)J.(c +/3 +,/+ a-l, c +/3; x).

This proves that for each nonnegative integer n, J,(a + + y + 6 1, a + x) is
an eigenfunction of the integral equation

(2.15) A4(x) K(x, y; c,/3, y, 8)(h(y) dy,

and the corresponding eigenvalue is given by

(2.16) A A, S(n; 0).

If we write

(2.17) w(x) x+-l(1-x)+--’,

then the kernel (2.7)can be "symmetrized" as

(2.18) G(x,y;,t,v,)=/’w(x)
(y)

The corresponding integral equation,

(2.19) h/(x) G(x, y; a,/3, y, 8)/(y) dy,

then has the same eigenvalue (2.17) for each n with the eigenfunction

(2.20) f,(x) N,x/w(x) 2Fl(-n, n + o + + y + 6 1; c +/3; x),

where N, is a normalizing constant given by

(2.21)
N2, {(2n + c +/3 + y + 8 1.)F(c + fl + n)F(n + c +/3 + y + 8 1)}/

{n !F2(a + fl)F(n + y + 8)}.

It is well known that (see [29])

(2.22) Io’ f(x) f.(x) dx o.

Before passing to the next section, we note that a transformation

(2.23) x - u/E, y - v/E

transforms the integral equation (2.15) to

(2.24)
E

4,(u) K(u, v; ,, , "r, ,)4,(v) ely,
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where

K(u, v; a, , y, 6)=[B(a, )B(, y)B(y, 6)]-’u--o+’(E u)--+’

(2.25) [ min(u,v)

dt t-(u t)--(v t)-o

(E-z)-(Z-U)’-I(z-v)’-
dz

ax(u,v) (z-t)+v-’

and

(2.26) (u) F,(-n, n + a + + y + 6 1; a + fl; u/E).

Note that the eigenvalues of K remain the same as in (2.16). Also note that if
(u) is an eigenfunction of (2.24) with eigenvalue A, then (E-u) is an
eigenfunction of (2.24) with u, v, a, fl, y, 6 replaced by E-u, E-v, 6, y, , a,
respectively.

3. Special cases.
Case I. a 0+, fl, y, 6 > 0. The double integral in Kz(u, v) diverges as 0+,

but when it is divided by B (a, fl), the limit exists. Using the integral representation
of the hypergeometric function (see, e.g., [7])

B(b,c-b)zF,(a,b;c;z)= dtte-(1-t)---(1-tz)-,

it can be shown that
min(u,v)

[B(a,/3)]- dt t--(u t)-(v t)--.’o

If (e- z)-(z u)-(z v)
dz

ax(u,o) (Z /)/3+/-1

(3.2) =[min (u, v)]’+t-l[max (u, V)]/3_l =,, (/3--k 1)
.[ min(u, v)] r(k+a)r(k+fl)

max (u, v) F(a)F(k + a +/3)

ax(u,v) Z

:F,(/3 +y- 1, k +a; k +a +/3;
min (u, v)).Z

Re c>Re b >0,

Now

F(k +a)= l 1,
lim
-o+ F(a) !0,
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Also

!imo+ 2F,(/3 +,- 1, c;/3 +c;
min (u, v))= 1.

Z

Hence

K(u, v; 0,/3, y, 6)= !imo+ K(u, v; , , % 6)

(3.3) [B(/3, y)B(’y, )]--I
(E_u)/-

(E-z)-’(z-u)’-’(z-v)-’
dz

ax(u,v) Z IO+v-

The eigenfunctions of this limiting kernel are the Jacobi polynomials

2F,(-n, n + +3,+6- 1;/3; u/E),

and the corresponding eigenvalues are

(3.4) =3F=f-n, n++/+6-1,3, 1]/3 +,,/, 3, + 6

By using the Saalschutzian theorem (Slater [32]), this can be evaluated.
We may evaluate it directly by considering the integral representation of

3F2(1) (Slater [32]). Thus

(3.5)

lr(y + 6)
t,_,(l_t)_,2F,(_n,n++y+3_l.+T;t)d

r()r()

r( + a) r( + )r()r( + )r( + )
r()r(a) r( + + )r()r( + a + )

(Bateman [9, p. 398, (2)]).
( + ,).(, + ).

Case II. 6--> 0+, c,/3, y > 0. Let us first determine the limit of

[B(v, )]-’ az
ax(u,v)

(E z)-’(z u)’-’(z v)
(z-t)’+-1

as 3-0+.
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After making use of two obvious transformations and a binomial expansion,
this integral reduces to

[E-max (u, v)]+-[E-minB(%8) (u, v)]-[E-t]--+ o (7-k 1)
[-E-max(u’v)]E-rain (u, v)

dz z+-(1 z)"- 1
E-max (u, v)

z --+.
E-t

As in Case I, only the k 0 term survives as --> 0 and the integral divided by
B (3,, ) approaches 1. Hence

(3.6)

i-(,) t-(u_t)o-(v_t)o-
,o

dt
(E_t)+,_

The eigenfunctions are again basically the same, namely, 2F1(- n, n + a + fl
+ 7- 1; a +; u/E), while the eigenvalues are given by

A.=4F3[-n’n++fl+T-l’fl’T 1]+,+,

(3.7) =3F2[-n, n+++y-l, 1]+,+
().(v).

( +).( + v).
Case III. a, , y > 0, E, 6 such that E/6 const. There is obviously no

loss of generality in assuming that this constant ratio is equal to 1. In this case,

(-z)- r(v+8)(-z)- (+) (-z/)-(v, 8)(- u)"+-I r()r()(- u)"+-’ r() F() (- u/8)

As 6 , this approaches the limit e-Z+"/F(y).
Therefore
K(u, v; a, , y, )= lim K,(u, v; , , y, 6)

/

(3.8) [B (c, /3 )B (/3, 3,)r(3,)]-’e"u -’-z+

min(u,v)

dt t"-(u t)-(v t)t3-1

dz
e (z /,/)T-I(z V) T-1

ax(u,v) (Z /)
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The eigenfunctions of this kernel are

lim 2F(-n, n+a+ +7+6- 1; a +/3; u/6)=,F,(-n; a +/3; u)

(3.9)
L’+t-l)(u),

where L,+-l)(u) is the associated Laguerre polynomial (see, for example,
Bateman [7] and [8]). The eigenvalue corresponding to a given integer n is

A, lim 4F[-n’ a +/3 +7+6- 1’/3’ 3"
-,oo a +/3,/3 +y, y+6

(3.10)

--3Fz[ -n,/3,, 1].
The sF[1] in (3.10) is neither Saalschutzian nor well-poised (Slater [32]). It
therefore does not seem possible to express it in finite terms as in (3.5) or (3.7).

Case IV. a--> 0+, E-6 oo,/3, Y > 0. Combining Cases and III, we now
obtain

dz
e-Z(z-u)-’(z-v)-

The eigenfunctions are simply (n !/(),(L-’(u), while the eigenvalues take
a simpler form,

(3.12)

[ -n,
lim 3F2
-,,+ [ a +/3,

2F,(-n, T;/3 + y;’l)

(/3).
(/3

Case V. 6 --> 0+, 3’ E ---> oo, a,/3 > 0. Setting 3" E in (3.6) and passing to the
limit 3’-> oo, we obtain, in a manner similar to Case III, the kernel

(3.13)

[B(a,/3)F(/3)]-’
e-v min(u,v)

+_, ! dt e’t-(u t)-’(v t)--.
ao
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The eigenfunctions are the same as in (3.9), but the eigenvalues reduce to

,. lim

(3.14)

( +),"

Case VI. 0+, a 0+, , T > 0. Finally, combining Cases I and II, we obtain
the degenerate kernel

K(u, v;0,
aO

(3.15)

(,

There is only one eigenvalue and one eigenfunction, and both are equal to 1.

4. Poerfies o[ le kernel (x, y; % ). In this section, we shall first
list a number of interesting properties of the kernel K(x, y; , , T, a) which are,
more or less, evident from the manner in which the kernel has been constructed.

Property 1. For 0 N x N 1, 0 N y N 1, , , T, # > 0,

(4.1) K(x, y; , #, T, a)0.

This is obvious from (2.7).
Property 2. For n 0, J( + f + T + 8 1, +; z) 1 Ao. Hence

(4.

Property 3. We shall prove in Theorem 1 that K(x, y; , , , ) is continuous
and therefore bounded on the unit square in the parameter-range , >0,, 1.

Property 4. The kernel has the detailed-balance" property

(4.3) w(x)K(x, y; , , % )= w(y)K(y, x; , , % ).

Property 5. The symmetric kernel G(x, y; , , , ) is square-integrable for
all , > 0, , > . This is proved in Theorem 1 below. However, if we make use
of the property that the set of functions {(x)}Lo (see (2.20)) constitutes a
complete orthonormal basis for L(0, 1), then the square-integrability of the
kernel G also follows from the fact thato I <, which we have proved in the
Appendix, and the known relation (Tricomi [33])

(4.4) dx dy G(x, y;
n=0

Property 6. The kernel G(x, y; , , , ) is positive definite over L(0, 1).
This follows from the fact that the eigenvalues of G are all positive, which has
been shown in the Appendix.

Property 7. Properties 1-4 enable us to interpret K(x, y; , , , ) as a
stochastic kernel. For , >0, , 1, it can be regarded as the transition
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probability for a Markovian stochastic process [12]. Now we shall prove the
statements of Properties 3 and 5 in the following theorem.
THEOREM

Part A. Let a, fl, y, 6 be four real parameters such that

(4.5) a>0, 6>0, /3>1/2, T>.
Then the kernel

G(x, y; a,/3, % 6)= [B(a,/3)B(/3, T)B(% 6)]-(xy)-(+-’/2[(1 -x)

(1 y)]-(+-’)/z
min(x,y)

(4.6) dt t-l(x t)-’(y t)-’
a0

(-zl"-’(z-xl’-’(z-Y)’-
dz

t)+_ax(x,y) (,

has singularities on the line y

(i) </3<-7<1 or (ii) <7<fl<y+
(4.7) or (iii) 1/2</3<1, 3’=>1 or (iv) 1=</3=3,.

Part B. ff a, 6 > 0 and 1 <= < % then G(x, y; a,/3, 3’, 6) is continuous and
bounded in the closed square 0 <= x <= 1, 0 <= y <= 1.

Proof of Part A. To fix ideas, let us suppose that 0 =< x =< y -< 1. By obvious
transformations, the kernel G can be expressed as

G(x, y; a,

(4.8)
i-x/ R(x, y; a,/3, y, 6),

where

o
R(x, y; a,/3, y, 6) dtt-’(1-t)-’(y-xt)-1

(4.9) I,’ T--1

dz
z (1-z)-’[Y -x+(1-y)z]-’
[y-x +(1- t)x +(1-y)z]+-’

It is clear that with the parameters a,, , restricted by (4.5),
R (x, y; a, , , ) is well-behaved in the open region

0<x<y<l.

Hence, for the purpose of square-integrability of G, it is sufficient to investigate
the behavior of R as x 0, y 1 and y-x 0. First of all,

R(O y; ,, % ) =y- dtt-(1-t)- dz
z’-(1-z)-

o(4.10)
=B(a,)B(T, 6)y-zF,(,6; y+6; l-y).
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Then

(4.11) R(x, 1;a,,%a)=B(a,)B(%a)(1-x)-2F(%a;a+;x).
As long as y 0 and x 1, both R (0, y) and R (x, 1) are bounded and, indeed,

(4.12) R(0, 1; c,/3, % a)= B(a, )B(y, 6).

However, if y >/3, then

and

R(0, y)- y-(’-’) as y -0,

R(x, 1)---(1-x)-(’-) as x-> 1.

In deriving these order relations, we have used the following well-known proper-
ties of the hypergeometric function"

2F,(a, b; c; z)=(1 --Z)-’-b2fl(c--a, c-b; c; z),
(4.13) F(c)F(c-a-b)

2F(a, b; c;1)= Re(c-a-b)>0, Rec>0.
F(c-a)F(c-b)’

(See, for example, [7]).
On the other hand, if/3 > % then

R (0, y) y-(-) as y --> 0,

and

R(x, 1)’--(1-x)-(’-’) as x-+ 1.

However, if </3 < 1 and < 3/< 1,/3 y, there exist singularities at the endpoints
(0, 0) and (1, 1), but R(x, y), and therefore G(x, y), remain square-integrable
over (0, 1). If </3 , < 1, then there is an additional logarithmic singularity at
both ends, but this also does not affect the square-integrability of G(x, y).

To investigate the behavior of R (x, y) at other points of the diagonal, we note
that in the region of integration and for/3 >, y >,

Hence

[y-x + (1- t)x + (1 y)z]-(e+’-’-< [y x + (1 y)z]-(+’-’.

o
R(x, y; c, [3, y, 6)<= dtt-(1-t)t-I

(4.14) dz z-’(1-z)-’[y-x (1- y)z]-
B(c, )B(% 6)R’(x, y),

where

(4.15) R’(x,y)=y’-(1-x)-’2F,(1-,oz;oz+;x/y)2F fl, 8;y+8; i-



CONSTRUCTION OF A FAMILY OF POSITIVE KERNELS 105

If x 0, 1, y 0, 1 and 3’ >/3 >, then R’(x, y) has no singularity on the diagonal
or anywhere else. However, if 3’ </3, then we can write, by using the first of the
relations (4.13),

R’(x, y)= y-(1-x)-’(y-x)’-t2F(1-, a; a +; x/y)

There appear singularities all along the line y x, but R’(x, y) and hence G(x, y),
nevertheless, remains L2(0, 1) if

2(/-y) < 1, i.e.,

In the event /3 =y, the singularity on the diagonal is logarithmic and hence
square-integrable on (0, 1).

> 1 thenNow, if</3<l y=

and

R (0, y) y-(l-) as y --> 0,

R(x, 1)---(1-x)-’-" as x-> 1,

but there are no singularities elsewhere.
Finally, if 1 _-</3 % there is a singularity of the type log (y x). However, if

a, 6 _-> 1 and 1 -</3 y, then this logarithmic singularity remains only at the corners
(0, 0) and (1, 1). For, in this case,

(4.16)

i1 Io dz
R (x, y a, , 3’, 8) <- dt (y xt)

[y-xt+(1-y)z]

x(1-y-------- [(y-x log (y-x)- y log y

-(l-x) log (l-x)] if/3 1,

x -(l-y) (/3 y
y-x)/(-x (-2 u)2

du 1)x 1 )}

if/3> 1.

Use of L’H6pital’s rule will confirm the above statement.

ProofofPart B. When 1 ->_ 1 and 3/>= 1, equations (4.10) and (4.11) show that
there are no singularities at (0, 0) and (1, 1). Further, if 3’ >/3, equation (4.15)
shows that there are no singularities anywhere else. Hence G(x, y; a,/, y,.8) is
continuous on the closed unit square.

It may be remarked that K(x,y;a, Ct, y, 8) is bounded whenever
G(x, y; a,/3, 7, 8) is. Even when G has logarithmic singularities at the points (0, 0)
and (1, 1), K(x, y; a,/3, 7,8) is bounded provided a+/3> 1 and 7+8> 1 for

(4.17) K(x, x; a,/3, y, 6)= x(+-/2(1-x)(’+-’/2G(x, x; , [3, y, 8).
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5. Properties of the limiting kernels. The limiting kernels that we derived in
3 all share Properties 1, 2, 3 and 4, and the positive definiteness of the general

kernel K(x, y; a,/, 7, 8).
According to Theorem 1, the square-integrability and boundedness of the

symmetric kernel G(x, y; a,/, 7, 8) depend mostly on the relative values of/ and
7. Since the limiting kernels are obtained by taking different limiting values of a
and 8, it is expected that the conclusions of Theorem 1 will apply, roughly
speaking, also to the limiting kernels. However, it is possible to find better bounds
for the limiting kernels, being simpler in form. Besides, in the limit E 8 - or
7 E- oo, we are no longer in the L2(0, 1) space, rather in L2(0, oo). For these
reasons we wish to take up each of the limiting kernels and briefly discuss their
special properties in various parameter-ranges.

Kernel K(x, y; O, , % 6). By setting E 1 in (3.3) and multiplying by an
obvious symmetrizing factor, we obtain the limiting (a 0+) symmetric kernel

G(x, y; 0,/3, % 6) [B(/3, 3’)B(3’, 6)]-’

dz
ax(x,y)

(xy)("-’)/2
[(1 -x)(1 y)](+-,/2

(1 z)-’(z x)-’(z y)-’
Z

For 0 =< x _<- y _-< 1, we get

G(x, y" 0 /3, % 6)= [B(/3, 3’)B(% 6)J-l(xy)(t-’/2{
1-/ y)(V+-l)/2

(5.2)
dz

[y+(l_y)z]t+v_
z’-’(1-z)-’[y-x + (1- y)z]’-’

(5.3)

On the diagonal y x,

G(x, x; 0,/3, % 6) [B(/3, 3’)B(3’, 6)J-’x-’(1-x)"-

Io dz z-l(l-z)2"-’[l-(1-x)z]-(t+,-’)

[B(/3, 3’)B(3’, 6)]-1B(6, 2T- 1)x"-l(1

2F1(t+3"--1,6;23"+6--1; l--x).

For 6 >0 and < 1 < 3’ < 1, this is continuous except at (0, 0) and (1, 1),
where the singularities are of the type x-(1- and (1-x)-(-’ respectively, and
hence G(x, y; 0,/3, % 6) is L2(0, 1). If/3 % there appears, in addition, a logarith-
mic singularity at (0, 0). If 1/2</3 < 1 and 3’ => 1, the only singularity is at (0, 0)
and is of type x -(1-o. On the other hand, if 1/2< 3’ < 1, then singularities of type
x -(’-’ and (l-x)-(1-’ occur at both (0, 0) and (1, 1). Finally, if t -> 1, 3’_-> 1, the
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only possible singularity is at (0, O) which is (i) logarithmic if/3 3’; (ii) nonexistent
iffl#y.

Hence we conclude that G(x, y;0, % 6) is
(i) L2(0, 1) if 3>0 and/3,
(ii) continuous in 0 =< x _-< 1, 0_-< y _-< if
Kernel K(x, y; c,/3, y, 0). The properties of the symmetrized kernel

G(x, y; c,/3, % 0) are, indeed, identical to those of G(x, y; 0,/3, y, 3) with the
interchange of/3 and y and the condition 6 > 0 replaced by a > 0.

Kernel Ko(x, y; a,/3, y, oo). The symmetrized kernel in this case reduces, for
O<-_x <- y < oo, to

G(x, y; c, fi, 7, oo)= [B(a, fl)B(fi, 7)F(7)]-’ e’X-Y’/2()(+-’/2
O(x, y; c,/, v, c),

where

Q(x, y; a, fl, y, c) I
Note that

O(x, x; a, fl, % oo)= x-1 I1,
(5.6)

where

dt t-(1 t)-(y-xt)-
dze-z’-(y-x+z)-(y xt + z)+’-

dt t-l(1 t)+-2 dz
Z27-’2
(1 + z)

IF(2y- 1)x’-’ dtt-l(1-t)+’-2

U(2y 1, y -/3 + 1; x(1 t)),

_,ta_ t)b_a_e (1+ Re a>0,(5.7) U(a, b; z)
I’(a)

is a confluent hypergeometric function having a singularity at the origin (see, for
example, 1]).

If there are any singularities of G(x, y; a,/3, % oo), one should be able to spot
them in Q(x, x; a,/3, % oo) alone. Since for large y, Q(x, y; a, fl, % oo) decreases at
least like 1/y, the behavior of G at oo is controlled by the exponential term e -y/2.

Now the necessary conditions for the convergence of the integral in
Q(x, x a, fl, y, oo) are

(5.8) a>0, fl+y>l, y>.

When these inequalities are satisfied, the only possible singularity remains at
x 0. For small x and 0 < < 1,
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U(2"y-1, y-fl + 1; x(1-t))

(5.9)

F(27- 1)

[x(1-t)]-+O([x(1-t)]--), -> 1,

[x(1 t)]-v + O(log x(1 t)), y -/3 1,

[x(1- t)]- + O(1), 0< ,-/ < 1,

log x(1 t) + O([x(1 t) log x(1 t)], 3’ =/3,
r(2y- 1)
F( + O([x(1 t)]-’), 0 </3 y < 1,

F(fl +- 1)

1
+O([x(1-t) log x (1L t)], /3 -3/=1,r(27)

F(/ -/) + O([x(1 t)), /3 -, > 1.
F( +/- )

(See [1, p. 508].)
Hence O(x, x; , , 7, ) has a singularity at x 0 of the type x-(-) or x -(-) if
</3 # 7- 1 and a logarithmic singularity at x 0 if/3 7 whether or not they
are less than, equal to or greater than 1. The singularity at the origin disappears if

fl # y and >- l, y>= l.
Therefore ttie kernel G(x, y; a,/3, y, ) is bounded in any closed interval

Ox<=,, O<= y<=, ,<oo if fl >=l, y>- I and fl # y.
Kernel Ko(x, y; 0,/3, y, oo). For this case we have

G(x, y; 0,/3, % oo)= [B(/3, y)F(y)]-1 e(’+Y)/2(xy)(t-’/2
(5.0)

fm dze-(z-x)-l(z-Y)-
ax(x,y) Z fl+3’-l

For O_-<x -< y _-<o,

(5.11) G(x, y; 0,/3, y, oo)= [B(/3, y)F(y)]-’ e (x-’’/2 O(x, y; 0,/3, y, oo),

where

(5.12) Q(x, y; O,/3, y, )= dz z-’ e-(y-x + yz)’-’(1 + z)-(+-’).

In particular,

(5.13) Q(x,x;O,, y,o)=F(2y-1)x-’(2y-l, 7-+l;x).

For large x, Q x-, and for small x, it is O(x-) if _-> fl + 1 or 0 < ), </3 + 1;
of the order O(x-) if/3 _->_ 7+ 1 or 0</3 =<+ 1, and O(log x) if fl . Hence our
conclusions remain the same as in the previous case.
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Kernel K(x, y; a,/3, , 0). Here we have

G(x, y ;a,/3, , 0)

(5.14)
[B(a,/3)F(B)]-’ e-(X+"/2(xy)-(’+-1’/2 min(x.y)

and for 0 <_-x -< y < oo,

G(x, y; a,/3, o, 0)
(.)

dt e’t--(x t)--(y t)-l

dt eX’t-l( 1 t)-l(y -xt)-’.[B(a,/3)F(/3)]- e_(X+/2,)-(+--/2
It can be easily seen, by arguments similar to the previous cases, that

G(x, y; a,/3, co, 0) is square-integrable in L(0, oo) if a > 0,/3 > , and is bounded
everywhere except x 0 if/3 < 1. For a > 0, /3 _-> 1, G is in L2(0, co) as well as
bounded everywhere.

6. Bilinear formulas. Now that we have completed the discussion of the
square-integrability and continuity of the symmetric kernel G(x, y; a,/3, y, 8) and
its various limiting forms, we may write down a number of bilinear formulas
involving the Jacobi and Laguerre polynomials.

Formula I.

[B(,, t3)B(/3, ,)B(,, ,)]-(xy)--(+-’/[( -x)(
min(x,y)

dt t-l(x t)-l(y t)--’o

(1-z)-’(z-x)-’(z-Y)-
(6.1) dz

t)+_ax(x,y) (Z

=0

where A, is given by (2.13) and (2.16) and f,(x) is defined by (2.20) and (2.21).
Since the kernel on the left-hand side is continuous on the closed square

0 _-< x _-< 1, 0 _-< y -< 1 for a, 8 > 0, _-</3 < 7, by Theorem 1, the infinite series on the
right is uniformly and absolutely convergent for all x, y in this parameter-domain,
according to Mercer’s theorem (Tricomi [33]). For other parameter-values for
which the kernel is square-integrable, the convergence of (6.1) has to be under-
stood as convergence in the mean.

However, even if the kernel is continuous in a restricted region e_<-x
-< 1- el, el > 0 and e_-< y _-< 1- e, e >0 (see Theorem 1), and has a piecewise
continuous derivative in each variable, expansion formula (6.1) remains valid in
this restricted region, following a result of Rau [31]. It can be shown that in the

>1 or 1 <casesa, 6>0,</3<y<l or</3<l y= =/3 y, conditions of Rau’s
theorem are satisfied.
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Formula II.

[B(/3, y)B(% )]-’[(1- x)(1- y)]-’/-’

(1-z)-’(z-x)’-’(z-Y)"-’
(6.2) dz

ax(x,y) Z
]3 +’/--

(), (3), (2n++T+6-1)F(n+)F(n++T+6-1)

2F,(-n,n++T+6-1;;x)Fl(-n,n++T+6-1;; y).

If > 0, # T and , T l, this formula is valid for all x, y in [0, 1]. If T
or , T> but one of them is less than l, then by Rau’s theorem, (6.2) applies in
the restricted region 0 < x < 1 and 0 < y < 1.

Formula III.

[B(a, )B(, T)F(y)]-’ e+’(xy)-(+-’’

min(x,y)

0

dz
e (z -x)’-l(z

ax(x,y) (z-t)+’-’

-n, ,
1

n
=,, a +, + y F(a + + n)

If a > O, 1, y 1 and B # % then (6.3) is valid for every x, y such that
0 x , 0 y , <. If B Y and/or < , y < 1, then the convergence is in
the mean, but if we exclude the point x O, then the infinite series can be shown to
be uniformly and absolutely convergent in any region ex <, e2 y <,

(6.4)

Formula IV.

IF(’)/)]-2 e *+’ dz
ax(x,y)

_oo
__, F(/3 +,/+ n)

e-Z(z-x),-"(z-y)-’

L-(x)L-t(y).

The regions of validity of this formula are the same as for Formula III.
When/3 1, y 1, this formula reduces to Koschmeider’s formula [28], [34].
Formula V.

min(x,y)

[F(fl)]-2 dt e’t"-(x t)-(y t)t-

(6.5) v n!F(a+n)
(xy),+t-I L (ff+t- )(x L(2+t-l )( y ).=0 F2(a + + n)

For a > 0,/3 > , this formula is valid for all x, y such that
e , e2 > 0. For a > 0 and/3 ->_ 1, this is valid even at the origin (0, 0). This formula is

essentially the same as obtained by Erd61yi [13].
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7. Note on previous work. As was indicated in the Introduction, the kernel
(2.7), and some of the limiting kernels, have been known for some years in the
theory of certain processes in statistical mechanics. In this context, they arise
naturally from a class of "urn-models" for model stochastic processes, whose
transition probabilities depend on particularly simple combinations of random
variables. In most cases, their eigenvalue problems have been solved, and the
consequent bilinear formulas are thus known as spectral resolutions of the
appropriate transition kernels. Specifically, the kernel K(x, y; 0,/3, % c) was
derived from statistical considerations by Hoare 18], who solved the eigenvalue
problem for K(x, y; 0, 1, 1, ). Later Hoare and Thiele [19] derived the kernel
K(u, v; 0, 1, 1, 8) and showed its eigenfunctions to be Jacobi polynomials. Still
later Hoare and Cooper [11], [12] solved the eigenvalue problem for
K(x, y; 0,/3, % ), obtaining the bilinear formula (6.4), and have since extended
their results to the kernel K(x, y; 0,/3, % 6), obtaining the eigenfunctions (2.1)
and the spectral resolution (6.2) [12]. These authors have derived the full kernel
K(u, v; a, , 3’, 8) and obtained its eigenvalues but, at the time of writing, do not
appear to have obtained the eigenfunctions (2.1) [20]. In all this work, the
parameters a,/3, % 6 arise as positive integers representing stochastic "degrees of
freedom", and the starting point has invariably been the integral operator and its
eigenvalue problem, rather than the reverse construction considered in this paper.
For a full account of the probabilistic implications of this class of kernels, see [21 ].

Appendix A.
THEOREM A. 1. For a positive integer n and an integer p such that 0 <= p <= n,

4F[-n +p, n+ +CI +Y+6+P- I, + k, Y
++p,+y+p, y++k

is independent of p and is equal to

A.=S(n;O)=4F3[-n’n+a++3’+6-1’’ Y

Proof. The theorem is proved very easily if we make use of the following two
known results for Saalschutzian series:

(A.1) 3F2[ a,b,-m
c,l+a+b-c-m

where m is a positive integer, and

(A.2)

(c a).,(c b).,
1 --()m(C-a-b)m’

U, V, W (O)p(W)p 1-v+z-p, 1-w+z-p, u
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where p is, again, a positive integer and

(A.3) u+v+w =x+y+z-p+l

(see Bailey [6]).
By using the identity

(A.4) (a)N-, (-1)"(a)N/(1- a- N),,

where N-> n and both are positive integers, we may write S(n;p) in the form

"-p (-n +p)(n + a + + y+ 6 +p- 1)(/3)(y)
Ap.,(A.5) S(n p) Y,

(a + + p),( + + P),(7 + ,3),1!

with

0

(a). (y). (-p)(1-a--p)(+l),(3)ap,
(a+)p(+y)p )(1-

(A.6) (a)p(y)p 4F3[ 1-a--p, 6,+l,-p 1].(a +)( +y) /+y+6,1-a-p, 1-y-p

Note that the parameters of this 4F3 satisfy the Saalschutzian condition (A.3).
By (A.2), we have the transformation

(a)(m), (1 -p t).(1 y-p l)pmp,
( + fi).(fi + v),(1 p),(1 v- p),

(A.7) .4F3[P+l+c+/3+,/+a-l,’v+l, 13+l,-p 1]a++l.+7+l.y+8+l

(a + + l)p( + y + l)P4F3 [. + t3 t3 + / 1
p+l+a++y+6-1,+l, y+l,-p

a++l,+y+l, y+6+l

In deriving the last expression for Ap,, we have also made use of (A.4).
Now

(a +/3 + I) (a +/3)v+, 1

(, + 13),( + [3)p+, ( + 13),’
etc.

Hence

S(n;p)

(- n + p).(n + a + + y + 6 + p 1).().(y),(l + p + ce + + y
+ t$- 1) (/3 + l)(y + l)(-p)

i=0 k=O

(A.8)

n--p p

(a + fl),(fl + 1),(7 + 6),(a + fl + 1)(fl + y + I)(7 + 6 + l)l!k

(- n + p),(n + a + + y + 6 + p 1),(--p)k()k+,(y)k+(p + a +
+y+6--1)k+

,--,, =o (p+a+13+7+6-1),(a+)+,(13+V)k+,(V+6)+d!k!
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Let us make the transformation

(A.9) k+l=m, l=m-k.

Then m runs from 0 to n, while k goes from 0 to m.
Hence

(A.IO)

where

(A.11)

S(n;p)=
(p+a+/+y+6-1),,,(/).,(’,/)..

,.--o (, + t)m (t + V),-(V + 6),-

B..,.= (--n+p),.-k(n+a++y+a+p--1).,_k(--p)k
k=o (p+a+Cl+y+6-1),._(m-k)!k!

(n+a+/+y+6+p- 1).(-n+p).
(p+a +/3+y+6- 1),.m!

(-m)(-p)k(2-p-a--y-6-m)
?o(1 +n-p-m)(2-n-a-Cl-3,-6-p-m)k!
(-n +p).,(n +a++T+6+p- 1),.

(p+a+ +3,+3- 1).,m

-p, 2-p-a--y--6-m,-m
3F2

l+n-p-m, 2-n-a--T-6-p-m

(A.12)

The 3F2 series in (A.11) is of the form (A.1) and, therefore, we obtain

(-n +p).,(n +a + +3/+ 6 +p- 1)m
(p+a+ +3,+ 6- 1).,m

(l+n-m).,(n+a++/+6-1).,
(l+n-p-m).,(n+a+ +y+6+p--1)m

(-n),.(n+a++y+6-1)m
(p+a +1 +./+ 3-1).,m

Finally, then,

S(n;p)=
(-n)m(n+a++7+6-1),.().,(7).,

..=o (, + g)..(t + ,/)..(V + ,)..m

=4F[-n,n+a++T+6-1,1,

THEOREM A.2. ff a,/3, % 6 > 0, then

(A.13) O<h,=<l.

If, in addition, > ., 3’ > , then

(A.14)
0



114 M. RAHMAN

Proof. From Theorem A. 1 it follows that

A,,=4F3[-n’n+++y+rS-l’’ y 1]a +/3,/3 +% v+,
()._()()._()

(+). =o

For , , y, 3 > 0, all the terms in the finite sum are positive, and hence , > 0.
Also,

1, 1, Okn.
( +).- (v+)

Hence

n

--(/3 + T). =o (-)!k!- (/3 + T). =o (1-T-n)k!

To prove (A. 14), let us consider the sum Y,o c,x", 0 <= x < 1, where

(A. 16) c, :o (a f3i,---itk) "(7+6) k,.

From the convolution nature of this sum it is obvious that

0 0 0

(A. 17)
2F,(a, y; a +/3; x)2G(/3, 6; y+ 6; x),

whenever the infinite sums converge. For 0_<-x < 1, the infinite sum on the left
obviously does converge, but we are here interested in the limit x --> 1-.

Suppose y >/3 > 0. Then

c(, + )c(,-)
lim 2F (/3, 6; 3/+ 6; x)
-,- F(7)F(7 + 6-/3)"

But 2G(a, 3’; a + fl x) diverges like

,,=o n

Hence for large n we can say

Therefore
c.

n!
;t.=o

(, + 3)o (,-/3)O]n! O[n-]"

We conclude, then, .__,, A. < if/3 > . Similarly, if/3 > % .=o A. < c if T > .
Finally, let/3 3’. Then both the hypergeometric functions diverge as x - -, but
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they diverge like log (1- x). Since

[log (1 x)]
=, _,k(n-k)

it follows that

Hence

1 2 1 2 log n

k=, :tn-:) n k n

.=o( ). n n"J"
For /3 >, .=o A, is again convergent. It follows trivially that .=,, A<oo for
p > 1, hence the theorem.
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MODULI OF MONOTONICITY WITH APPLICATIONS TO
MONOTONE POLYNOMIAL APPROXIMATION*

VASANT A. UBHAYA]

Abstract. This article introduces new concepts called the moduli of monotonicity of a real function
defined on an interval. They are a one-sided analogue of the well-known modulus of continuity, and are
a measure of the extent by which a given function fails to be monotone. It is shown that they naturally
arise in the process of approximating a real function by nondecreasing polynomials. Upper and lower
bounds on the "degree of approximation" by monotone polynomials are derived in terms of these
moduli.

1. Introduction. The main purpose of this article is to introduce certain new
concepts called the moduli of monotonicity of a function and indicate their
applications to approximation theory. Roughly speaking, the decreasing and
increasing moduli of monotonicity are a one-sided analogue of the well-known
modulus of continuity and are a measure of the extent by which a given real
function defined on an interval fails to be monotone. It is shown that they arise
naturally in the process of approximating a continuous function by monotone
polynomials on an interval. Bounds on the "degree of approximation" by mono-
tone polynomials are derived by making use of the Friedrichs mollifier functions
(Morrey [9]) and the moduli mentioned above. It is a well-known fact (Lorentz
Meinardus [8]) that the modulus of continuity plays an important role in the
theory of approximation of a continuous function by polynomials (not necessarily
monotone); however, it will be seen from the results of this article that moduli of
monotonicity, and not the modulus of continuity, appear predominantly in the
analysis of the problem of approximation by monotone polynomials.

To introduce the relevant concepts, let B denote the set of all bounded real-
valued functions on a closed real interval I [a, b] of length b a. For anyf
in B, define
(1.1) e)(6) co(f, 6) sup If(y) f(x)[, 6 [0, 13.

x,yel, Ix yl <=
The nonnegative bounded function (f,. ), defined on 0,/], for f fixed, is known
as the modulus of continuity off Analogously, for any fin B, we define on 0,
two nonnegative bounded functions _(f, .) and #(f, .) by

(1.2) #_(6) #_(j; 6) sup (f(y) f(x)), 6 [0, 1],
x,yel, 0 <- y- <_&

(1.3) fi(gi) fi(f gi) sup (f(x) f(y)), 6 6 [0, 1].
x,yI, 0 <= y- <=

The functions _(j;.) and fi(f,.) are called the moduli of monotonicity, decreasing
and increasing respectively, of the function f. As was observed before, it is easily

Received by the editors May 28, 1974, and in revised form February 20, 1975.

" Department of Operations Research, Case Western Reserve University, Cleveland, Ohio 44106.
This research was supported in part by the National Science Foundation under Grant GK-32712.

117



118 VASANT A. UBHAYA

seen that E(f, c5) (/(f, 6)) is a measure of the extent by which the function f in B
fails to be nonincreasing (nondecreasing) on an interval of length c5. It is also
obvious that co max (_,/). Thus

_
and / give a decomposition of co in this

sense.
Let P, denote the class of all nondecreasing polynomials on I of degree at

most n. Given a continuous functionfdefined on I, not necessarily nondecreasing,
the problem of monotone polynomial approximation is to find a q,, in P, such
that IIf- q, minimizes [If- p,[[ for all p, in P,, where I1" is the uniform or
supremum norm. The number E,(f) defined by

(1.4) E,,(f) f- q, min f--
pnPn

is known as the "degree of approximation" off by the polynomials of the class P.
The existence of such a minimizing q can be easily demonstrated by using standard
compactness arguments applied to finite-dimensional spaces.

In 2, we examine briefly the properties of_ and which are similar to those
of co. In 3, we investigate the existence of a continuous function f defined on I
such that its moduli of monotonicity (f, .), #(f, .)equal respectively two given
functions on I0, l] having properties of a modulus of continuity. This investigation
parallels a similar well-known question concerning the existence of a continuous
function f on I, whose modulus of continuity co(f .)equals a given modulus of
continuity z defined on I0, l]. The existence of such a function f is trivially estab-
lished by setting f(x) z.(x a) for all x I, however, the issues raised in 3 are
more difficult to answer. The applications part, 4, is devoted to the analysis
necessary to establish upper and lower bounds on E,,(f), the degree of approxima-
tion by monotone polynomials. It will be shown that the moduli of monotonicity
play a prime role in these bounds. This situation again corresponds to the one en-
countered in determining bounds on the degree of approximation by polynomials,
not necessarily nondecreasing, wherein the modulus of continuity plays an
important part. (See Jackson [3], Lorentz [5], Meinardus [8].) Lorentz and Zeller
[7] have obtained bounds on E(f) when f itself is continuous and nondecreasing.
Shisha 11 and Roulier 10] consider the problem of approximating a continuous
function by polynomials p of degree at most n satisfying pk(X) 0 for all x I,
for a fixed k l, and obtain bounds on the degree of approximation from this
class of polynomials under various differentiability and other conditions on f.
We examine the case whenfis continuous but not nondecreasing, and obtain both
upper and lower bounds on E(f), without imposing any additional restrictions

onf. Thus our results complement those of Lorentz and Zeller. Roughly speaking,
we show that for a fixed continuousf which is not nondecreasing and any fixed
k __> 1, E,,(f), which is bounded below by (1/2)/(f, l), converges to (1/2)fi(f, l) as
n oo at least as fast as

k-1 -1

(1.5) 1-[ (n + -j) min {cl(n + k) -1, C2(L l(n 4- k)-)},
j=l

where C and c2 are independent of n. Here the empty product means unity. The
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values of the constants c and c2 are given in Theorems 2 and 3 of 4. There we
compare several known bounds with (1.5).

2. Properties of the moduli of monotonicity. The properties of

_
and/3 are

similar to those of 09. They are stated in this section with brief proofs. Some of
these proofs are similar to those used to establish the properties of o9. See, e.g.,
Lorentz [5].

PROPOSITION 1. Letf,f ,f2 B and denote p_ or ft.
(i) p is nonnegative, bounded and (0) O.

(ii) # is nondecreasing.
(iii) It is subadditive, that is, if 0 <__ 61, b2 <= 61 + 62 - 1, then #(61 + (2)

<__ (6) + (6).
(iv) g_(f, =- 0 *,f is nonincreasing on [a, hi.

fi(f 0 ,f is nondecreasing on [a, hi.
(v) og(f, 6) max {_(f, 6), #(f, 6)}.
(vi) _(f, 6) #(f, 6) if >= O.

#(of, 6) -aft(f, 6) if <= O.
(vii) #(f + f2,3) =< p(f, 6) + P(f2,6).
Proof We establish (iii). Others follow directly from the definitions of p_ or/7.

To prove (iii), suppose It =/7. If 0 <_ y x _< 61 + 62, then there exists z [a, b]
such that 0 =< z x =< 61 and 0 __< y z =< 62. Since

f(y) f(x) f(y) f(z) + f(z) f(x) <_ fi(f, 62) + #(f ( 1),

the result follows for/. The proof for p_ is similar.
PROPOSITION 2. Let p denote p_ or ft.

(i) Iff is continuous on [a, b], then

(2.1) lim #(6) 0.
60

(ii) Properties (ii) and (iii) of Proposition and (2.1) imply that It is continuous
on [0, l].

(iii) f is continuous on a, b] , both p_ and t are continuous on [0, 1].
(iv) Properties (ii) and (iii) ofProposition if > O, then #(6) <__ (() + 1)#(6),

where () is the largest integer less than
(v) Letf B and 0 < 61 < 62 <= I. Then #(61) > 0 e, #(62) >- 0.

Proof. (i) This follows at once from the continuity of f.
(ii) Let 0 < 61 <- 6 < 61 + 6 =< I. Using (ii) and (iii) of Proposition 1, we

may easily show that Ip(6 + 61) #(6)1 _-< #(61). The continuity of g follows now
from (2.1).

(iii) If both/2_ and / are continuous, then from (v) of Proposition 1, co is
continuous, and it follows that f is continuous. The converse follows from (i)
and (ii).

(iv) Let n be a nonnegative integer such that n < e __< n + 1. Then by (ii) of
Proposition 1, we have #(z6) __< #((n + 1)6). Again, by a successive application
of (iii)of Proposition l, we have g((n + 1)6) =< (n + 1)(6).

(v) Let e 2/61 > 0. Then using (iv), we have 0 < #(62) -< ((z) + 1)#(61),
which gives the required result.
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3. The t-function. It was shown in 2 that the moduli of monotonicity of
continuous functions had, among others, the properties (i), (ii), (iii) of Proposition
and (2.1). A function having these properties is called a/t-function. Thus a/-

function is a real function/t defined on [0, l] which is nonnegative, nondecreasing,
subadditive and satisfies lima+ o/t(6) --/t(0) 0. Note that a/t-fllnction is continu-
ous by Proposition 2 (ii). The modulus of continuity 09 of a continuous function
is also a/t-function.

Given a /t-function, it is easy to determine continuous functions fl,f2,J
defined on [a, b] such that o(j],. (j),. )= fi(.J,. )=/t(. ). One simply lets
f(x) f2(x)=/t(x- a) and f3(x)= -/t(x- a) for all x [a,b]. In this case,
/(f2,’) (f3,’) =- 0. Now one may ask the following question" Given two
/t-functions/t! and/t2, does there exist a continuous functionfon l-a, b] such that
/(f.) =/t (. and _/3(f ") =/t2(" hold simultaneously? In this section we seek an
answer to this question.

Let /t be a /t-function, and let

sup (/t) sup
o_<a</

Also let

a*() inf {a’o < a __< t, (a)= sup

Since/t is continuous, we have sup (/t)=/t(6*(/t)). We now state and prove the
following.

THEOREM 1. Given two and z, in order that there exist a con-

tinuous.function f on [a, b] such that/(f, .) =/t 1(" ), _(f’) --/t2(" ), it is necessary
that at least one ofthefollowing conditions (a), (b), (c) is satisfied"

(a) 5"(/tl + 6*(/t2 1,
(b) 5"(/tl < 6"(/t2 and sup (/tl) < sup (/t2),
(c) 6"(/t2) < 6"(/tl) and sup (/t2) < sup(/tl).

Further, condition (a) is sufficient for such anf to exist.

Proof Necessity. Suppose that f is continuous, /3_(f,’)= /t2(’) and
fi(f ") 11(" ). Assume first that both 6"(/tl) and 6"(/t2) > 0. Then clearly both
sup (/t 1) and sup (/tz) > 0. Let

X, {(x,y)’a =< x < y _< b,y x 6*(/ti)}, i= 1,2,

where (x,y) denotes an ordered pair. Obviously, Xi are not empty. Suppose
(x,, y,) e X1, (x,., y) e X, with f(x)-f(y) sup(/) and f(y,)-f(x)

sup (/t2). Then a =< xl < y _-< b and a =< x2 < Y2 b. Several cases arise.
These are listed below"

(i) a =< X X2 < Y2 =< Y b,
(i’) a _<_ X 2 X < Yl Y2 b,
(ii) a =< x < Yl x2 < Y2 =< b,
(ii’) a =< X2 < Y2 X < Y =< b,
(iii) a<xa <xz<y <yz =<b,

(iii’) a =< x2 < x < 22 < Y b.
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The cases (i’), (ii’), (iii’) are obtained by interchanging subscripts and 2 in the
cases (i), (ii), (iii) respectively. We first treat the cases (i), (ii) and (iii).

(i) Note that f(xl)-f(Yl)= sup(}/1) and f(Y2)-f(x2)= sup(}/2). We
assert that x < x2 < Y2 < Y l. Suppose, on the contrary, that x x2. Then we
have f(Y2)- f(Yl) f(Y2) f(x2) + f(x1)- f(Yl) sup(}/2) + sup(}/1) > sup(}/1),
and 0 <_ Yl Y2 < Yl X1 6"(}/1). These contradictions to the definitions of
sup (}/1) and 6"(}/1) show that x < x2. The case when Y2 Y may be treated
similarly. This establishes the validity of our assertion, and it follows that
6*(}/2) < 6"(}/1). We further assert that

(3.1) f(Yl) < f(x) < f(xl) for all x, x < x <

Suppose, on the contrary, that f(x) <= f(Yl) for some x such that
Then we must have

f(x 1) f(x) >= f(x 1) f(Y 1) sup (}/1).

But since x- x < 6"(}/1), a contradiction is reached. The other case, when
f(x) >= f(xl) for some x such that x < x < Y l, may be similarly treated. This
establishes (3.1), and we conclude that f(Yl) < f(x2) < f(Y2) < f(xl). Hence
sup (}/2) f(Y2) f(x2) < f(xl) f(Yl) sup (}/1), and condition (c) holds.

(ii) In this case, we have

l= b a >__ (Yl x l) + (Y2 x2)= 6"(}/1)+ 6"(}/2),

and thus condition (a) holds.
(iii) We show that this case cannot occur. By arguments similar to those used

in case (i) to establish (3.1), it may be shown that f(x2) < f(x) < f(Y2) holds for
all x such that x2 < x < Y2. Hence f(x2) < f(yl) < f(Y2). Then we must have

f(x 1) f(x2) > f(x 1) f(Y 1) sup (}/

and also 0 < X2 X < Y X1 6:(}/1), which are contradictions.
The proofs for cases (i’), (ii’) and (iii’) are similar to those for (i), (ii) and (iii).

Specifically, (i’) (b), (ii’) (a) and (iii’) cannot occur.
Since 6"(}/i) 0 if and only if }/i 0, it follows that in the case 6"(}/i) 0 for

some i, the necessary conditions are satisfied trivially. Thus the necessity is estab-
lished in all the cases.

Sufficiency of condition (a). In this case, 6"(}/1) + 6*(}/2) =< l= (b a).
Define a continuous function f on [a, b] by

f(x)

(x a),

sup (}/1),

sup (}/1)+ }/2(x b + 5"(}/2))

a _<_ x __< a +
a+ 6"(}/1)=<x =<b-
b 5*(}/2 x b.

It is easy to verify that fi(f, .) }/1(" and E(f, .) }/2(" ). The proof of the theorem
is now complete.
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4. Applications of moduli of monotonicity to approximation by monotone
polynomials. In this section, we consider the monotone polynomial approximation
problem described in 1, and, making use of the moduli of monotonicity, obtain
bounds on E,(f), the degree of approximation, defined by (1.4).

We have already introduced the notation b a, B, P,,, o, and/ in 1.
In addition, we let K c B denote the set of real nondecreasing functions on [a, b]
and C, C denote, respectively, the set of continuous functions and the set of
infinitely differentiable functions defined on [a, b]. The kth derivative of a function

fin B at a point x in [a, b], if it exists, is designated byftk)(x). The norm notation
is used throughout to indicate the uniform norm defined by [If[ SUPxe[a,bl If(x)],
where fe B.

Immediately below, we give references to the relevant literature concerning
the degree of approximation by monotone polynomials. Let f(x) be continuous
on [0, 1], and b,(f, x) be its Bernstein polynomial defined by

0_<x_<l.

It is known that (Meinardus [8])

(4.1) max If(x) b,,(f, x)l <= co(f, n- 1/2),
O<x<

where c is an absolute constant. The greatest lower bound of all numbers c such
that (4.1) holds for all continuous functionsfon [0, and all integers n is shown by
Sikkema 12] (see also Meinardus [8]) to be equal to

(4.2) tc (4306 + 837C/-)/5832 1.0898873....

It is further known that iff is nondecreasing on [0, 1], then b,(f, x) is also non-
decreasing (Lorentz [4]). By Proposition (iv), (v), iff is nondecreasing, then
o(f,.) kt_(f,.). These observations and simple arguments then allow us to
transform (4.1) to a relation giving a bound on E,,(f) for a function f defined on
an arbitrary interval [a, b] as follows. Iff K f3 C, then

(4.3) E,,(f) <= tClLt_(f, In-1/2),

where is given by (4.2) and b a. A substantial improvement of this bound
is due to Lorentz and Zeller [7]. Using simple arguments, it may be deduced from
their Theorem 2 that iff K f’) C, then

(4.4) E,(f) <= Cola(f,/(2n)-),
where co is an absolute constant. (For an expository article on monotone approxi-
mation, see Lorentz [6]). Since bounds on E,(f) are available when f K f’l C
(expression (4.4)), we restrict our attention to the case where f C.-K, and
establish upper and lower bounds on E,(f). But before we state our results, we
need to introduce a class of functions called the mollifier functions, which are used
extensively in the analysis presented in the sequel.

A real-valued function b, defined on the real line, is called a Friedrichs
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mollifier function if (i) b(x) >= 0 for all x , ), (ii) b is infinitely differentiable
on (-, v), (iii) it vanishes outside 0, 1], that is, has support in 0, 1], and (iv)

oh(x)dx 1. As an example of a mollifier function, we may take

A- exp ((x(x 1))-
4(x) o

O<x < 1,

otherwise,

where A j’ exp ((x(x 1))- 1) dx. Mollifier functions find considerable appli-
cations in the calculus of variations (see Morrey [9, p. 20]). The definition of a
mollifier function, which we have given, is slightly different from the one usually
employed. Generally it is assumed that the support of 0 is contained in [- 1, 1].
We find that this modification of the definition is convenient for the purpose of
application to our problem. This fact will be verified by the reader in the proofs
of Theorems 2, 3 and the subsequent remarks. In the proofs, the mollifier functions
will be used to generate infinitely differentiable functions from continuous func-
tions as follows. Let u be a continuous real function defined on the real line.
Let 0 < p < oo, and define

where

+p

u(x) u()4,( x)de,

(4.5) 0() P-’O(P-’), (-, ).

It is easily seen that up(x) is an infinitely differentiable function with its kth deriva-
tive uk)(x) given by

H(pk)(x) (-- 1) U()(/)p(k)( X) d, x (- or,

for all k 1, 2, .... The function up(x) is called the b-mollified function of u.
We now state our results.
THEOREM 2. Letf C K. Thenfor every positive integer k andjbr all n k,

0 < (1/2)(L I) E,(f) (1/2)fi(/, 1)
(4.6)

+(f,, (n+-j f,
= n+ 1-k

where

inf IOk)()l

is the class of all the Friedrichs mollifier functions dp and

(4.8) )v sup {6 e [0, l] "co(f, 6) #(f, 1)} > 0.

(Empty product in (4.6) means 1.)
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(4.9)

THEOREM 3. Letfe C K. Then for every positive integer k andfor all n >_ k,

0 < (1/2)/(f, l) <= E,(f) <= (1/2)/(f, 1)+ O(f, 1, k) (n + -j)
j=l

inf Iq5 Ik+ 1)()l d(4.10) O(f, 1, k) rr8 (I f + (1/2)/(f, l)) - 4,*

and , are as in the statement of Theorem 2.
The prime role of moduli of monotonicity is clearly demonstrated by (4.4).

(4.6), (4.8) and (4.9). The validity of (1.5) can now be easily verified by combining
the results of both the above theorems. Clearly, c O(f, l, k) and C2 7(f l, k).
Compare (1.5) with (4.4). The values of inf. Ibk)()l d for all k and several
other related results are obtained in Ubhaya [15]. They enable one to determine
the values of constants 7 and 0 given by (4.7) and (4.10) respectively. We state here
two simple results only.

(= k!22k- k 2 3
inf b/()l d
e* __< (2k) for all k 1,2,

Before we proceed to the proofs of Theorems 2 and 3, we establish some
preliminary results.

LEMMA 1. Let fe C K. Then the set

(4.11) A(f) .[6 6 [0, 1] "co(f, 6) =/(f, 1)}
is not empty. Moreover,/f 2 sup A(f), then 2 > O.

Proof Since fe C K, by Proposition 1, (iv), we conclude that g(f, 1) > 0.
Also, o)(f, l) =>/(f, l) by Proposition 1, (v). If o)(f, l) #(f, 1), then e A(f), and
) > 0. If o(f, l) >/(f, l), then since o)(f, .) is continuous and lim0 o o)(f, 6) 0,
it follows again that A(f) 4: and ) > 0.

The following lemma also follows from the results in Ubhaya [14, part I].
LEMMA 2. Letfe C and define

(4.12) h(x) max f(z) (1/2)#(f, l), x e [a, b],
ze[a,x]

(4.13) k(x) min f(z) + (1/2)#(f, l), x e [a, b].
ze[x,bl

Then h, k e K f’l C, h(x) <= k(x) for all x e [a, b], and

(4.14) (1/2)ft(f,l)=min f-g min f-g f-hi f-k
geK geKcC

Proof Let g e K, x, y e [a, b] and x =< y. Since g(x) =< g(y), we have

f(x)- f(y) < (f(x)- g(x))- (f(y)- g(y)) =< 2 f- g

Hence by (1.3), the inequality (1/2)#(f, 1)< Ilf-g holds for all g e K. Since
j’e C, it may be easily shown that h, k e C. Clearly h, k e K. We now show that

where
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(1/2)/(f, l) f- h The proof for k is similar. By (4.12), we have h(x) >= f(x)
-(1/2)/(f, 1). Again by the continuity of f, h(x)= f(y) -(1/2)#(f, l) holds for
some y Ia, x]. Since y =< x, using (1.3), we conclude that f(y)- f(x) <= ft(f, 1).
Hence

h(x) f(y) (1/2)/(f, l) <= f(x) + (1/2)/(f, l),

and thus (1/2)/(f, l) >__ If- h ll. But since h e K, the reverse inequality holds, and
therefore (1/2)/(f, 1) f- h I. If u, v e [a, b] and u _< v, then again by (1.3),

f(u) (1/2)/(f, I) <= f(v) + (1/2)/(f, 1),

and it follows that h < k.
PROPOSITION 3. Let fe C K, and h be as given by (4.12). Define a function

h on the real line by

h(x) if x e [a, b],

(4.15) h(x)= h(a) if x e o a)

h(b) if x e (b, oc).

Let L sup (Af), where A(f) is given by (4.11) 0 > 0 by Lemma 1). For each
p, 0 < p < ), define afunction ho(x on [a, b] by

x+p

(4.16) ho(x h,()dp( x) d, x e [a, b],

where d? is given by (4.5) and 49 is any mollifier function. Then h e K f-) C and

(4.17) (1/2)/(f, 1) mini f- gll min f- gll f- ho
geK geKcC

Proof It is easy to verify from (4.16) and (4.5) that

(4.18) ho(x h(x + p)c/)()d, xe[a,b].

We first show that ho e K. Suppose x, y e [a, b], x <__ y. Then

;oho(y ho(x (h(y + p)- h(x + p())4)()d.

Since h is in K, (4.15) shows that h is nondecreasing, and consequently, h(y + p)
>__ h(x + p) for all , 0 __< __< 1. Using nonnegativity of 05, we conclude that
ho(y >= ho(x). Thus ho e K. From the discussion on the mollifier functions pre-
ceding the statement of Theorem 2, it follows that ho C. We now show that

(4.19) h(x) <= h(x + )) <= k(x) for all x e [a,b].

The first inequality is obviously true. Now by (4.1 2), (4.1 3), (4.1 5) and the continuity
off, there exist y e [a, x + )] f’l [a, b] and e Ix, b] such that

hl(X -t- )) f(y) (1/2)#(f, l)
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and

k(x) f(t) + (1/2)fi(f, 1).

Suppose y <_ t. Then by (1.3), we have f(y)- f(t) <= fi(f, 1), and thus h t(x + )
<= k(x). On the other hand, if y > t, then x =< < y =< x + , and it follows from
the definition of that

If(Y)- f(t)l =< co(f, 2)- fit(f,/),

which gives

hl(x + 2)= f(y) (1/2)fi(f, 1) <= f(t) + (1/2)/(f, l) k(x).

Thus (4.19) is established, and since h is nondecreasing, we conclude that

(4.20) h(x) h (x) <- h (x + ) <_ h(x + 2) <= k(x)

for all x e [a, b] for all , 0 __< a -< ). Hence if 0 < p =< 2, then

(4.21) [ h(x)()d <= h(x + p)()d =< k(x)dp()d
o

holds for all x [a, b]. By (4.18) and the fact thatf b() de 1, we have h(x) <__ hp(x)
<= k(x) for all x [a, b]. Thus

Ilf- hpl[ =< max {ll/- h Ilf- kll},

and from (4.14), we conclude that (1/2)p(f, l) ][f- ho 1. The proof of the pro-
position is now complete.

PROPOSITION 4. Let ho, 0 < p <= ), be as defined by (4.16). Then
(i) hol =< ]lfl / (1/2)p(f,/),

(ii) hk)ll <_ p-(llf / (1/2)p(f, 1))( 14()1
(iii) (hp, 6) <_ _(f, ), 0 =< 6 =< I,
(iv) co(htok), 6) =< P-/2_(f, 6)(f 10()()1 d), 0 <_ 6 =< I.
Proof By (4.12) we verify that

(4.22) h __< f + (1/2)fi(f,l).

By (4.15) and (4.18) we have, for all x e [a, b],

;0Ihp(x)l <- sup Ih(x)l) 4() d h
xs[a,b]

Hence [Ihp -<_ h and this together with (4.22) establishes (i). Using (4.5) and
differentiating (4.16), we obtain

(4.23)

+p

h(o’)(x) (- 1) h ()4(k)( X) d

(_ p)-k h (x + p)O(k)(s) d.
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It follows, for all x [a, b], that

Ih(x)l __< p-( sup Ihl(x)l) IqStk)()l d.
xe[a,b]

Thus

hCpll p- h I)(1 d,

This inequality together with (4.22) gives (ii).
To prove (iii) and (iv), we first show that

(4.24) _(h, ) __< _(f, 6).

Let x, y [a, b] and 0 <= y x <_ 6. Since h K, we have h(y) >= h(x). If h(y) h(x),
then clearly h(y) h(x) <- (f, 6). Now suppose that h(y) > h(x). Then, using (4.12),
we may write

h(y) max (h(x), max f(z) (1/2)#(f, l))
ze[x,y]

max f(z) (1/2)/(f, l).
ze[x,y]

By continuity of jl there exists t (x, y] such that h(y)--f(t)- (1/2)/(f, l). Also
by (4.12), h(x) > f(x) (1/2)/(f, l). Since 0 < x _<_ 6, we conclude, using (1.2),
that

0 < h(y)- h(x) <_ f(t)- f(x) <= _(f, 5),

and (4.24) follows.
To show (iii), again let x, y e [a, b] and 0 __< y x =< 6. Then by (4.15), (4.18),

(1.2) and the fact that h is nondecreasing, we have

ho(Y ho(x (h,(y + p)- h,(x + P))0()de

N max {(h(v)- h(u))’a <__ u <=
<= p(h, ).

It follows that la(hp, 6) <= p(h, 6). This together with (4.24) establishes (iii).
To verify (iv), let x, y [a, b] be chosen as before. Then since h is nondecreas-

ing, we have, using (4.23),
ol

Ihk)(y)- hk)(x)l p- | (h,(y + p)- h,(x + p))4)()d
o

=< p-max {(h(v)- hl(u))’a <= u <= v <_ b + p,O <__ v u <

o

<= p-lLt_(h, 6) 14)()1 d.
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Hence we conclude that

o)(hk), 6) __< p-kit(h, 6) I)()1 d.

The above inequality together with (4.24) proves (iv).
The proof of the proposition is now complete.
We now make some remarks. It was pointed out in the beginning of this section

that, as far as our problem was concerned, there was a definite advantage in letting
the support of a mollifier function be contained in 0, 1] rather than in - 1, 1],
as is conventionally done. It will be easily verified by the reader that this modifi-
cation of the definition enables us to establish (4.21) from (4.20), and subsequently
various properties of hR. Obviously hp is defined using h. Symmetrically can we,
using k given by (4.13), define a function kp in K f’) C having properties similar
to hp? This indeed can be done. But for this purpose we need to alter the definition
of the mollifier function as shown below. Let t be a real-valued, nonnegative,
infinitely differentiable function defined on the real line, having support in - 1, 0]
satisfying f_l ()d 1. Then, analogous to (4.15) and (4.16), we may define

and

where

k(x) ifxe[a,b],

k (x) k(a) ifxe(-,a),

k(b) ifxe(b,),

kp(x) k ()*o( x) d, x [a, b],
-p

, -1 -1

It is easy to establish the results for k which are similar in nature to those given by
Propositions 3 and 4 for hp. However, it will be seen in the sequel that our bounds
on the degree of approximation are independent of the choice of hp or kp made to
establish the intermediate results. For approximation and optimization problems
on partially or totally ordered sets and their duality implications, the reader is
referred to Ubhaya [13], [14] and other references stated there.

To prove Theorems 2 and 3, we make use of two results by Shisha 11 ], which
we quote below for the convenience of the reader. Shisha obtained these results
by following methods of Jackson [3] and making use of investigations by Farvad
[2] and Ahiezer and Krein [1].

(i) Let r and k be integers, _<_ r _< k, and let a real functionfsatisfy throughout
[a, b],fCr)(x) >__ 0, Ifk)(x)[ <--_ M, m being a constant. Then for every integer n >__ k,
there exists a real polynomial q,(x) of degree at most n such that q,r)(x) >__ 0 for all
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x [a, b], and
k-1 -1

[If- qn[[ <= 2(1 + rC/4)(g/4)k-rlk r! [-I (n + -j) co(f(k), l/(n + k)).
(4.25)
(Empty product means 1).

(ii) Let r and k be integers __< r =< k, and let a real functionfsatisfy through-
out [a, b], f(x) >_ 0 and

(4.26) Iftk)(x)- f(k)(y)l <= Alx y],

A being a constant. Then for every integer n _>_ k, there exists a real polynomial
q,(x) of degree at most n such that q)(x) >= 0 for all x e [a, b], and

(4.27) IIf- q] _-< 2A(zr/4)k-+ lk/ r! (n + j
j=r

Proof of Theorem 2. Since fe C K, by Proposition (iv), (f, l) > 0.
Consider h as defined by (4.16), with p ) > 0, and let 4 be any mollifier function.
Since hz e K f’l C, we have h(x) >= 0 for all x e [a, b]. Letting r andf hx
in (4.25), we have for every positive integer k and all n >_ k,

k-1 )-1E(ha) <= 2(1 + rc/4)(zr/4)k- lk I-I (n + -j) 6o(hk), 1/(n + k)).
j=l

Substituting from Proposition 4" (iv) in the above relation, we have

E,,(hx) < 2 + 14()1 d l-I (n + -j) # f,
o = n+ 1-k

(4.28)

If p, e P, and satisfies E,(hx) IIhx p,[[, then by (4.17),

If- h min [If-g[[ _<_E,(f)<_ [If-P.[[ =< [f-hll +
geKC

Again by (4.17), If-hx[[ (1/2)(f,l)> 0, and we obtain from the above
expression

(1/2)#(f, I) <_ E,,(f) <= (1/2)/(f, l)+ E.(hz).

I(()1 d overSubstituting from (4.28) for E,(hz) and taking the infimum of o
O, we get (4.6).

Proofof Theorem 3. Sincef C K, (f, l) > 0. Let h be as defined by (4.16)
with p k > 0 and x, y [a, hi. Then

Hence

hk)(x) hk)(y) hk+ 1)(Z)(X y) for some z e Ix, y].
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Substituting from Proposition 4 (ii) in the above relation, we get

(4.29) h(x)

Since h(x(x) 0 for all x e [a, b], comparing (4.26) and (4.29) and letting r 1,
f hx in (4.27), we get

E,(hz) (llf + (1/2)fi( l)) 1+’)()1 de (n + j)
j=l

The proof may now be completed as in Theorem 2.
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SINGULARITIES OF SOLUTIONS TO EXTERIOR ANALYTIC
BOUNDARY VALUE PROBLEMS FOR THE HELMHOLTZ
EQUATION IN THREE INDEPENDENT VARIABLES.

I: THE PLANE BOUNDARY
R. F. MILLAR

Abstract. A method is developed for locating singularities of solutions to boundary value
problems for the Helmholtz (or Laplace) equation in three independent variables. It relates sing-
ularities in the analytically continued boundary data to real singularities in the solution. On the plane
boundary z 0, an analytic Neumann, Dirichlet, or linear boundary condition is prescribed. For the
first two, the unknown boundary data are determined by integrals over the boundary, whereas in the
third case the unknown satisfies a two-dimensional, linear integral equation. The kernels of the
integrals are singular, but a method of E. E. Levi is used to extend them analytically into the complex
domain of x and y on z 0 as far as their singularities. For the third boundary condition, the integral
equation is solved iteratively in the large in the complex domain, and the singularities of the boundary
data are located. Under certain conditions, it is found that the singularities in the unknown data
coincide with those in the prescribed data. They may be carried through the complex x,y,z-domain on
characteristic surfaces, and possible real singularities are found where the characteristics pierce the
real domain. For purposes of illustration, the method is applied to an elementary problem for the
Laplace equation. However, a second example shows that this naive application of characteristic
theory may not yield all the real singularities of the solution, and indicates that further examination of
this aspect of the problem is warranted.

1. Introduction. When solving an analytic boundary value problem for an
elliptic partial differential equation, one often finds that it would be useful to know
the location of singularities in the analytic continuation of the solution across the
boundary. Their importance stems from the fact that they are the fundamental
sources of the solution, in terms of which it may be represented in a more or less
elementary fashion. For example, Handelsman and Keller [13] have obtained
solutions to axially symmetric potential problems in the exterior of slender bodies
by relating the solution to an axial source distribution interior to the body, and
Geer and Keller [8] have studied analogous two-dimensional problems. More
recently, Miloh [27] has stressed the importance of knowing the system of
singularities of an exterior potential field, and has located them within a triaxial
ellipsoid with a view to application in problems of ship hydrodynamics. The
singularities also play an important role in the so-called inverse problems of
geophysics. This is discussed briefly in [23], where additional references are given;
see also [28]. Knowledge of the location of singularities is useful as well in a
somewhat different, if related, context. When a formal solution to the Laplace or
Helmholtz equation is obtained by separation of variables in polar coordinates,
the domain in which the series converges is determined by the geometry of the
singularities of the solution [23], [24].

It is clear that procedures for locating singularities are of considerable
practical importance; moreover, knowledge of their position and character is of
some theoretical interest, since they determine the extent to which analytic
continuation of the solution is possible. Of course, if the results of such procedures
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are to be useful in determining representations for the solution, it should not be
necessary to determine the unknown boundary values first.

The problem of locating singularities of a solution to a linear analytic elliptic
equation of the second order in two independent variables, satisfying an analytic
boundary condition, has been recently discussed [25], [26]. It was shown how a
representation for the solution u in terms of its boundary datamvalues of u and of
its normal derivative Ou/O,--and a fundamental solution could be used to
continue the data analytically into the complex domain of arc length on the
boundary. In particular, without first solving the problem for the unknown data,
we located their singularities. Then, by considering the continuation problem for u
as a Cauchy problem in the complex domain [7, Chap. 16], we were able to use the
theory of characteristics to relate these singularities to real singularities of u that
lay outside the original domain of definition.

The present paper is a first attempt to extend these ideas to second order
equations in three independent variables. Here the literature is much less exten-
sive than for problems in the plane. Most relevant, perhaps, are the papers of
Filippenko [6] and Lewy [19]; they considered the possibility of continuing a
solution to the Laplace equation, satisfying a linear analytic boundary condition,
across a bounded portion of a plane boundary and throughout the reflection of the
initial bounded domain. By using function-theoretic methods, Colton [2] has
delimited a domain containing the singularities of axisymmetric solutions to the
Helmholtz equation when the far-field pattern, rather than a boundary condition,
is given. Results of a related nature had been obtained for vector (electromagne-
tic) problems by Weston, Bowman and Ar [33]. Sleeman [29] has succeeded in
removing the limitation of axial symmetry from Colton’s analysis. However, in
none of [2], [29] and [33] have the singularities been located precisely. Sing-
ularities of classes of harmonic functions of three independent variables have been
discussed by Gilbert [9], who uses integral operators and representations. More
recently, Gilbert [34, Chap. VII] has examined the singularities of such functions
that satisfy Cauchy data of a certain kind on a plane. The possibility of a
relationship between Gilbert’s work and that of the present paper has not yet been
explored.

The extension of the earlier analysis to three independent variables presents
certain difficulties, and a corresponding degree of generality has yet to be attained.
There are, however, two particular classes of exterior three-dimensional prob-
lems that are less complex than that in which the boundary is a general closed
analytic surface. One of these is the class of axisymmetric problems, where the
axial symmetry reduces the number of independent variables by one; it is likely
that these can be treated as completely as were the strictly two-dimensional
problems.

The other class consists of problems for which the boundary is a plane, and it
is these that we consider here. Specifically, we shall confine our present attention
to solutions of the Helmholtz equation

(1.1) u,, + uy, + u + k2U O,

that are nonsingular in the half-space z => 0, and we shall search for singularities in
z < 0. Usually, we shall assume that k > 0, although in one instance we take k 0.
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On the boundary z 0, -eo < x < eo, -eo < y < oo, an analytic Neumann, Dirich-
let, or linear boundary condition is prescribed. It is assumed that these data are
holomorphic for all real values of x and y; real singularities in the data would lead
to real singularities in the solution at the same points, and would complicate the
analytic continuation process. (A related problem in two dimensions has been
discussed in [26].)

It is worthwhile to look at this problem for several reasons. The analysis
provides guidance for the treatment of more general equations and boundaries. In
contrast to axisymmetric problems, it is strictly three-dimensional, as is reflected
in the form of singularity of the fundamental solution. It is complicated slightly by
the fact that the boundary is infinite, but its planar character simplifies other
aspects of the analysis. The problem differs from those considered by Filippenko
[6] and Lewy [19], in that the initial domain of definition here is unbounded.

Because of the simple geometry, there is a variety of ways in which we could
formulate the problem. However, we shall only introduce ideas and methods that
can be used in more general situations.

As our point of departure, we again observe that the initially unknown
boundary data u and/or Ou/Ou are analytic and can be continued into the complex
domain of their arguments. This is effected by using the integral equations for the
unknown data that follow from the Helmholtz representation for the solution
when the field point (x, y, z) approaches the boundary. Here the fundamental
solution becomes infinite as l/r, r denoting distance between (x, y, 0) and an
integration point (c, , 0) on the boundary, and to discuss the analyticity of the
integrals we must employ a method devised by Levi [18].

On account of the plane boundary, for Neumann and Dirichlet problems we
shall see that the integral equations reduce to integral representations for the
unknown boundary data. Nevertheless, the singularities in the analytic continua-
tion of the data, and of the solution into z < 0, are not located immediately. For
the more general linear boundary condition, such simplification is not found, and
we are obliged to determine analytic properties of the solution to a two-
dimensional integral equation in the complex domain. The results are summarized
in Theorems 3.1, 4.1, and 5.1, and conditions are given to guarantee that all
possible singularities of the unknown data in the finite domain coincide with the
prescribed singularities of the data. Then, having located all singularities in the
data, we use the theory of characteristics to determine real singularities of the
solution.

In 2, we formulate the problem and derive the integral equations. For the
Neumann problem, the analytic continuation of the boundary data is described in
3, and a simple example is discussed. The Dirichlet problem is treated in 4; and

in 5 the linear boundary condition is considered. The emphasis throughout is on
locating singularities of the data, but the example of 3 is used again in 6, where
we employ the theory of characteristics to relate singularities of the boundary data
to real singularities of the solution in z < 0. A few concluding remarks are made in
7, and necessary properties of the distance function are derived in the Appendix.

2. Formulation. Let u be a complex-valued analytic solution to the equation

(2.1) Uxx + Uy,, + Uzz + k2u O, k >-0,
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holomorphic in the unbounded region D {(x, y, z)]-oo< x < oo, -oo< y <
z > 0} of R and on its boundary S: z 0. At a point P (x, y, z) e D, we assume
that u(x, y, z) may be represented as an integral over S in terms of the fundamen-
tal solution e’k’/r (the Helmholtz representation):

f[,OOuleikr(2.2) 4ru(P) u(O )v,-u,(O’) dS, Pc D.
s

Here 0/0u’ denotes differentiation along the unit normal to S directed into D at
the integration point Q’ and r is the distance between P and Q’. Henceforth we
shall denote (Ou/O’)(Q’) by v(Q’), and integration is over S unless otherwise
indicated.

For the validity of (2.2), it suffices that u satisfies an outgoing radiation
condition at infinity if k > 0; more specifically, we shall suppose that

(2.3) u(x, y, z) f(O, oh) eikR/R + O(R -2)

as R --> oo, where (R, 0, 4) are spherical polar coordinates of P with respect to the
origin 0. When k 0, we shall assume regularity in the sense of Kellogg [16, p.
217]; that is,

U(X, y, z)= o(e-1),
(2.4)

ue(x, y, z)= O(R -2) for sc x, y, or z,

as R --> oo.
We have made the assumptions (2.3) and (2.4) to ensure the validity of (2.2)

as well as the uniform convergence of some subsequently occurring integrals. It is
known that (2.2) is valid under milder restrictions than these which, roughly
speaking, mean that the singularities of u are confined to a bounded region of
z<0.

If so-called surface waves are present, (2.3) is violated, and such solutions are
not included directly in our considerations. Nevertheless, in any given cir-
cumstances, our results will remain valid, even if (2.3) or (2.4) are not satisfied,
provided that the representation (2.2) (or a modified version thereof, in which a
known function is added to the right-hand side) still holds, and that uniform
convergence of certain integrals can be established.

If fl denotes the derivative of f with respect to its first argument, then for
k>0,

(2.5) v(O’) -L(1/2, oh) e’/p + 0(0-3)

as poo; here (p, &) are polar coordinates of Q’ in S. Thus, when k-_>0, the
integrand in (2.2) is O(p-3) as p oe, and the integral converges uniformly with
respect to x, y, and z in closed subsets of D.

If in (2.2) we let P- O 6 S, the first term in the integrand vanishes because S
is a plane, and we obtain the integral equation

e ikr

(2.6) 2ru(O) v(O’) dS.
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If we differentiate (2.2) along the normal , at O, we find

O f O(e’k’)(2.7) 2rv(O)=- u(O’)0u,,-7/ dS.

To facilitate the following discussion, we shall bring the normal derivative in
(2.7) under the sign of integration. This requires some care on two accounts: the
integrand is singular at r 0, and the domain of integration is of infinite extent.
The problem of the singularity is obviated by subtracting from, and adding to, the
integrand suitable terms, and then proceeding in the manner described by Kellogg
[16, Chap. 6]. Thus we find

u(O’) dS

(2.8)

Here we have used the result that at all points of D, the potential of a uniform
double layer is constant, so

Justification for differentiating under the sign of integration in the last integral of
(2.8) rests on the uniform convergence of the integral. For this reason, too, we may
take the normal derivative of the first integral on the right-hand side of (2.8) under
the sign of integration, provided that we interpret the result as a singular integral
[22]. Then

2v(O) [u(Q’)- u(O)]o S

(2.9)

f 02 (e’r l)
Here

i -s’
where S denotes a circular disc in S, with center at O and radius e.

It is (2.6) and (2.9) that we shall use to continue the boundary data
analytically into the complex domain, and to locate their possible singularities. Of
course, it could be argued that an equation simpler than (2.9) can be found by
using the well-known Green’s function for the half-space. But the Green’s
function for most other regions is not known explicitly, whereas integrals similar
to (2.9) arise in all cases. Thus we shall consider (2.9), in keeping with our stated
plan to avoid introducing methods that cannot be carried over to the study of more
general boundaries.

3. Neumann problem. We examine first the Neumann problem. Then v(O’) is
a prescribed analytic function of and (where (, ) are the coordinates of O’)
satisfying (2.5) and is holomorpic for real and . Thus (2.6) becomes an integral
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representation for the unknown u(O). These values may be inserted into (2.2) to
give an explicit representation for u(P) in terms of known functions. Nevertheless,
the singularities of its analytic continuation into z < 0 are not given directly.

We shall determine the possible singularities of an integral like that in (2.6),
which we rewrite as

(3.1) 2ru(x, y)=-[L(x, y)+ iI2(x, y)],

where

(3.2)

and

(3.3)

I,(x, y)----- I v(s’ rl)(K(r2)/r) d dn

I2(x, y)---- I v(’ r)K2(r2) ds dry.

Here K and K2 are entire functions of r (x ,)2 + (y r/)2) and, hence, of x, y,
:, and
(3.4) K(r2) cos kr,

(3.5) K2(r2) =- (sin kr)/r.

The function I2 vanishes identically when k 0.
Since v(sc, r/) is holomorphic when sc and r/ are real, and is O(o-2) as

p (so2+ rt2) 1/2oo, the continuation of I2 is almost immediate: we need only
replace x and y formally by complex variables x + ix2, y + iy_, and check that the
resultant integral still converges uniformly, to conclude that I2 is an entire function
of x and y.

In order to verify convergence, we must examine the behavior of K2(r2) in the
complex domain. To preserve continuity, this is done in the Appendix, where
properties of r will be found. There it is shown that for k > 0,

1
K2(r2) g-7-, {exp [ik{p -po cos (4)0- 4)}+ k7 cos (& 6)]

(3.6)
-exp [-ik{o-Oo cos (4)0-b)}-k3’ cos

where

x2=ycos6, y=,/sin6, /_->0,

and the remaining quantities may be determined from Fig. 4. Thus, from (2.5) and
(3.6), it is seen that the integral in (3.3) converges uniformly for x and y in closed
subsets of C, as required.

On the other hand, K(r2)/r is singular when r 0 and a similar straightfor-
ward approach is not possible. To prove analyticity of L, and to continue it into the
complex domain of x and y, we employ a procedure devised by Levi [18]; it has
been further exploited by Hopf [14] and others, and is described briefly in [1,
Chap. II, 6]. Levi developed his method to extend an integral like 11 to complex
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values of x and y, and to demonstrate its analyticity in a sufficiently small complex
neighborhood of a real point. Our intent is to use Levi’s procedure and the
Cauchy-Poincar6 theorem [30, Chap. IV, 22] to discuss the continuation of I1 in
the large, and to locate its possible singularities.

For real x and y, Ii(x, y) is defined as an integral over the real manifold S. This
surface contains the point x, r/= y at which 1/r is singular. Following Levi, we
define Ii(x, y) for complex x and y as a functional of the integration manifold, by
continuously deforming part of S through the complex , r/-domain in such a
manner that the point =x, r/--y always remains on it. The area element
dS d drt may then be interpreted as a complex differential form [30, Chap. IV].
For the deformed portion of S, Levi chose the cone-like manifold with the
complex point (x, y) at its vertex, generated by lines passing through (x, y) and a
suitable circle C on S that contains in its interior T the real initial point from which
the continuation has taken place.

It is then possible to show that I1 is analytic in x and y. Proofs for a bounded
integration domain may be found, for example, in [18], [14], or [1, Chap. II, 6].
Then for the unbounded manifold S, we need only verify that the integral over
S- T converges uniformly at infinity. In the Appendix, it is shown that

Kl(rZ)/r (1/2p){exp [ik{p po cos (4)0- b)} + ky cos (& 6)]
(3.7) + exp [-ik{p po cos (bo- b)}- ky cos (b 6 )]}{ 1 + O(p-1)},

which, with (2.5), suffices to guarantee uniform convergence. Thus 11 is analytic in
x and y in a complex neighborhood of S.

Levi’s deformation of S is not the only possible choice, for the Cauchy-
Poincar6 theorem [30, Chap. IV, 22] permits us to deform any bounded portion
of a piecewise-smooth integration manifold through the complex domain without
changing the value of the integral, if in so doing we avoid all singularities of the
integrand. Now it is not difficult to show that the singularity manifold, defined in
the complex , r/-space by r 0 for x and y fi.xed, meets the integration manifold
(deformed in accordance with Levi’s procedure) only in the complex point : x,
rt y, provided that the imaginary parts of x and y are sufficiently small relative to
the radius of C. Consequently we may obtain the analytic continuation of I1 from
real to complex x and y by deforming S arbitrarily through the complex , r/-space
while ensuring that the deformed manifold contains the singularity c x, r/--y

and always avoids other’singularities of the integrand.
In this manner, we can prove analyticity of I1, first in a neighborhood of S, and

thereafter step by step through the complex domain. A singularity may occur
when it is no longer possible to prevent the integration manifold from sweeping
across other singularities of the integrand as x and y are varied. For example, it
may happen that x, r/= y approaches another singularity of the integrand; but
these circumstances also arise when the integration manifold becomes trapped or
pinched between two or more singularity manifolds of the integrand that tend to
touch, one from each side of the integration manifold. (See, for example, [5, Chap.
2-1, [15], or [9, Chap. 1, 3]. Certain finer points of analysis that were overlooked
in earlier work are discussed in [35].) Points (x, y) for which the integration
manifold is pinched in this way are possible singularities of the integral.
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Necessary conditions for a pinch to occur are well known [9], [5], [15]. We
need only consider the simplest possibility in which the integration manifold is
pinched by r2=0 and a (fixed) singularity manifold of v(j, r/). For it is easy
to see that r 0 consists of two, two-dimensional manifolds M1 and M2 in the

+ i2, rt 1 + it/2 space:, x, + r/2 Y2 O, 2 X2 T/1 -- yl O, (M)
(3.8)

x, r/2 + y2 0. 2 x2 + r/, y, 0.

Due to their linearity, it is not possible for either M1 or M2 to form a pinch with
itself, nor can M and M2 form a pinch: their only point of intersection is x,
rt y. Thus this simplest possibility is the only possibility in the present case.

Let us suppose that the jth singularity manifold of v is determined by the
analytic relation F(, r/)=0. We assume also that F and F do not vanish
simultaneously on F 0, so that in a neighborhood of any point of F 0 we have
either f(r/) or r/= g(:), with f and g analytic. Then according to [9], [5], or
15], the location of a possible pinch of the integration manifold by this singularity
manifold and r2(, r/; x, y) (x c) + (y rt) 0 is determined by/j and r/that
simultaneously satisfy the equations

(3.9)

(3.10)

F(s, /) r2(:, /; x, y) 0,

F/(rZ)e--F/(r2),.
This latter equation imposes the condition that F 0 and r 0 be tangent at the
points of intersection. (To decide whether or not such solutions do indeed
correspond to a pinch of the integration manifold requires further examination.)
Then the corresponding (x, y) determines a possible singularitymmore precisely,
a point on a singularity manifoldmof the integral. If, however, (3.9) and (3.10)
have no solution except, possibly, j x, r/= y, then 11 can be continued through
the complex x, y-domain up to singularities of v. From (3.1) we conclude that u
will be holomorphic in this same domain.

It is possible to describe qualitatively the effect of a pinch in the context of the
present geometry, and this is suggested in Fig. 1. Suppose we have continued the
integral as far as a singularity manifold F 0 of v, and assume that the integration
manifold has been shrunk to the greatest possible extent onto the two faces of a
triangle determined byM and M2. (This process is described in detail after (5.9).)
We may think of this triangle as a probe into the complex domain. As (x, y) moves
along F 0, it may happen that it reaches a point (Xo, yo) at which M1 (say) is
tangent to F 0: this will be a pinch. Denote this tangential manifold by M’.
Then unlessM actually intersects F 0 at (Xo, yo), the point (x, y) will not be able
to continue moving along F 0: a portion of M is a barrier to further analytic
continuation. Thus the manifold of possible singularity of the integral consists of a
part of F 0 and a part of the tangential manifold M]’.

We may summarize our results in the following theorem.
THZOZM 3.1. Let u(x, y) be determined for real x and y by (2.6), in which

v(O’)=- v(, rl) is holomorphic for real and and satisfies (2.5) if k >0, or the
second of (2.4) if k O. Suppose that the singularity manifolds of v, p in number,
may be represented in the form F(, r/)=0 (j= 1,2, p), where the F are
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Im
FJ:O

(xo,Yo

,"x, y)
/ \

/ \

FIG. 1. Effect of a pinch. Broken line represents barrier to further continuation of the integral by
present method.

analytic and where F, F do not vanish simultaneously on F 0 (j 1, 2, p).
If none of the p sets of simultaneous equations (3.9) and (3.10) has a solution
(, rl) (x, y), then u can be continued analytically into the complex x, y-domain as

far as a singularity o]" v. I one (or more) o" these sets of equations has a solution
(, rt) # (x, y), then the corresponding point (x, y) may lie on a singularity manifold
ofu.

Remark. Since F =0 defines a two-dimensional manifold in the four-
dimensional space C2, the singularity manifolds of v do not form all or part of the
boundary of a domain in C2. Thus all points on every singularity manifold of v can
be reached by analytic continuation from the real domain, provided (3.9) and
(3.10) have no solution (sc, r/) (x, y).

3.1. An example. We shall illustrate the above conclusion by a simple
example, with a known solution, for the Laplace equation (k 0). Consider the
potential of a point singularity at (0, 0,-h)(h >0) in the sc, rt, r-coordinate system.
The potential at (x,y,z)is u(x,y,z)=l/R, where R2=x2+y+(z+h);
u(x, y, z) is regular at infinity in the sense of Kellogg. [This problem has the
following geophysical significance. Suppose that the Earth is represented by the
half-space st-< 0. Its density is assumed to decrease as sr decreases, so that the
resultant gravitational field is finite and uniform in " >_-0. Let a homogeneous (or
even radially stratified) sphere of radius -<h be imbedded in this medium with its
center at (0, 0,-h). Then the uniform field in sr =>0 is perturbed by that of the
sphere. The singularity in the potential of the perturbing field will be at the center
of the sphere, so the following discussion, coupled with that in 6, helps to locate
the perturbing body.]
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Let us suppose that z > 0. As in 2, we express u(x, y, z) in terms of the
(known) data on sr 0. On letting z tend to zero, we obtain the integral represen-
tation (see (2.6))

27ru(x, y)=-| (v(, n)/r) d an,
in which

V(, r/) -h(s2 4- ’0 q- h)-/.

Here p 1,

(3.11) F’(, r/)= s + ’!"/2 -}- h 2,

and F, F1, do not vanish simultaneously on F1-- 0.
It is not difficult to verify that (3.9), (3.10) have no solution in any finite region

of s, n-space. Therefore no pinch can develop, and u can be continued, and is
analytic, except on the singularity manifold of v. This agrees with the known form
of u(x, y) (=-u(x, y, 0)):

U(X, y) (X -- y2 -t- h2)-’/2.

We shall return to this example later when we wish to locate the real
singularities from knowledge of the singularities in the boundary data.

4. Dirichlet problem. When u is prescribed, and is holomorphic for real j and
r/, we use (2.9). On evaluation of the derivatives, this becomes

f# ik2Try(x, y)= [u(, r/)- u(x, y)] (1 -ikr) d dr
(4.1)

+u(x,y) f[eikr(1-ikr)-l]r d dr
Let ro 0 and write (4.1) as

2Try(x, y) [u(, r/)- u(x, y)] (1 -ikr) d dr
’<

(4.2) Ir [ e’r(1-ikr)-I ]-4- U(X, y) r3 d dr/
’<

+
r’>r

where r’ [(Xl-)+ (y- r/)2] 1/. It is easy to verify that the third integral in (4.2)
converges uniformly as 2+r/oo when x and y are complex and k =>0.
Furthermore, if we choose ro so that ro > x + y, then r will not vanish (see (A.3))
and this integral will be a holomorphic function of x and y in a neighborhood of
the real x, y-domain.

Consider next the first two integrals in (4.2). If we write e=1
+ (cos kr- 1)+ sin kr, we see that they may be written as

* u(, n)- u(x, y)
(4.3) d: dr//.3’<
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plus integrals with less singular integrands at r 0, of the type discussed previ-
ously. Then it is easy to apply Levi’s method to show that these integrals,
excepting (4.3), are holomorphic in x and y in a complex neighborhood of the real
domain; their analytic continuation may be ettected in the above manner.

We show that (4.3), too, is analytic in x and y, by expressing it as an ordinary
convergent integral to which Levi’s method applies. For real x and y, we have

* u(,f, ,q)- u(x, y)
d dnrro

u(, "0)-u(x, y)-(-x)ue(x, y)-(r/- y)u,(x, y)
(4.4) d dq

I.r()

+ (- x)ue(x, y) + (rl y)u.(x, y)
d

r’< ro

The last integral in (4.4) vanishes, as is seen by introducing polar coordinates on S,
with the pole at (x, y). Again, an application of Levi’s method demonstrates the
analyticity of the other integral on the right-hand side. We find

( U(,f, rl; x, y)-(-x)u(x, y)-(r y)u,,(x, y)
2Try(x, y)= d drlr

-j, U(sc, rt; x, y)
(cos kr 1)

d+
’< ro

+ if U(sC’ /; x, y) sin kr
r ds

(4.5)
ikf U(#, " X, y) ikr

r e d dr/
3.r’< ro

I [eir(1-ikr)-I ]-1- /,(X, y)
’<ro r3 d: dr/

.Jf- lr Iu(" rl) ei’(1- ikr)- u(x’ Y)] d, drl,
,>r r

wherein

(4.6) u(, n; x, y)=-u(,f, n)-u(x, y,).

Having established the analyticity of these integrals (and hence of v) by Levi’s
method, we may continue them into the complex domain by deforming that part
of S determined by r’ < ro in the manner described in 3. The process is repeated
step by step until a singularity is encountered. As in 3, we have the following.

THEOREM 4.1. Let v(x, y) be determined for real x and y by (2.9), in which
u(Q’)=-u(, rt) is holotnorphic for real and rl and satisfies (2.3) if k >0, or is
regular at infinity if k O. Suppose that the singularity manifolds of u may be
represented in the form Fi(sc, r/) 0 (j 1, 2, q), where the F are analytic and
where Fie, F do not vanish simultaneously on F 0 (j 1, 2, q). If none of
the q sets of simultaneous equations (3.9) and (3.10) has a solution (sc, r/) (x,y),
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then v can be continued analytically into the complex x, y-domain as [ar as a
singularity of u. If one (or more) of these sets of equations has a solution (, r/) #
(x, y), then the corresponding point (x, y) may lie on a singularity manifold of v.

(The remark following Theorem 3.1 is pertinent here too. We could also
illustrate our conclusions by the example of 3.1.)

5. Linear boundary condition. We consider now the boundary condition

(5.1) (2r)-lv(, r/)= a(, r/)u(j, r/) + b(, r/),

a and b being prescribed and holomorphic for real values of their arguments.
Since (2.3) and (2.5), or (2.4), must sti|l be va|id, we assume further that a and b
have appropriate behavior as p (- + r/2)1/2__> o:

(5.2)
a(, n) A (4)/p + O(p-),

b(,, r/) B(ch) eik’/p + O(p-3)

for k ---0. Then (2.6) gives the integral equation

u(x, y)= -f [a(s, r/)u(s, r/)+ b(, r/)] Kl(r2)ddr/

-i j [a(, r/)u(F,, r/)+b(F,, r/)]K2(r2) d,dr/.

We shall suppose that this equation admits of a solution that is consistent with
(2.3) or (2.4) as the case may be. We assume that u(x, y) has been determined for
real x and y and, by standard arguments, we see that u is a continuous function of
x and y. Then we may show, as in 3, that

(5.4) O(x, y)-- -iI [a(, r/)u(, r/)+ b(s, r/)]K(r) d dr/

is an entire function of x and y. Similarly,

(5.5) X(x, y)=- b(, r/)
K’(r2)

d dr/
3

is, in principle, a known function; it may be continued into the complex x,
y-domain in the manner discussed previously. Consequently we may write

(5.6) u(x, y) - a(,, r/)
K’(rZ)

u(,, r/) d, drt +aO(x, y),

in which

(5.7) (b(x, y) q(x, y) + X(x, y)

is known in principle, and is holomorphic for real x and y.
We shall extend (5.6) into the complex domain and show that the resulting

integral equation has a unique, analytic solution that reduces to the solution to
(5.6) when x and y are real. Further, we shall show that u(x, y) can be continued
analytically up to singularities of a or of b, if no pinches develop.
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Our equation is a special case of the system considered by Hopf [14, (6.1)].
(Although S is unbounded, the integral converges uniformly; we could write

I= IA + Is-A, where A is bounded and (x, y) A, and absorb the integral over S A
into the function .) Consequently, we shall extend (5.6) into the complex domain
in the manner of Hopf, and we may make use of his results when convenient. In
particular, we.note that Hopf’s analysis shows that u(x, y) reduces appropriately
when x and y become real, and also demonstrates the analyticity of u in a complex
neighborhood of the real domain. Hopf obtained an iterative solution and, to infer
analyticity in the large, we must refine his bounds for the iterates somewhat in the
present linear case. We obtain bounds that do not depend on values of u by
shrinking part of his. two-dimensional integration manifold in the four-
dimensional complex domain C onto the two faces of a triangle. The base of this
triangle lies in S, and r2= 0 determines its remaining sides. Since all functions
involved are holomorphic in the domain through which this deformation takes
place, we may use the Cauchy-Poincar6 theorem to conclude that the value of the
integral is unchanged, and that the unique solution that we then obtain by
iteration must be identical to the analytic solution found by Hopf. Thus we need
not explicitly demonstrate the analyticity of our solution. Since (5.6) is linear, we
can continue u(x, y) analytically in the above fashion step by step into the complex
domain until further progress is prevented.

Let j 1 + i2, /= r/1 + i/2. We shall deform S through the complex :,
,/-domain in the manner described in 3; now, however, we must analyze the
procedure in detail. Suppose S deforms into S-T+ W, where W is a two-
dimensional cone-like surface in/22. Its vertex is at (x, y) (x x + ix2, y y + iy2),
and its trace in the real st, /-domain is the circular boundary of the disc T, as
illustrated suggestively in Fig. 2. (This figure is accurate if x2 0 or y2 0. In these
cases, we may take 2 0 or r/2 0, respectively, and the axis marked Im then
corresponds to rh or s2.) The manifold W is specified by

x + (p x,), : x(1 ),
(5.8)

rt y + -(p2- y), n= y(1-);

see 14, (7.1)]. Here - is a parameter (0 _-< - -< 1), and (p, p2) is a real point on the
circumference of T, depending on a single parameter. The disc T is sufficiently
large (or x2 and y2 sufficiently small) that the manifolds M1, M). of r 0 (see (3.8))
meet W only in : x, r/= y, and that the point (xl, y)e T.

Thus, in a complex neighborhood of the real domain, we define u(x, y)
implicitly by

(5.9) u(x, y) {Iu/+ Is }a(,rl) Kl(r)u(, rt) ddrt+(x, y).

Hopf has shown that this equation possesses an analytic solution if
is sufficiently small; we assume that 3’ is thus restricted.

The manifolds M, M2, on which r2= 0, are defined by (3.8). They meet the
real domain in the points (x + y2, -x2 + yl) and (x- y2, x2 + yl) respectively; these
points lie in T. Let us now collapse the disc T onto the line segment joining these
points. Then Wwill deform into the two faces of a triangle. Its base will be I. When
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/
/

FIG. 2. Integration manifold Win the complex domain

we take pl xl + y2, p2 -x2 + y, we see that W will now touch M1 along the line
segment l given by

1 X,-I" ’y2, 2 X2(1- ’),
(5.10)

rt yl -x2, rt y(1 -),

for 0-< " =< 1. Similarly, W will touch M2 along the line segment 12"

sc, x, -y, x(1 r),

rt yl + ’x, rt2 y(1- ’)

for 0 <- " -< 1. The situation is suggested by Fig. 3 for a typical case in which all of
xl, x2, y, y2 are positive.

Since the integrand is singular along ll and l., the two faces of the triangle into
which W deforms must be joined by small cylindrical or cone-like surfaces
enclosing 11 and l:. We shall now show that, in the limit as these surfaces shrink
onto 11 and 12, the integrals over them contribute nothing. To be specific, let the
surface enclosing 11 be generated by straight lines that pass through -x, rt =y
and through a circle of radius e in the sc, rtl-plane, centered on (x + y:, -x2 + y):

:, x, + s(yz + e cos 0), :2 x(1 s),
(5.12)

rtl y- s(x- e sin 0), rt y(1 s),
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[m

(x,y)

,x++y,)

(x+Y2,-x2+Y)
FIG. 3. Integration mani[old W is shrunk onto the triangle defined by line segments l, ll, and 12.

for 0 -< s =< 1, 0 -< 0 _-< 2. Then on this surface,

(5.13) r2= s2e e-i[e cos 0 + 2y2 + i(e sin 0- 2x)].

Consequently,

(5.14)

where we have used x2 3’ cos 6, y2 "Y sir. 6, 3’ > 0. Choose e < 23’. Then

(5.15) Ir[-’ <- S
-a e,-a/2(2"Y 8 )-’/.

On this surface, the theory of complex differential forms [30, Chap. 4] gives

(5.16) dl drl se[e i(x: + iy) e-’ ds dO.

Thus Iddnl/Irl is of order e 1/2 as e-0, uniformly in s (0_-<s_-< 1), and the
contribution to the integral from this surface vanishes as e-0. Similarly, the
conical surface enclosing 12 contributes nothing in the limit.

Consider next the integral over the two faces of the triangle. To be definite,
we assume that (x, y) lies in the first quadrant and that x2 and y2 are positive.
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(This assumption is for convenience only, and does not restrict the validity of
Theorem 5.1, that follows.) Thus the base (1) of the triangle will be situated in the
1, 71-plane in the general manner illustrated in Fig. 3. We label the side of that is
toward the origin as positive (/+), and the side away from the origin as negative (l_.).
Then we can label the two faces of the triangle in the corresponding manner W+
will denote the face whose trace is l+, and similarly for W_.

We are interested in

fw a(, 7)
Kl(r2)

u(, 7) d d7.
/+w_ r

Now the integrals over W/ and W_ are equal. For we know that a(s, 7), Kl(r2),
and u(, 7) are holomorphic in a neighborhood of W. (Recall that we know that u
is holomorphic, on the basis of Hopf’s work.) However, in passing from a point on
W+ to the corresponding point on W_, r changes sign; this is discussed in the
Appendix. But W+ and W_ are oriented in opposite senses, and the assertion
follows.

The integral equation (5.9) now becomes

(5.17) u(x, y) -2 I a(, 7)
K(r2)

u(, 7) d dn +(x, y),

with

(x, Y)=--Is a(, 7)K!(r2)r u(, 7) dd7 +(x, y).

Note that neither term on the right-hand side of (5.17) is analytic.
As a consequence of [14], we know that (5.17) has an analytic solution,

provided that y is sufficiently small. Next we shall show that it has only one
solution, and we shall obtain bounds on the infinite series of iterates that in
principle enable us to continue u(x, y) analytically in the large.

A point on W_ is determined by (5.8), for appropriate choice of pl, p2, and -.
(p, p2) is now a point on the line segment l_; it is determined by a single parameter, where

(5.19) p=x-IJ,y2, p2---y+p,x2, -1-</x--< 1.

Then on W_,

(5.20)
71 yl "

and the differential form dd7 becomes

2 x2(1 ),

7 y2(1 -),

(5.21) d: d7 _iy2. d"

It is not difficult to see that W_ and the region G={(-,/x)[0-<__-=<l,
-1 _-</x _-< 1} have the same orientation: we may refer to Fig. 3, and take y2 0 (so
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that the Im axis corresponds to so2) for verification in this special case. For the
general case in which y2 0, the result follows by continuity. Moreover, on W_,

(5.22) r2- --y2’r2(1 --/x 2)

and, since arg r =-Err on W_ (see Appendix),

(5.23) r iyr( 1 -/x 2) ,/2,

where (1 --/.Z2) /2 is nonnegative on 1 --<ix -< 1. Thus

(5.24) Iw a("q)Kl(r2) 1 I_lu(Cs, r) d drl 3’ dr a(, rt)
r

K,(r2)
(1 tx2) /2 u(sc’ ) dt.

Let us now solve (5.17) by successive approximations:

(5.25)
Uo(X, y) re(x, y ),

y)=-2 [._. a(sC, r/)Un+l(X, K,(r2)
u.(, n) de d. +,(x, y), n=0, 1,2,...

Then

(5.26) Um+l(X, y)--- [Un+l(X, y)--Un(X, y)]’--’lI)’(X, y),

and we must demonstrate the convergence of this series as m -+ oo. Our proof will
be modeled on Garabedian [7, Chap. 4, 2]. Set

(5.27)

v,+,(x, y)= u..+,(x, Y)7 u.(x, y),

t0o(X, y Uo(X, y ),

u_,(x, y) 0,

n=0, 1,2,...,

and make the change of variable 1-r o’/3’ in the integral. Then

(5.28)

where

(5.29) ---- Xl--1[(1- O"/3")y " i0"x2/3",

rt y +/x(1 o/3’)x2 + io-y2/y.

Suppose that (x, y) H, where H is a closed convex, complex neighborhood
of the real disc (sq Xo) + (rt yo) < to, for some ro > 0; here (Xo, yo) is any point
on S. We assume that a and b are holomorphic in H. Hopf has shown that H may
be chosen so that the line segments l, 12 (and, hence, W_) are contained in H for
all (x, y) e H. (For H, we may take the closure of the domain (R) defined by Hopf
[14, 6].) We shall show that (5.26) converges uniformly and absolutely for
(x, y)e H; since (Xo, yo) is an arbitrary point, the result will hold in a complex
neighborhood of S.
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From (5.29), we note first that, for (c, rt) W_,

(5.30) :+=.
Then we define a function V, by

(5.31) V,(o’)= max [v,(sc, rt)[

where H {(:, r/)[(:, r/) H, 2z+ rt r}. Thus, since W_= H,

(5.32) max Iv,(sc, rt)l--< V,(r),

where W_ {(sc, r/)}(, n) e W_, + n 2},
Suppose that

(5.33) la(, n)K,(r)l <- A, (, n) H.

Then (5.28) gives

(5.34)

Iv,,+,(x, y)[N2A V,(cr) do"
(1-/x2) ’/2

27rA V, (or) do’.

,/2This inequality is true for all (x, y) H, with x2 + y Thus we may replace
the left-hand side by its maximum, for (x, y) H and x + y2 y2, to give

(5.35)

Then if

V,,+(T) <-_ 2rrA V,,(o’) do.

(5.36) Vo(O-) <= M,
for some constant M, and for all (, rt) H subject to (5.30), we find

(5.37) V,(y)<-M(2rrA)"y"/n!, n=0, 1, 2, ....
Thus, provided that (5.36) is satisfied, v,-0 and the right-hand side of (5.26)
converges as m c, uniformly and absolutely throughout H. Hence the sequence
defined by (5.25) converges uniformly and absolutely in H to a solution u(x, y) to
(5.17).

This solution is unique, for let U(x, y) be another solution that fulfills all the
above requirements, and consider w,-= U-u,. Then w, and w,+ are related by
(5.28), in which v is replaced by w. It follows that w,->0 as noo, and
U(x, y)=-u(x, y). Therefore this solution must coincide with Hopf’s analytic
solution, in a complex neighborhood of S.

It only remains to verify the inequality (5.36). We have Vo(X, y)= (x, y),
where qt is defined by (5.18) in which= q +X by (5.7). The function #, given by
(5.4), is an entire function of x and y. X, as defined by (5.5), is holomorphic in a
complex neighborhood of the real domain; its singularities can be found by the
methods of 3, and we choose H sufficiently small that it is holomorphic in H. As a



EXTERIOR ANALYTIC BOUNDARY VALUE PROBLEMS 149

consequence, we have

(5.38) I(x, y)[ =< M,, (x, y) H,

for some constant M1. Thus we need only verify the boundedness in H of

(5.39) Is a(sc’ ) Kl(r2)r u(, rt) dsc drt.

This integral is similar in form to L(x, y), which we considered in 3. When
we take account of (5.2), (2.3), (2.5), we see that the integrand of (5.39) behaves at
infinity like that of (3.1). The singularities at r 0 are integrable (see, for example,
(5.15)). Hence the above integral converges uniformly, and is bounded, for
(x, y) H. Thus

I’I’(x, y)l -< M, (x, y) e H,

and consequently (5.36) holds, as required.
We have seen that (5.9) (or (5.17)) has a solution that is holomorphic in a

complex neighborhood of the real x, y-domain. Hence if we let x and y take on
complex values, with x2 + y2 sufficiently small, we may use the Cauchy-Poincar6
theorem to deform S in (5.6) by a small amount through the complex domain, in
such a manner that x, rt y remains on the integration manifold. Then we may
repeat all our former arguments to prove that u(x, y) is analytic in a neighbor-
hood of the new integration manifold. Since our bounds on the iterates in the
series solution are independent of u, we may continue in this fashion, step by step,
until further progress is prevented. This will occur if (x, y) encounters a singularity
of or of the integral in (5.6). All singularities of arise through the function X;
these will be singularities of b, but others may arise if a pinch develops when we
continue t’ into the complex domain. If (x, y) approaches a singularity of the
function a, or if a pinch develops between r 0 and a singularity manifold of either
a or , then it will be no longer possible to prove analyticity of the integral in (5.6)
and, hence, of u(x, y). Thus we have the following.

THEOREM 5.1. Let u(x, y) be a solution to (5.3) for real values of x and y.
Suppose that a and b are holomorphic for real values of their arguments, and satisfy
(5.2). Let X be defined by (5.5). Then u(x, y) can be defined in a consistent manner

for complex x and y and, if no pinches develop, can be continued analytically up to
singularities of a and b.

The corresponding singularities of v may be found from (5.1).

6. Location of real singularities. In [25], we employed two methods to locate
real singularities of the solution when the position of singularities in the boundary
data was known. Here we shall consider only the second procedure, in which the
problem is regarded as a Cauchy problem for the Helmholtz equation in the
complex domain. The initial data on " 0 are u(sC, rt) and the values v(sc, r/) of the
’-derivative, continued analytically throughout the complex sc, r/-domain.

It is well known that discontinuities in the solution to a linear initial value
problem can occur only across the characteristics of the differential operator; see,
for example, [3, Chap. III, V, VI], [21]. For linear, analytic problems in the
complex domain, Leray 17] has stated that singularities in the data are borne by
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characteristic manifolds. This was verified in an explicit analysis for initial data
that contain poles or essential singularities by Hamada 10] when the characteris-
tics are simple. Hamada’s results have been generalized to systems of equations by
Wagschal [31]. The case of multiple characteristics has been examined by
Hamada [11], [12] and de Paris [4]. Subsequently, Wagschal [32] has shown that
under suitable conditions the conclusions are valid with no hypothesis about the
type of singularity in the initial data.

These results are all local, and their validity has been demonstrated only in a
neighborhood of the hyperplane that bears the initial data. Moreover, the
singularity submanifold in the initial hyperplane is itself assumed to be a hyper-
plane. The results also obtain for solutions to the Helmholtz equation near a
smooth, analytic singularity manifold, since we may introduce this manifold
locally as a coordinate hypersurface, and transform the problem into one of the
above kind.

For solutions to the Helmholtz equation, one might be tempted to suppose
that all real singularities lie where the characteristics that emanate from an
analytic singularity manifold of the data intersect the real domain. As we shall see,
this global result is not true in general. Nevertheless, as an illustrative example, let
us return to the problem for the Laplace equation that we discussed earlier ( 3.1).
This concerned the potential of a point singularity at (0, 0, -h), and we found that
the analytic singularity manifold for the boundary data on " 0 was

(6.1) 2+2+h2=0;

see (3.11). Evidently the initial manifold sr 0 is nowhere characteristic.
We wish to obtain the two complex characteristics that issue from (6.1) in

sr 0. That is, we want to determine functions &i(sc, t, sr) for i= 1, 2, such that
4i(, 7, r)= 0 is a characteristic manifold, and

(6.2)

In the present circumstances, the problem may be simplified by exploiting its axial
symmetry to reduce the number of independent variables by one. Thus we set
O (2+)’/2, with p >0 if +>0. The singularity submanifold (6.1) then
transforms into the two points p +ih in the complex p-plane, and the equation
for a characteristic #(O, ’)= 0 is

(6.3) + q 0;

see [3, Chap. II]. The appropriate solutions then are

(6.4) tO(p, ) p + i +/- ih,

in which any combination of the signs is permissible. Thus the characteristics
through p ih are qh q2 0 and those through p -ih are 3 4 0, where

(6.5)
O,(P, sr) ---- O + i(sr + h),

i//3(1o )--/o q- i(’-- h),

2(io, ’)-= io i(sr- h),

/4(p, )==- p i( + h).
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Had we not utilized the axial symmetry of this problem, we would have
obtained the two solutions

(6.6)
,(, n, ) h2 + 2 + ,2_ -2 + 2i(2 4- ’02) 1/2,

q2(s, n, ’) h2 + 2 4- ,]2__ 2__ 2i(2 + ,02)1/2.
It is evident that 4,--6,63 and 4,2--4’204.

We see that 4’, 04 0 meet the real p, st-domain in p 0, sr -h, whereas
4’2 03 0 meet it in p 0, sr h. Consequently, in the real :, ,0, st-domain there
are two possible singularities of the solution u, at : ,0 0, z + h. But only that
at (0, 0,-h) exists; it coincides with the given singularity of the solution. There is
no singularity at (0, 0, h) since for a boundary value problem the data u(:, ,0) and
v(:, ,0) must be related in such a manner that u is holomorphic in " _-> 0. However,
had we arbitrarily prescribed analytic data on " 0 with singularity manifold
(6.1), real singularities would have appeared at both points.

The fact that the above analysis leads directly to the singularity of the solution
is fortuitous. For we can give another relatively simple example in which this
straightforward but naive application of the theory of characteristics does not
locate all singularities in the solution. Suppose we consider the exterior potential
problem for a prolate spheroid situated in z < 0, for which the foci lie on the
negative z-axis and on which the potential is constant. This has a closed-form
solution [16, p. 56], and one may verify that its analytic continuation into the
interior of the spheroid is logarithmically singular on the line segment joining the
loci. As in 3.1, we may represent the solution in z > 0 in terms of the known
values of u and Ou/Oz on z 0. If we continue these data into the complex x,
y-domain, we find that they are singular only on the manifolds that would
correspond to point singularities at the foci: there are no singularities in the data
that correspond to those in the solution between the foci, and our naive applica-
tion of the theory of characteristics will not determine all the singularities of the
solution. Evidently a much more careful analysis of this aspect of the problem, one
that involves the geometry of the singularity manifolds and the characteristics
emanating from them, is necessary. In particular, this axially-symmetric example
shows that methods that are useful for locating singularities in two-dimensional
problems for equations with holomorphic coefficients must in general be modified
when applied to equations with singular coefficients.

7. Concluding remarks. In this paper, we have been interested in continuing a
solution to the Helmholt equation across a plane surface on which one of the
usual boundary conditions is imposed. The boundary here is infinite so, in a sense,
our work complements that of Filippenko [6], who considered the continuation of
a harmonic function across a portion of a plane, and whose boundary condition
corresponds to (5.1) with b-0 and a a polynomial. However, Filippenko was
concerned with constructing the continuation, whereas we have confined our
attention to locating the singularities and so determining the extent to which
continuation is possible. It seems likely that the present methods could be
modified to study continuation of a solution u across a portion So of an infinite
plane. Then conditions such as (2.3), (2.4) and (2.5) would be irrelevant; however,
our integral equations would involve not only integrals on So, but integrals on S,
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where $1 lies in the region where u is initially defined and is such that So + $1 is a
closed surface.

We have already mentioned that we have imposed rather strong conditions at
infinity in order to ensure uniform convergence of certain integrals and their
consequent analyticity in x and y. These conditions may be weakened, provided
that the integrals remain analytic.

The analysis of the problem when the bounding surface is closed and analytic
seems possible. Certainly axisymmetric problems can be handled, for they reduce
to problems in two independent variables. When axial symmetry is lacking, the
three boundary conditions studied here all give rise to integral equations analog-
ous to (5.9). However, integration is with respect to the parameters in terms of
which the bounding surface is defined, and complications arise on this account.

We conclude with two remarks that refer to this and earlier work. First, the
use of an integral equation to study singularities of its solution is not novel; see, for
example, [20] (Math. Reviews, 25 (1963), # 1413), in which a one-dimensional
equation is examined. This work predates [23] and [24] by several years. How-
ever, the application to problems of the present type and the use of two-
dimensional equations seem to be new.

Secondly, we note that it is because of the linearity of (5.1) that we are able to
continue u(x, y) globally. This is also true for problems in two independent
variables, and we take this opportunity to correct a statement in [25, 2]. There it
was asserted that global continuation from the real axis was possible in the case of
the boundary condition v f(u), provided that f was an entire function. The error
in that statement is apparent when we note that the nonlinear integral equation

(7.1) b(t)+ [4(s)] ds=-l/c, c=const.0,

has the solution 4(t)=1This is singular at c, although the right-hand
side of (7.1) is everywhere regular. In particular, if we take c c + ic_ (c2 # 0),
then 4(t) is holomorphic for real t; but we may choose c2 to make 4(t) singular at a
point as close as we please to the real axis.

Appendix. Behavior of r in the complex domain. The distance r is defined by

(A.1) r:=(x-)+(rt-y),
and r --0 for all real x, y, st, and r/. Let x x + ix2, y y + iy2, : st1 + isc2,
/= r/ + it/2, where xj, yj, sty, rb (j 1, 2) are real. Then

(A.2)
r2 (/1- 1) "+" (Yl-- r/’)2 (X2 2)2--(Y2- "q2)

+ 2i[(Xl-- :)(X2 {2) + (yl- 1)(y2- r/z)].

In the real so, rt-domain, this becomes

(A.3) r A2_ y2_ 2iAy cos (w 6),

where (see Fig. 4)

(A.4)
1 Xl +/ COS 0.), ’1 y + A sin

x2 y cos 3, y2 3’ sin 6,
with A ->0, y->O.
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"r]

FIG. 4. Geometry associated with discussion o[r in the complex domain

In the s, -plane, let Co denote the circle defined by A , when Xl and y
are fixed, and C the line (x- sC,)x2 / (y- )y2 0. Then Re r > 0 for all points
in this plane that lie outside Co. Define A arg by

(A.5)
arg

_12AY cos (to- 6)
tan

The behavior of A depends on the signs of x2 and y2. As x2 and y2 vary, the
radius of Co increases or decreases, and C1 rotates about the center (x,, y). For
purposes of illustration, we assume that x2 > 0, y2 > 0. Values of A are shown in
Fig. 5 for xl>0, y>0, x2>0, y2>0.

For large A,

(A.6) cos (a,

as A --> oo.

and

(A.7) Irl A + O(A-3).
Consider the function K2(r) =-(sin kr)/r. On writing the sine in exponential

form and using (A.6) and (A.7), we find

K2(r) (1/2/A){exp [ky cos (to -6)+ ikA]
(A.8) -exp [-k7 cos (to 6)- ikA ]}{ 1 + O(A-2)}
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(Xl-Y2, x2+ Yl
Co

(x,y)
"rr<A< 04

(x1+Y2,-x2+Yl)

FI6.5. Variation of arg in the El, "O,-plane

(A.9)

then

COS I, "1 P sin 4,

Po COS 4o, y Po sin 4o,

(A.IO)

o Oo cos (4,o 4, + O(o -’),

COS (.O COS I -[- O(lO 1),

sin w sin b + O(p-1)

as o-m.
It is easy to see that the O-relations in the above equations are uniform for x

and y in closed subsets of C2. Consequently, on substituting (A. 10) into (A.8), we
find

1
K2(r2) o {exp [ik{o -po cos (bo- b)} + k7 cos (4 6)]

(A.I1) -exp [-ik{p-po cos (4o-4’)}- k, cos (4’- 8)]}{1 + O(p-i)},

uniformly in x and y, as p
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In a similar manner, we see that-{exp [ik{p po cos (tho- b)} + ky cos (th 6)]K,(r2)/r
(A.12)

+exp [-ik{p-po cos (tho-b)}-ky cos (- 6)]}{1 + O(p-’)},

uniformly in x and y, as p .
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A CONNECTIONPROBLEMFORSECOND ORDERLINEAR
DIFFERENTIAL EQUATIONSWITHTWOIRREGULAR

SINGULAR POINTS*

FRIEDRICH NAUNDORF

Abstract. Using Heaviside’s exponential series, a power series solution of the differential equation
is split into formal solutions with known asymptotic expansions.

1. Introduction. We consider second order linear differential equations with
rational coefficients and two irregular singular points of integer ranks"

The ranks are

t--’ "31- "i ti + biti
i=-r dt i=--2r

X O.

r att=0 and R att=

where 0 < r, R <
The coefficients c. of a power series solution

(1.2) x(t) E c.t"+, 0<[tl <,

and the characteristic exponent p can be found numerically, if one interprets the
recursive relations

R 2R

(1.3) (n+p)(n+p-1)c.+ Z ai(n+p-i)c._i+ Z bc._=O

as a nonlinear eigenvalue problem; the eigenvalue p is to be determined so that
there exists {c.} with

(1.4) 0 < 2 ]c,I <

p and c, generally will be complex numbers.
For numerical methods that will be published elsewhere (Naundorf 16]), we

give a brief sketch: The nonlinear eigenvalue problem (1.3), (1.4) is treated by a
Newton iteration process (Ruhe [22]). At every iteration step a linear system of
infinite equations is to be computed, but this does not make trouble, because of
the band structure and the property of "quasi-regularity" (Kantorowitsch and
Krylow [10]) of the system.

For the Newton-iteration process, starting values for p and c, are needed.
This can be done according to a technique described in Bieberbach [3, pp.
138-140]. We suggest the following modification" The circuit matrix (Wasow [23,
p. 10] is computed by numerical integration of the differential equation (1.1) on
the unit circle from 1 to exp (2i). The eigenvalues of the circuit matrix are

* Received by the editors July 30, 1974, and in revised form March 6, 1975.
Institut fiJr Angewandte Mathematik der Universitit, Heidelberg, Germany.
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exp (2ripl) and exp (2rip2). If p, p2 (mod 1), then there exist two independent
solutions of the form (1.2); in the other case, the second solution may have
logarithmic terms. A control for the numerical integration process is

p, + p2 -ao (mod 1)

which follows, if one expresses the determinant of the circuit matrix by Wrons-
kians.

For the differential equation

dZx l dx ((1.6) dt---+-f +

(1.7)

(K, v, o are complex numbers), there is a well-known iteration process, based on
continued fractions (Morse-Feshbach [15, pp. 557-559]) that gives O and c,.

Analytic methods. If the rank r at t=0 is zero, then the characteristic
exponent p is a solution of a polynomial equation of degree 2. If r > 0, then O is a
solution of a transcendental equation, given by infinite determinants. The aim is a
transformation into an equation of only elementary transcendental functions.
There are examples in Morse-Feshbach [15, pp. 560-562] and Whittaker-
Watson [24, pp. 36-37 and pp. 415-416].

Formal solutions. The differential equation (1.1) has two formal solutions of
the form (k I, 2):

x,,(t) := exp --at " ht-’,
i-I s=O

Ak := a is determined from (A)2 + aRA + b2R 0.

We assume that

(1.8) o< I ,,1 < k 1, 2.

The condition is fulfilled, for example, if a 0 and b 0; for then A1 -A2 - 0.
In any case, the differential equation may be transformed by elementary substitu-
tions so that assumption (1.8) becomes valid. For every A, a_,,..., a,, tz then
follow by comparison of coefficients.

From formula (2.07) of Olver and Stenger 19], we see that

/ +/z2 -ao (R 1).

Equation (1.5)implies

(1.9) p, +p ---/z, +/z_ (mod 1).

From the formulas (2.12) and (2.13) of Olver and Stenger [19], it follows that
there are recursive relations for h of the following form"

S
(1.10) hs =--hs_ + E (Ai + s-’B,)h_,

i=1

(h, 0 if s < 0), with

if hs is to be determined,
if hi is to be determined.
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Here I is less than oo because r < oo, and {A,} and {B,} depend on a,...,
We normalize (1.7) by ho 1.

DEFINITION 1.1. With

x(t) 2 Tx,,(t), a < ph(t) <
k=l

(x(t) is the solution (1, 2), Tk are complex numbers), it is meant that for t-eo in
this sector, and all integers N and o-(tr => 1),

, c,t"+ exp --a’t’ ht + O(t--) + O(t-+)
n=N k=l i=1 s=0

(O is the Landau symbol for t- oo).
Remark 1.2. As we do not restrict the real part of the characteristic exponent

O to be in some interval of length 1, it is sufficient to take N 0 in the above
definition.

In this paper we give a solution for the following connection problem: How
does a power series solution (1.2) of the differential equation (1.1) behave near the
singular point at 0 and oo? Without loss of generality, we consider only
=eo, because the singularity at 0 may be transformed to oo by the

substitution - -1.
Using Heavisides’s exponential series (Hardy [8, pp. 36-41]) we split the

power series solution (1.2) into formal power series solutions with known asymp-
totic behavior. We extend the work of Kohno [12], [13], [14], who considered nth
order differential equations with one regular and one irregular singular point, to
second order differential equations with two irregular singular points.

The proposed technique is easier to apply than "Hopf’s principle" (see Hopf
[9], Knobloch, [11]), because one process of integration has then already been
done. Originally Hopf used a method to find convergent solutions of a differential
equation with specified asymptotic behavior. (Spoken in terms of Bessel’s differ-
ential equation, he constructed Hankel functions.) This implied serious restric-
tions, which are not present if one determines the asymptotic expansion of a given
power series solution (1.2).

As an example, we prove a connection formula given by Fubini and
Stroffolini [6] for the differential equation (1.6). Another approach for (1.6) is
made by Erd61yi [5] and Biihring [4] by using Laplace-type integrals.

General assumptions. Let (1.8) be valid.
Lemma 3.8 below is proved by a result Of Kohno [14]. For this lemma we

further assume that

(1.11) p/xk (mod 1), k 1, 2.

Notation. With integer p (and A given by (1.7)) we define the sector

(1.12) S(A, p):= {t; Iph()ttR)-27rpl< r}.

S(A, p) has central angle 27r/R. S(A, p) and S(A, p+ 1) are separated by one ray
with phase

(1.13) ((2p+ 1)Tr-ph(A))/R.
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Remark 1.3. Because of assumption (1.8), there is at least one set

U S(AI, p) or U S(A,p)
Pl p2

that contains a given 0.
Remark 1.4. If [ph(&t)-27r(p +1/2)1< 7r/2 for any integer p, then the

exponential term of x,,(t) vanishes for Itl-
2. Heaviside’s exponential series.
DEFINITION 2.1. By

F(t)--- , a, "+, a < ph(t) <

with complex number ;, and F(t) holomorphic for sufficiently large Itl in the
sector a < ph(t) </3, we mean (a) Y7=0 a,t" is an entire function, (b) 25_ a,t"+ is
an asymptotic series for F(t) 7=o a.t"+ in the sector a < ph (t) </3 for

Heaviside’s exponential series

E (n +
is equal to exp (t) for every integer-valued 6; otherwise this series is divergent
everywhere in the complex t-plane, but (Barnes [2, pp. 268-269])

(2.1) (t)exp z. (n + a)’

From this series we obtain in Iph(,t2)] < r,

exp (-2

Iph(t)] < Tr.

((M2)t)"+/2
+at

(n +(6/2)). E (ot)
ra--O m!

Replacing 6 by 6 + 1, we get a second series, linearly independent of the first:

exp (t2)+Ot "+’ [(,,-1)/21, (,/2)k+((+1)/2). a "-l--k

=_oo (k+((6+l)/2))!(n-l-2k)!

More generally, we get for every integer R _>- 1, a set of R linearly independent
series indexed by L 0, 1 R- 1:

(2.2) exp --t E g, "+, Iph(,t’)l< r,
i-

with A :=c : 0. These series are obtained by multiplying

)(2.3) exp t" "--.=_oo (n+--)---ii’.
by the Taylor series of exp (,]’ ((a/i)t).

tnR+L+
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We proceed to other sectors, which we index by the integer p" in S(A, p),

(2.4) exp wti ---exp -2rip
L_
R

g"t"+"

This formula is obtained as follows. If is in S(A, p), then exp (- i(2rp/R)) is in
S(A, 0). Hence formula (2.3) transforms into

g (n +((C +t/!

By differentiating (2.2), we get a recurrence relation for the g,"
R

(2.51 (n +
i=1

The g, (L =0,..., R-I) form a fundamental system of solutions for this
relation (2.5).

LEMMA 2.2. For every not identical vanishing solution of (2.5),

lim sup {Ig.I. (!)l/R}l/n

Proof. See Appendix A.
Remark 2.3. Kohno 14] defines another fundamental system of solutions for

(2.5). There is just one linear transformation that relates his system to ours.

3. The connection problem.
Problem 3.1. Compute complex numbers Tk(k 1, 2), so that for a given ray

ph(t) and It] ,
(3.1) x(t).-- 2 Tx.(t)

k=l

is valid in the sense of Definition 1.1.
THEOREM 3.2. ff (1.8) and (1.11) are fulfilled, then Problem 3.1 is solved by

the following Method 3.3.
Method 3.3.
Step 1. For each index k, there are R series of the form (2.2)"

6 S(hk, 0) L=0,..., R-1.

(3.2)

(3.3)

Step 2. Formal multiplication"

s=O
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Step 3. The coefficients c, of the convergent series solution (1.2) depend
linearly on the

R-1

(3.4) c., E /3k,ff,’’ for all n.
k=l L=0

Compute the 2R complex numbers/3k,, by a system of 2R linear equations (3.4)
with N_-< n < N+ 2R for sufficiently large N. Take N so that for all n _-> N,

R 2R

[a(n + 2R -i + p)[ + Ib[ < [(n + 2R + p)(n + 2R 1 + P)l.
--2r

Step 4. For integers pk we define

(3.6)

Then set

(3.71)

(3.7)

T(p := exp 27rip
L=O

L +p -/x)R /3,,.

T :: T(pk) if 6 S(A, p),

T :: 1/2(T(pk)+ T(p + 1))

if is on the boundary ray that separates S(h, p) and S(A, p + 1).
Remark 3.4. We will prove (3.71), while the choice of T in formula (3.72) has

been arbitrary according to Remark 1.4.
Proof of Theorem 3.2.
Step 2 of Method 3.3.
LEMA 3.5. For each solution of the recurrence relation (1.10),

lim sup ([h[(s!)-/)/<- [A/[-1/R.

Proof. See Appendix A.
Remark 3.6. This result agrees with Kohnos [14, Thm. 3.3] in the special case

of a second order differential equation.
LEMMA 3.7. If the condition (1.8) is fulfilled, then the series (3.3) converges

absolutely as fast as the geometric series Y’,=o [A/(AA)[/, and --o f,t" is an entire

function.
Proof. See Appendix A.
Justification of Step 3 of Method 3.3. See Appendix B.
Step 4 of Method 3.3.
LZMMA 3.8.If (1.11) is fulfilled, then

Y f, Y g,+h "+ O exp 7t )t’--x + O(t+"-’)
n=O s=O i=1

for [ph (t)[ r.

Proof. By the behavior of h, as given in Lemma 3.5 and assumption (1.11),
Kohno [14] derives this result (see [14, pp. 335-336, (5.9) and (5.11)]). He
chooses another fundamental system for the recurrence relation (2.5) as we did.
They are, however, linearly dependent.
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LEMMA 3.9. For every integer r >-- 1 and S(A, .0) and the assumptions (1.8)
and (1.11), one has

Z f,t"+P=exp --t’ Z hst-s+O(t--l) +O(tP-1)
.=o ,_ s=o

Proof. With 6 := p- we have

g,+sh "+P= ht-" g,+t"++
=0 s=O n=0

--exp --t t" h +O(

By Lemma 3.8 we get

f. f,t"+P exp --[t )t Z hst + O(t--) + O(tP+R-a).
=0 s=0

Similarly we can derive

E f,t"+P=[ ]+O(tP-l)

and this is the assertion.
LEMMA 3.10. If S(hk, pk), then

or Z f,t"+P [" ]+ O(t-),
n-----0

, f,’"t"+P exp 2ripk
L

E + O(tP-),
n=O R

where

E := exp a__j_ t’ ’k ht + O(t--)
i=1

is an abbreviation
Proof. This results from formula (2.4) and Lemma 3.9.
COROLLARY 3.11. For each k 1, 2 and S(Ak, Pk),

Y
R-1

f.,, t.+p /p-l)/3,,,. T (p,). E + O(
--0

Here E is the abbreviation used in Lemma 3.10 and T,(p,,) is defined in
formula (3.6).
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Proof. The left-hand side is written as

RI / ( /-’-[-P- k)}{ (exp 2,n’ip,
R

,,L exp -2"rrip,
n=O L=O

By Lemma 3.10 the assertion then follows.
With Remark 3.4, Step 4 of Method 3.3 is justified.

4. An example. The differential equation (1.6)"

dZx
dt

has power series solutions

,, .x=O,

(4.1) x(t)= Z -.2,+o
c2,t 0<ltl<oo,

with

(4.2) 0)K2c2,_2+{(2n+p)2 u_}.c,_ c,+=0.

There is a well-known equation for O involving only elementary transcendental
functions (see Morse and Feshbach 15, p. 562]). If the characteristic exponent O is
not an integer, then the two solutions (4.1) and x((0)/(iK)), -1) (if : 0 and 0) # 0)
are linearly independent.

The formal solutions (1.7) are (k 1, 2)

xkas (t) exp (&t) "k Z h t-s,
(4.3) s=o

h 1,2 -+" i and /x liar2 -,

The h are determined by hi i-SAs and h =(-i)-SA, where As is defined by
As =0 if s<0, Ao= 1 and

2sAs {(s _1/2)2_ v2}As_l + 0)2As_3"

Application of Method 3.3.
Step 1. With the abbreviation 6 := p +1/2, one has

exp (&t)-- Z g,t"+, 6 S(&, 0),

where g, := (&)"+/(n + 6)!
Step 2.

As h exp (+i(7r/2)), we

F. := 2 g,,+shs.
0

get f,= exp (+i(7r/2)(6 + n))K+"S, with
S, := s%o (AsS)/(n + s + 6)!. In these formulas + is to be taken if k 1, and is
to be taken if k 2.
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Lemma 3.5 implies that
lira sups_,o 4/IAsK/s!I<--_. Hence we get

AsKs. sXo ;;7-

lim sup_ 41hl/s! 1/IA1- A21

(4.4) -(n+6)! n+s+6
S

1
{1+ O(n-1)}.
(n+)!

Step 3. There are complex numbers/3 so that

c,= flkf for alln.
k=l

Especially we have, for fixed n,

kfn--1-- C2n--1
k=l

Z ff. c2..
k=l

From

/3kf. (:a+"&){/3 exp (i-(( t-))--2 exp
k=l

we obtain

or

with the abbreviation

D := C2n{(iK)2nK’S2n}-l.

D is independent of n, because/31 and/2 are independent of n.

(4.5) /31=-exp -6 2=exp 6

There are two particularly important ways for computing D. First we may take
n 0 and get

(4.6a) D Co{KSo}-1.

Secondly we may compute the limit for n - oo. By (4.4) we obtain

c2,,(2n+6)!
(4.6b) D lim

(iK)2"K
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Step 4. We determine the connection coefficients Tk for the sectors
S(Ak, p) {t; [ph(At)- 2rp < ,r}. Let us assume for simplicity of notation that K

is real > 0. Then ph(A,)= r/2 and ph(A2)=-,r/2.

3 7r
S(A,, O) --r < ph(t) <-,

5
S(,t 1)" -tr<ph(t) <

2

5
S(A2,-1)’--zr<ph(t)< 2’

r 3
S(A., 0)" --< ph(t) <-zr.

We set T (pk) := exp (2 zrip6) B.
Restricting ph(t) to r < ph(t) <-_ r, we have computed the coefficients T in

the expansion x(t)---Z,=, TxL(t) as

TI(0) in -,r < ph(t) < r/2,
T T(1) in r/2 < ph(t) <-_ r,

1/2(T(0) + TI(1)) if ph(t)= r/2,
(4.7) T2(0) in-r/2 < ph(t) <- r,

T2= I T2(-1) in-r<ph(t)<-zr/2,
1/2(T:(0)+ T2(-1)) if ph(t)=-,r/2.

Especially in the sector -r/2 < ph (t) < r/2, we obtained

(4.8) --D2x(t) exp( i6)xlas,(t)+exp(i6) xas(t)

while in r/2 < [ph(t)l < ,r, we have obtained the formulas (4.9a) and (4.9b) below.
As

exp (Alt)- 0 inO<ph(t)<r
and

exp (At)- 0 in -r < ph(t) < O,

we may write formula (4.8) for -r < ph(t)< r too.

--D2 X(t)"exp (2ri6) exp (-i6)xas(t)+exp (i) (t)

(4.9a)

(4.9b)

in -< ph(t) < r,

x(t)---exp x,s(t)+exp (-2ri6) exp i-if6 x,D

in -r < ph(t) <
2"
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However, it is better to take the expansions (4.9a, b) in,Tr/2 < Iph(t) < 7r than to
take (4.8) as is indicated in 5.

Application to the work ofBiihring [4]. Biihring chooses K 1 (without loss of
generality) and defines two types of convergent solutions of the differential
equation (1.6). The solutions g+/-o(t) are the power series solutions (4.1). The
solutions gl(t) and g2(t) are defined such that they have the asymptotic expan-
sions (t oo):

g(t)--,exp (-i)" xlasy(t) in-Tr<ph(t)<27r,

g2(t) exp(iff) xasy(t) in -27r < ph(t) <

Thus Bfihring generalizes the theory of Bessel functions (go(t)) and Hankel
functions (g(t) and g(t)) to the more difficult case of the differential equation
(1.6).

Using Laplace-type integrals he shows (equation (85)):

g((t) +exp

r +O and V being a factor of proportionality. In the sector -r < ph(t) < r, we
get the asymptotic expansion

Vogo(t)"-exp (-i6)xlasy(t)+exp (i6)xZs,(t).
But x(t) in (4.1) is equal to go(t), if we normalize Co 1; hence comparing this last
asymptotic relation with (4.8), we see that

Vo 2/D.

Using (4.6a), we get in the case c,, and K 1,

Vo=2y
-_o(S+O+)!

and
V_o=2 y

_-o (s-o +1/2)!

These formulas were given by Biihring [4, p. 1459].
A connection formula o[Fubini and Stroffolini [6]. In order to apply (4.6b), we

have to determine the asymptotic behavior of c2, for large n. This can be done
using infinite determinants.

Introducing d, := c2,, we get from (4.2) the equations (if pC +u(mod 2)):

(4.10)
(2n + p)-- v" d,_ + d,

(2n +p)- v: d,+, 0.

Fubini and Stroffolini then define Ao(M, N) to be the finite determinants of (4.10)
with the diagonal elements all equal to 1 and containing the rows and columns of
(4.10) with indexes =>M and =<N. As is seen from a well-known criterion
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(Whittaker and Watson [24, pp. 36-37]), there exist Ao(m, oo), Ao(-oo n) and
Ao(-oo oo), which are defined by the corresponding limits. Also we have

(4.11a) lim Ao(m, )= 1,

(4.11b) lim Ao(-o,-rn) 1.

The characteristic exponent p obeys

(4.12) Ao(-oo oo) 0.

Ao(n, oo) can be computed, using (4.1 la) and

(4.13a) Ao(n, oo) Ao(n + 1, oo)-
K 2. to 2. Ao(n+2,

{(2n + 0)2- ,} {(2n + 2 + 0)2- ,2}.

For computation of Ao(-oo -n) one can use (4.11b) and

(4.13b)

Ao(-oo, -n) Ao(-eo -n-l)+
K2. to Ao(_oo _n_2)

{(2n -0)2. u2}{(2n + 2-0)

From (4.13a) we get

(4.14a) d+"=
2!

((O + ,)/2)! ((O- ,)/2)!
(n +((p + ,)/2))!(n +((O- ,)/2))!

Ao(-oe,-1)" Ao(n + 1,

From (4.13b) we get

d_-,-

(4.14b)

(-(O + v)/2)!(-(0- ,)/2)
(n -((p + v)/2)) !(n -((p- v)/2))

Ao(1, oo). Ao(-oo -n,-1).

In these formulas we assume n -> 0. We remark:

(4.15) do A(-oo,-1). Ao(1,

If (4.12) is fulfilled, then d, d2. By means of Stirling’s formula we find

(2n+p+1/2)!
lim,_.oo 22"+" (n + ((p + ,)/2))!(n + ((O v)/2))!

and conclude that

(4.16) +--- ao(-oo,-1).
2 (2n +O +1/2)!"
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Now we apply (4.6b) (with c2, d+,):

D (P + v)(,O_ V)Ao(_oo, l)

2 2

From equations (4.5) we obtain

(4.17) flk=A(--’--l)2.v .exp{q:irr(p+l)}.(P+V)t ...(P--v)t(2)0+1/22 2"2"7
where the sign is to be taken if k 1, and + if k 2. The connection coefficients
are finally

(4.18) and T2 =/32

valid in Iph(Kt) + (rr/21 < rr,

valid in Iph(Kt)-(rr/2)l < rr.

The results here have been obtained with the assumption that0 +v (mod 2), but
are also valid in the exceptional case (Naundorf 16]).

A special case, where this exception holds, is given for Bessel’s equation

d2x
dt 5; + x 0.

Then 0 + v and A(-oo, 1)= 1, so we get from (4.17),

2ilk=
2
exp q:i- 0+ (0!)2.

Here Co 1. If we normalize co 1/(20 !), we have to replace
i(rr/2)(O +1/2)) and we obtain the asymptotic expansion of the Bessel’s function
Jo(t):

(4.19) 2L (t) H’o,., (t) +H,.,, (t)

in the sector [ph(t)[ < /2.
Here we have set

Ho,,sy(t) := - exp -t- p +

/t exp {i(t-(p+))}(1+i402--1 )8t

Ho,.,y(t := exp p + xa,(t)- exp {-i(t (0 +))} (.1 i40 "’).
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We remember that with Hankel functions Ho(t) there is

2Jo(t) Ho(t) + I-Io(t)
and Ho(t),--Ho,,sy(t in -r < ph(t) < 2r,

H2(t)---Ho,asy(t) in -2r < ph(t) < r.

According to (4.9a), we have in r/2 < ph(t) < r the expansion

(4.20) 2J(t)--- exp (2rri(p +))H;.as()+H2.,,(t).
S. Comparisons of equivalent asymptotic expansions in the case of Bessel

functions. From the formulas 9.1.37 and 9.1.38 of Abramowitz and Stegun [1],
one obtains

Ho(t) =-Ho(t)(e2" + 1)- H(t e-2"),

hence by an argument found in Olver [18, p. 240] one has

(5.1) /-o (t) -(e’’ + 1)Ho.,,(t) + H,.,(t)
in the sector O<ph(t)<2rr. In O<ph(t)< rr, this expansion and

(5.2) Ho(t)’-- Ho,,(t)
are asymptotically equivalent. But the error bound (Olver 18]) of (5.1) is less than
the one of (5.2) in r/2 < ph(t) < rr, while in 0< ph(t) < r/2, the opposite is true. A
complete discussion is given by Olver 18, p. 268].

Hence it is suggested that one expand J,(t) in O<ph(t)< rr as follows (see
Table 1):

TABLE

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Jo(Id exp(i-at))

1.00 + 0.00
1.00 + 0.06
0.98 + 0.25
0.92 + 0.56
0.75 + 0.97
0,40 +i 1.46

-0.22 + 1.94
-1.19 +i 2.28
-2.56 + 2.29
-4.30 +i 1.69
-6.23 + i0.12

(H).,,y(t) + Hg.asy(t))/2

0.77 0.47
0.72 + 0.07
0.73 +i 0.51
0.68 + 0.99
0.33 + 1.50

-0.25 +i 1.98
-1.20 +i 2.32
-2.56 + 2.32
-4.29 +i 1.70
-6.22 + 0.12

(-H,,sy(t)+ H,,sy(t))/2

1.11 +i0.11
1.04 + 0.23
0.94 + 0.55
0.76 + 0.97
0.40 +i 1.45

-0.22 + 1.94
-1.19 +i 2.28
-2.56 + 2.29
-4.30 +i 1.69
-6.23 + 0.12

The numerical values of

do(Itl exp (i4aa’r)) bero(ItD + ibeio(Itl)

were taken from Abramowitz and Stegun 1, p. 430].
The asymptotic series appearing in n).asy(t) were computed until the smallest absolute value appeared.

(5.3) 2J(t)-H/,,a,(t)+HZ,,,(t), O<ph(t)< r/2

(5.4) 2J(t)-exp(Zrri(p+1/2))H/,,,(t)+H,,(t) in rr/2<ph(t)<rr.

These formulas we obtained in (4.19), (4.20).
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Appendix A. The recurrence relations (1.10) and (2.5) are Perron-Kreuser
difference equations of the following form (A.1). Gautschi [7] reviewed this
theory on page 35 in the special case of three-term recurrence relations.

(A.1) y,+,,+Ank’(l+o(1))y,+.,_+...+A,,nkm(l+o(1))y,=O
for n =0, 1, 2, .

By the symbol o(1) is meant an expression that vanishes as n. Ai are
complex, ki are real numbers. We set ko := 0 and ki := -c if A 0. P := (i, k,)
are m + 1 points in a plane.

DEFINITION A.1. The Newton-Puiseux diagram for (A.1) is an upward
convex polygon connecting Po and P, such that no Pi lies above the polygon and
the only corners are contained in the set of the points P,, say,

Remark A.2. Let qj be the directional derivative of the linePejPej/,. Then by
construction of the polygon,

qo > ql >" ) qg-1.

The following Lemma is part of Perron’s [21] Theorem A.
LEMMA A.3. There is a fundamental system of solutions of (A. 1) such that for

each solution of this system there is just one line derivative qj, 0 <-_ j < g, with

lim sup 4]y.l(n !)-*-Icrl : o,

and cr 0 is a root of the equation

(A.2) Y)A,z- O,

where A,z-’ appears in the sum, if P lies on the line PejPe+,.
Proof of Lemma 2.2. The Newton-Puiseux diagram for the recurrence

relation

R O

n+6g.-, aR =A 0,
i=1

consists of one line connecting the points (0, 0) and (R,-1). The directional
derivative of the line is qo=-l/R, and equation (A.2) is 1 -Az-R =0. Hence all
solutions of the recurrence relation that do not vanish identically, obey

lim sup 4]g.l(n

Proof of Lemma 3.5. The Newton-Puiseux diagram for the recurrence
relhtion

S
h -- h_. + 2 (A, + s-1Bi)h_,

i=1
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consists of at least 2 lines, if I > R. Line 1 connects the points (0, 0) and (R, 1),
qo 1/R is the line derivative, and equation (A.2) is

Then a seconcl line begins in (R, 1) with line derivative ql < O.
Hence there exists a fundamental system of solutions which may be separated

into two classes. In the first class, the solutions obey

lims_.osup lKl(s!)

These solutions all dominate those of the second class, which proves Lemma 3.5.
ProofofLemma 3.7. The Lemmas 2.2 and 3.5 imply that for every positive

there exist constants M and M2 such that for all n => 0 and s => 0,

and
]h,I < M_(laAI-’/ / )(s!)’/.

Hence there is an g that will be arbitrarily small for the appropriate choice of e, so
that

So there is a constant M3 with

if I 1< I. From this estimate it is seen that .C,, f.t" is an entire function.

Appel/aix B.
LEMMA B.1 (Perron [20]). The coefficients of the system of linear equations

(B.1)

may Uifill

with

(a+b.)y.+=w, /x=O, 1,2,

ao + b,o # 0, /x 0, 1, 2,

Ib,l<-k.o, 0<0<,

lim k, 0, lim sup w,, ]=< 1,

and the function F(z) := ,o a,z" regular in Izl 1.
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If n(>=O) is the number of zeros of F(z) in Iz] <= 1 (counted according to their
multiplicity), then the general solution of (B. 1) with the constraint

lim sup 4lye[ 1

has exactly n arbitrary constants B and has the form

y. y.o + Bx..
A=I

IfM is a sufficiently large index, then there is just one such solution, for which the n
unknowns y, y+, , y+,_ have given values.

Remark B.2. How to choose M is described in Perron [20, p. 8].
We now justify Step 3 of Method 3.3.
LEMMA B.3. f,’ are solutions of (1.3) with

lim sup 41f"l 0.

The coefficients c, of the multiplicative solution (1.2) also have the behavior

lim sup xc,I 0.

Proof. The formal series Y,-o f,t"+" is a formal solution of (1.1), hence the f,
are solutions of (1.3). As ,o f,t" and ,o c,t" are entire functions, the behavior
of f,, c, for n --> follows.

LEMMA B.4. There are constants k,, (uniquely) with

R-1

Cn E [k,Lfkn"L for all n.
k=l L=O

Proof. We write the recurrence relations (1.3) in the form

R ai(n + p i) 2R bi
Ca-+- (n+p)(n+p 1) c"-+ Z (n+)(n+ -1)i=--r i=--2r P P

With the abbreviation m := n- 2R we get

b2R
Cm

(m+2R + p)(m + 2R +to- 1)

{+... + l+(m+2R_l+o)
bo

+(m+2R+o)(m+2R-l+o) c,,/R

b--2r
(m + 2R + p)(m + 2R 1 + p)

Cm+2(R+r) O.
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Now we apply Lemma B. 1 with 0 ,
k,, (1/m)22("+ max {la, I, Ib[}

and F(z)= z. F(z) has 2R zeros in Izl_-< 1. As the 2R solutions f,’" of the
recurrence relation are independent, we get the assertion, using Lemma B.3.

LEMMA B.5. For sufficiently large N, the system of linear equations for the
unknowns 1,,

R--1

[t,,Lf’L=c,,, N <-n<N+2R,
k=l L=O

has exactly one solution.
Proof. The proof results from the last part of Lemma B. 1 and from Lemma

B.4.
LEMMA B.6. N can be chosen as given in (3.5).
Proof. See Naundorf 16].

Acknowledgment. am indebted to Professor Werner Romberg for the
suggestion of this problem and to him and Professor Wolfgang Biihring for
many discussions.
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ON THE BOUNDEDNESS AND STABILITY OF SOLUTIONS OF
SOME DIFFERENTIAL EQUATIONS OF THE FIFTH ORDER*

E. N. CHUKWUt

Abstract. The paper studies the equation (1.1) in three cases: (i) p0, (ii) p(0) satisfies
]p(t, x, y, z, w, u)l<=(ao+lyl+lzl+lwl+lul)tO(t), where q is a nonnegative function of t; (iii) p (0)
satisfies Ip(t, x, y, z, w, u)l--< A <, where A is a positive constant. In case (i) the asymptotic stability
(in the large) of the solution x 0 is studied; in case (ii) a general estimate and a boundedness result are
deduced for solutions of (1.1); in case (iii) the ultimate boundedness of all solutions of (1.1) is proved
in such a way that the ultimate bounding constant is independent of any solutions chosen. The major
contribution of the paper is the successful generalization of the Routh-Hurwitz criteria for linear
constant coefficient fifth order equations to the nonlinear case, a generalization that involves the use of
Lyapunov functions. The results obtained seem to be as general as recent analogous treatments of
fourth order equations.

1. Introduction. Although not of such universal occurrence as second, third
and fourth order equations, fifth order systems do arise in a number of applica-
tions, for example, in some three loop electric circuit problems and in control
theory. (See Rosenvasser [13].) It is, therefore, of some importance that the
quantitative behavior of solutions of such equations be investigated. Inspired by
researches on fourth order equations by Ezeilo [4], [5], Harrow [9], [10], [11],
Lalli and Skrapek [12] and Sinha and Hoft [14], we initiated such a study in [2].
The results obtained are comparable in generality with the more recent results of
Harrow 10]. The present paper considers a different fifth order equation, namely,

(1.1) x’ + a2"+ f2()?) + c5/+ f4(x) -t- Zs(X) p(t, X, 2, 5/, it’, "2"),

or its equivalent system
=y, =z, =w, =u,

(1.2)
-au -f2(w)- cz -f4(y)-fs(x) + p(t, x, y, t, w, u),

obtained from (1.1) on setting

d4x dSx
x =’ii x(= .

dt dt

It is assumed as basic that a and c are constants, and [, [4, f5 and p are continuous
functions which depend only on the arguments displayed and are such that the
existence and uniqueness of solutions, as well as their continuous dependence on
the initial conditions, are guaranteed.

The paper investigates (1.2) in three cases: (i) p--0; (ii) p ( 0) satisfies
]p(t, x, y, z, w, u)l<=(ao+lyl+]zl+]w]+[ul)4,(t), where 4’ is a nonnegative func-
tion of and Ao constant; (iii) p ( 0) satisfies [p(t, x, y, z, w, u)l-<- A <, where A
is a constant. In the first case, the asymptotic stability (in the large) of the trivial

* Received by the editors April 26, 1974, and in final revised form February 25, 1974.
"t Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115.
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solution x 0 is proved, and in the second case, an interesting bound is deduced
for the solutions of (1.2). In the third case, sufficient conditions for ultimate
boundedness are stated and are such that the ultimate bounding constant is
independent of any solutions chosen. The methods of investigation are those of
Lyapunov and its refinement by Yoshizawa [17]. While Lyapunov’s second
method is used to study the first two cases, the well-known Yoshizawa type
argument adapted to a fifth order system is used to prove the ultimate bounded-
ness of solutions of (1.2).

When the first two cases are compared with analogous treatment in 10], the
results here are more general; they are comparable to the recent work of Ezeilo
and Tejumola [8]. Ultimate boundedness results of nonlinear differential equa-
tions (treated in case (iii)) are both important and interesting. For the status of
such research see Tejumola 16] for the second order, Ezeilo [-7] and Chukwu [ 1]
for the third, Ezeilo and Tejumola [8] and Chukwu [3] for the fourth. The present
work is the first attempt to obtain sufficient conditions for ultimate boundedness
of solutions of fifth order differential equations. The result obtained is comparable
in generality to the work of Ezeilo and Tejumola [8] on fourth order equations.

To appreciate what the author considers to be the main contribution of the
paper, consider the linear constant coefficient differential equations,

(1.3) x5) + d’x"+ b’+ cJi + d2 + ex O.

A necessary and sufficient condition that all solutions of (1.3) tend to the trivial
solution x 0 as oe is the Routh-Hurwitz criterion"

(1.4)
a>0, ab-c>O, (ab-c)c-(ad-e)a>O,

A (dc- be)(ab c)-(ad e) > O, e > O.

It follows immediately that

(1.5) a>0, b>0, c>0, d>0, e>0, ad-e>O, dc-be>O.

The asymptotic stability result to be proved below has hypotheses generaliza-
tions of the Routh-Hurwitz criterion (1.4)" the nonlinearities are required to
satisfy these generalizations. The major contribution of the paper is.the successful
generalization of (1.4) for linear constant coefficient equation (1.3) to the non-
linear case (1.2). As will be seen below the generalization rests on an explicit
Lyapunov function.

2. Statement of results.
TI-IEOREM 1. Suppose in (1.2) p(t, x, y, z, w, u)---0; and

(i) the constants a, b, c, d, e are such that (1.4) and (2.1) below holds"

(dc-be)(ab-c)
A -(aft(y)- e) > 2eb for all y,

ad- e
(2.1)

(dc be) y(ad e) e
A2 >0,

ad e d(ab c) a
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where

(2.2) ,=/J4(yy), y#:O,

y o,
and e is a sufficiently small positive constant;

(ii)

(iii)
f(w)

_
b,

w

for all x;

f(O) O, i= 2, 4, 5;

wO, f4(Y) >-- d,
Y

f’s(x) <-_ e

(iv) f(x) sgn x > O, x # O, Fs(x)-- fs(s) ds -+ oo as Ixl-+ oo;

(v) O<-fz’w-------Z’-b If’4(y)-dl<=e2, e-f’(x)<-e3;
w

for all x, y, w O) and for suflficiently small el, e2 and e3,

eA
(2.3) fi(Y) _f4(Y) =</3 < y 0.

y d2(ab-c)

Then every solution (x(t), y(t), z(t), w(t), u(t)) of (1.2) satisfies
(2.4) x2(t)+ y2(t)+z2(t)+ w2(t)+u2(t)O asteo

Remark. The.special case

fz(w) bw, fn(y)= dy, f(x)’= ex,

where b, d, e are constants should be noted.
In this case the hypotheses (ii), (iii), (iv) and (v) are trivially satisfied, while

condition (i) reduces to the Routh-Hurwitz conditions for the asymptotic stability
(in the large) of the trivial solution of (1.3).

THEOREM 2. Suppose in (1.2) that

f2(O) 0 f4(O),
and the conditions (i), (iii) and (v) of Theorem 1 hold. Furthermore

(i) fs(x) sgn x > 0 for Ix[ >-- 1,

(ii) the function p(t, x, y, z, w, u) satisfies

(2.5)

for all t, x, y, z, w, u, where Ao is a constant and d/(t) >- 0 is a continuousfunction of t.
Then for any given finite Xo, yo, Zo, Wo, uo, there exist constants

K, K,(xo, yo, Zo, Wo, Uo), i=0, 1,
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and constant A > 0 whose magnitude is independent of Xo, yo, Zo, Wo, Uo, such that
any solution x(t), y(t), z(t), w(t), u(t), of (1.2) determined by

(2.6) x(0) Xo, y(0) yo, z(0) Zo, w(0) Wo, u(0) uo

satisfies for all >= O,

(2.7) y(t)+z(t)+w(t)+u(t)<-_Ko l+-(t) 1+ (r)X(r)d"

(2.8) fs(x(l)) fs(s) ds K, 1 + x-l(t) l + O(r)X(r) dr
aO

where

and

X(’) exp (-A 4(’) d’).

COROLLARY. Suppose in addition to the conditions of Theorem 2 that

F x - +o as x -, o

4,(t) .dt

Then there exists some constant K_ K2(xo, yo, Zo, Wo, Uo) such that the unique
solution (x(t), y(t), z(t), w(t), u(t)) of (1.2) determined by (2.6) satisfies
(2.9) Ix(/)l--< g=, lY(/)I-<- g=, Iz(t)l-<- g=, Iw(t)l <-- g, lu(/)l--< g=,

for all >-_ O.
The corollary follows immediately from Theorem 2. Indeed if

i,o 4,(t) oo,dt

then

{1 +X-(t)I1 + Io’ q(r)X()d-]} <.
Because of (2.7) and (2.8) there exists a constant D < such that

y2(t) + z2(t) + w-(t)+ u2(t) =< DKo;

and

Fs(x(t)) <- DK,.

Since Fs(x) - oo as Ixl - oo, these two estimates imply (2.9).
THEOREM 3. In (1.2) suppose f2(0)= 0 f4(0) and that

(i) /5(x) sgn x +oo as Ixl-
(ii) the constants a, b, c, d, e are such that (1.4) and (2.1) hold;
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(iii) f(w)>-b, wO, f"(Y)_->d, y#0, f’(x)<-_e
w y for all x;

(iv)
0 N

f2(w)
b < 1, ILl(y)- dl < e2, e -f’s(x) < -,3

w

for all x, y, w (# 0) and for sufficiently small positive el, e2 and e3;

eA
(2.10) fi(y) _f4(y) /3 < lYl > 1"

y d2(ab-c)

(v) for all values of t, x, y, z, w, u, p (t, x, y, z, w, u) satisfies
]p(t, x, y, z, w, u)[<=A <o0,

where A is a positive constant. Then there exists a constant K whose magnitude
depends only on a, b, c, d, e, A, A, A2, e, A as well as on the functions f2, f4 and f5
such that every solution (x(t), y(t), z(t), w(t), u(t)) of (1.2) ultimately satisfies

(2.11) [x(t)]<-K, [y(t)]-<K, ]z(t)l<=K, ]w(t)l<-K,

Note that the conditions on a, b, c, d and e in (1.4) of (ii) correspond to the
Routh-Hurwitz criteria for the asymptotic stability of the trivial solution of (1.3).
For the equation (1.3), conditions (2.1) of (ii) are implied by (1.4), while the other
conditions of Theorem 3 are trivially verified when (1.2) is specialized to (1.3).

3. Notation. In what follows we shall use the letter D for positive constants
whose magnitudes depend on a, b, c, d, e, A, Ao and f, (i 2, 4, 5). No two D’s are
ever the same unless they are numbered, but all the D’s: D, D2, D3,""", with
suffixes attached retain their identities throughout the sequel.

4. Some lemmas. The main tool, beside the system (1.2) itself, in the proof
of the theorems is the function V,- V(x, y, z, w, u) defined by

2 V bl -Jl- 2auw 4
2d(ab-c)uz

ad- e
+ 2ayu + 2 f2(s) ds

[ ]C)W2+2 [ ad(ab-c)a]wz+2aawy+ a2-d(ab c+
ad ead e

(4.1) +2wf4(y)+2wfs(x)+Iac + bd(ab-c)
ad- e

d a61 Z -]- 26byz

+ azf4(y)- 2ezy + 2azfs(x) 4
2d(ab c)

f4(s) ds + (6c ea)y
ad-e

2d(ab c)
fs(x) + 2a fs(s) ds,

ad- e

where 6 is defined by 6 e(ab c)/(ad e) + e.
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LEMMA 1. Subject to the conditions of Theorem 1, VI(O, O, O, O, O)= 0 and
there are constants Di (i 1, 2, 3, 4, 5) such that

(4.2) V, >= DiFs(x) + D2y + D3z -+- D4w -1- Dsu 2,

for all x, y, z, w and u, provided e is chosen sufficiently small.
Proof. Trivially V,(0, 0, 0, 0, 0)= 0. To verify (4.2) we recall that

[f’4(o),
and rewrite (4.1) as follows:

d(ab-c)z
2V1= u+aw4

ad-e

(4.3) I (ab-c)e

y#0,

y =0;

+6y + ab c

(ab c) a y ]2ad e
yy + yz + w

(ad- e)
Z + + Az[w + az] + Wi,

i=1

where

(4.4)

Evidently,

(4.5)

since fs(x) sgn x > 0, x 0 by (iv);

f’s(x)<=e and -=d<l by (iii).
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(4.6)

Now note that

Because fs(0)= 0 by (ii), we obtain

W1 >- 2e fs(s) ds.

Therefore

yf,(y) f4(s) ds + sift(s) ds.

I 2e A
W_=

d(ad-e)
d(ab c) {f,n(s)_f4(s) !ad-e s

-2e e+
ad-e

-c sds

> fo’ [ 2eA d(ab-c)
kd(-d e)- ad-e

>--
d(ad e)- 2e e +

{ 2(ab-c)e }]-2e e+
ad-e

-c sds

by (2.3). Hence

2(ab-c)e }]ad e
c s ds,

eAy
(4.7) W2 0=2d(ad-e)-

provided

e A ( 2(ab-c)e )(4.8)
4d(ad-e)

> e e+
ed-e

-c

which we now assume. Also

(4.9) W3 >
e

=- w by (iii).
a

On gathering the estimates (4.6), (4.7) and (4.9) into (4.3) we obtain, since
d/y >- 1, (ad e)/(ab c) > O, that

2V1>[ ad-e
z +6y

+
(ad e)

z +-d y + A2[w + az]2

eW eAyZ fx (dc-be)
++ +2e fs(s) ds + 2e zy.

a 2d(ad-e) Jo ad-e

It follows from the first six terms of this inequality that there exist constants
(i 1, 2, 3, 4, 5) such that

Io" (dc-be](4.10) 2V,>=D1 fs(s) ds+2D2y+2Dz+D,w+Du+2e\a--d_e/ZY
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Now consider the terms

(4.11) W5 D2y +2e,dc( be)zy + D3z2
ad- e

which are contained in (4.10). In view of the inequality

it is evident that W5 (defined in (4.11) satisfies

for some D if

(4.12)

Hence
(4.13)

/ be)Ws>D2y2-k-D3z2--- \}e(y "Jl- Z 2) D(y + z 2)
ed-e

l(adse]e <-- \dc be/min [D2, D].

2 V >= DFs(x)+ D2y .-t- D3z -.k D4w q- Dsu2,

provided e is so small that (4.8) and (4.12) hold, which proves the lemma.
LEMMA 2. Under conditions (i)-(v) of Theorem 1 there exist constants D6, D7

and D8 such that whenever (x, y,z, w,u) is any solution of (1.2) with
p(t, x, y, z, w, u)=-O, then

(4.14)
dz, =-tt V,(x, y, z, w, u) <= -(D6y if" D7z + D8w2),

provided eo max [e, e,, e2, 83] is sufficiently small.
Proof. Assume that w # 0. Then a straightforward calculation using the

identity

19 V1 0 V1 0 V1 0 V1 0 V1?, --aTu C,+u+w+z+
Ow Oz Oy Ox

yields

(4.15)

[ { ad(ab-c) }]Q, -w
afz(w)

c + 6
w ad e

z2 [ dc(ab c)
6b (af’4(y) e)

e

[6f4(Y) d(ab-c)f,s(x) 1-Y y ad-e
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It is clear that the coefficient of --]422 in the first term is the same as

a --b +e;

while the coefficient of --Z in the second term is the same as

(ab c)(dc- be)_ af -xl[(dc-be)(ab-c) (af’4(y)-e)](--’4(Y)- e)- be >z ad ead-e

by (2.1). It is also immediate on using the definition of 6 in (4.1) and hypothesis
(iii) that the coefficient of _y2 in the third term satisfies

6f4(y) d(ab c)
f’s(x) >-_ ed +

(ab c)d[e
y ad e ad e

Thus the first three terms, involving W2, Z and y2, are majorizable by

AIz2 ed )+-8-
Now let R(x, y, z, w) denote the sum of the remaining four terms in (4.15). It can
be seen for hypotheses (iii) and (v) of Theorem that the absolute value of each
coefficient of wz or yw in R(x, y, z, w) cannot exceed Dei (i 1, 2 or 3). Thus,
again using the inequalities

we have that

_._1lywl<(y+w),

IR(x, y, z, w)[<-D*(e + e2+ e3)(y+ z2+ w2)

for some D*> 0. Thus, after substituting in (4.15), one obtains that

=- w +-8-z +--y ]+D*(e,+e2+eB)(y2+z2+w)

1
D*(el + ea + e3) <=- min e, -,

The choice of D6, DT, D8 is now clear, and the Lemma is proved for w 0. The
case w -0 is trivially dealt with.

5. Proot ot Theorem 1. Consider the system

2=y, )=z, .=w, =u,
fi -au f2(w) cz -/(y)-f(x).
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From Lemma 1 and Lemma 2, we see that the V1 defined in (4.1) satisfies

(5.2)
v(o, o, o, o, o)= o,

VI >= DFs(x) + Dzy + D3z + D4w + Dsu2;

and

9", <--D(y2(t)+ z(t) + w2(t)),

for any solution (x(t), y(t), z(t), w(t), u(t))of (5.1). Because fs(x) sgn x >0, x 0,
and

Fs(x) aslx]o,

by (iv) we have that

(5.4) Vl(X, y, z, w, u)-+ as x -]- y2 + z2 + w + u .--)

Let (x(t), y(t), z(t), w(t), u(t)) be a solution of (5.1) with x(0)= Xo, y(0)= yo,
z(0) Zo, w(0)= Wo, u(0)= Uo and denote this trajectory by 3’; then by (5.3)

V(x, y, z, w, u)= V(x(t), y(t), z(t), w(t), u(t))= V(t)<= VI(O).

Also V(t) is nonnegative and nonincreasing and therefore tends to a nonnegative
limit V,(c) as t-c. If V1()=0, the solution of (5.1) satisfying the initial
condition tends to the trivial solution x y z w u 0 as , so that we
have the result.

If VI()> 0, then the surface V(x, y, z, w, u)= Vl(c) contains all the limit
points of (x(t), y(t), z(t), w(t), u(t)). Let P be a limiting point; then it is known
that the solution through P1 at 0 lies in the surface V(x, y, z, w, u) V(c)
since V(x, y, z, w, u) >= V(o). This implies that Q 0 at all points of this solution.
Also by (5.3) this is only possible if y z w 0 and hence u 0. It follows from
(5.1) and hypothesis (ii) that x 0. Thus the point (0, 0, 0, 0, 0) lies on the surface
V(x, y, z, w, u)= V() and hence V(c)=0. The contradiction proves the
Theorem.

6. Proof of Theorem 2. The proof of Theorem 2 is a fifth order adaptation of
an ingenious refinement by Ezeilo and Tejumola [8, 5] of the well-known
method of Antosiewicz [4, V]. For the system

(6.1)
k=y, )=z, 2=w, if=u,

-au -f2(w)- cz -f4(y)-fs(x) + p(t, x, y, z, w, u),

consider the function V defined in (4.1). Because fs(0) is necessarily zero and only
the mild restriction

f(x) sgn x > 0 for Ix[ >- 1
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holds, we have only the following estimate in the proof of Lemma 1.

Io ]2(ab c)
f(s) e f’(s) dsW 2e f(s) ds +

ad e

(a -ct(6.2) _d
ad e,

>- 2e f,(s) ds D9.

Indeed

f fs(s)[e-df’(s)] ds

is nonnegative for Ixl => 1 and is bounded for Ixl -< 1 because of continuity, so that

2(ab c)
fi(x) e f’(s) ds >-_ -D

ad e

for all x. It follows iust as in Lemma 1 that

V1 >= DFs(x) + O2y nt- D3z -k- D4w + Dsuz- Dg,

and for a sufficiently small Dlo,

(6.3) V >- Dlo(y + z + w + u) + DIF(x) Dg.

Once more, because fs(x) sgn x > 0, Ixl > 1 and fs(x) continuous, there exists a D%
such that

F5(x) >= D*o.
Therefore

(6.4)

where

V1 => Do(y + z + w + u 2) D,

D DD*o+ D9.

Next suppose (x(t), y(t), z(t), w(t), u(t)) is any solution of (6.1) which satisfies the
initial conditions (2.6). Set

V(t) V(x(t), y(t), z(t), w(t), u(t)).

Then just as in Lemma 2,

-<-D(y+z + w2) + [ u + aw +
so that

d(ab-c)
ad e

z + 6y] [p(t, x, y, z, w, u)],

9,o,(lyl+lzl+lwl+lul)lp(t, x, y, z, w,
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where

[ 6d(ab-c)]Oa=max 1, a, --dS
It follows from (2.5) and the obvious inequalities

that

(6.5)

lyll+y, Izll+z, Iwl-<l+w, lul-<l+u,
(lyl + Iz] + [wl + [ul)--< 4(y + z + w + u 2)

On using (6.4) in (6.5), we deduce that

(6.6) "’l- D3 Vl(t)d/(t) <- D4$(/),

where

Thus on multiplying both sides by

X(t) exp -D3 (’r) d’r

and integrating in [0, t], we obtain

V()X(t) <- Vl(0) + D4 0(r)X(’) dr,

or on dividing both sides by (),

where VI(0)= V(xo, yo, zo, wo, uo). This together with (6.4) shows that

from which (2.7) follows. The next result (2.8) follows at once from (6.7) and the
deduction from (6.3) that

DN(x) N V + Dg.

Remark. We shall begin anew the numbering of the D’s.

7.seee. The proof of Theorem 3 depends on the existence
of a continuous function V(x, y, z, w, u) satisfying

(7.1) V(x, y, z, w, u) > -D for all x, y, z, w, u,

(7.2) Vm asx+y+z+w+u;

D,3 (Ao+ 4)D-IDI2, D,4 (4Ao + (Ao +4)D,,D,)D,.

Q, --< D,214Ao + (Ao+ 4)(y + z + w + ua)] q(t).
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and also such that the limit

Q+= lim sup
h0

V(x(t+ h), y(t+ h), z(t+ h), w(t+ h), u(t+ h))- V(x(t), y(t), z(t), w(t), u(t))}h

exists corresponding to any solution

(x(t), y(t), z(t), w(t), u(t))

of (1.2), and satisfies

(7.3) + <_--02 if x2(t)/ y2(t)/ z2(t)+ wZ(t)+ u2(t)_>-D3.

Once the existence of such a V is established an appeal to Yoshizawa’s argument
17] concludes the proof of Theorem 3. For the proof of the third order analogue
of this see [1], [6]; and for the fourth, see [3] and [15]. The argument is used in [7],
[8] and [16]. The required V is defined in the next section.

8. The function V. Consider the continuous function V= V(x, y, z, w, u)
defined by

(8.1) V= V, / V2 /

where V, is defined in (4.1),

(A + 2)(aw + u) sgn x
(8.2) V2 (A + 2)x sgn (aw + u)

-(A + 1)w sgn u
(8.3) V3 -(A + 1)u sgn w

iflxl law+u[,
if Ix law +
iflu[ lwl,

V defined in (4.1) is now being supplemented by two signum functions because it
is an incomplete Yoshizawa function of type (u, x) as can easily be seen from the
treatment in Chukwu 1].

We shall prove the following property of V.
LEMMA 3. Subject to the conditions on a, c and fi (i 2, 4, 5) in Theorem 3, the

function V defined in (8.1) satisfies
(8.4) 2V>-D4Fs(x)+Dsy2+D6z2+DvwZ+Dsu-D(lwl+[ul+ 1)

for all x, y, z, w and u provided

0< eo= max [e, e,, e2, 63] 64,

where e4 depends only on a, b, c, d, e, A, A1 and A.
Proof. It is clear from their definitions that

V2[-< (A + 1)(alwl+lul),

so that

(8.5) 2 V: + 2 V3 -D(I u + Iwl).
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It remains to verify that

(8.6) 2 V1 >= D4Fs(x) + Dsy + D6z + DTw + Dsu-D

provided that 0 < eo =< e4. The verification of (8.6) is only a slight modification of
the proof of Lemma 1. Consider W in (4.3):

oh
2e s(s) ds d-(x)C

W1 2eFs(x) +
ad e y

The term within the curly brackets can be put in the form

;o /2e l’(s) ds-dry(x) 2 e x) fs(s) ds-

from which, since the integral on the right-hand side is nonnegative by (iii) and
since

(8.7) f5(x) sgn x > 0 for Ix[ => O-o,

(where ro is a fixed constant) deduced from hypothesis (i), it is clear that

ab c
2e fs(x) dx __d f(x) >- -D

ad e

for some D. Hence

W >-2eFs(x)-D for all x.

It follows from the continuity of f4(y) and the type of calculation that led to the
estimate (4.7) that

eAy’-
-D for allyW>=2d(ad-e)

provided that (4.8) holds, which we now assume. Also

W3>-_-w
a

On collecting the estimates Wl, W and W3 into (4.3), we have that

[ d(ab-c)Z+dy]2+__ [ e ]2VI >= u+aw+
ad-e (ad-e) -Y

ew eAy
+ zX[w + az] ++

a 2d(ad-e)

2e(dc-be)+ zy+2eFs(x)-D,
(ad-e)

from which (8.6) follows provided (just as in 4) (4.12) holds for e.

9. The Property o[ +. The property of Q+ is required and is stated in
Lemma 4.
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LEMMA 4. For any solution (x(t), y(t), z(t), w(t), u(t)) of (1.2), let
(9.1)
+ -= lim sup

hO+

V(x(t+ h), y(t+ h), z(t+ h), w(t+ h), u(t+ h)- V(x(t), y(t), z(t), w(t), u(t))
h J

where V is the function defined in (8.1). Then, subject to the hypotheses of the
Theorem 3, / exists and satisfies

(9.2)

provided

whenever

O2(t) x2(t) + y2(t) + z2(t) + w2(t) + u)-(t) >- Dlo

(9.3) 0 < eo max [e, el, e2, e3] is sufficiently small.

Proof. The existence part of the lemma is easily dealt with. It is clear that
subject to the conditions on f)., f4 and fs, V1 has continuous first partial derivatives
with respect to all its arguments. V and V3 are locally Lipschitzian in x, w and u,
and w and u, respectively. Hence V V1 + V+ V3 is, at least, locally Lipschitzian
in x, y, z, w and u, and thus limit (9.1) exists.

Before proceeding to the actual verification of (9.2), we first note the
following obvious consequences of the hypotheses of the Theorem which are
useful later.

(i) For some constant D,

(9.4) IY(x)lD(Ixl+l), 14(y)l_-<D(y)+l), IY.(z)lOlzl

for all x, y, z;

(ii) There exists a constant Oo> 0 such that

(9.5) fs(x) sgn x >0 for Ixl  o.

Now let (x(t), y(t), z(t), w(t), u(t)) be any solution of (1.2). Then from (8.2) and
(8.3) we have, on using (1.2), that

I)’;= {-(A +2)(fz(w)+cz +f4(y)+f(x)-p)sgnx iflxlaw/ul,
(A + 2)y sgn (aw + u) if [aw+ ul

9; {-(A + 1)lul if lu] ->

(A + 1)(au+f(w)+cz +f4(y)+fs(x)-p)sgnx if Iwllul,
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Hence utilizing (9.4), we obtain

(9.6)

(9.7)

t2 < -(A + 2)fs(x) sgn x + D(lYl + Izl + Iwl + 1)
t(A + 2)]y[

I)’ <_- / -(A +
(A + 1)lf(x)l/o(lyl/lzl/lwl/lul/ 1)

Note now from (8.1) that

(9.8)

if [xl law +

if lulelwl,
if Iwlelu[.

It is convenient to first obtain an explicit expression for V1 and its estimate. This is
obtained from the calculations in Lemma 2. Indeed from (4.14) and (1.2), we have
that

91 < -(Dll y2 + D2z + D13w2)

[ d(ab-c) ]+ u+aw+ z+6y p(t,x,y,z,w,u)
ad e

(9.9)
< -(Dly + D12z + D13w2)

+ [lul + alwl +d(ab -c)Izl + 61y[] A,ad e

where we have used hypothesis (v). We now return to (9.8) and use (9.6), (9.7) and
(9.9) to deduce that if Iwl -> lu[,

(9.10)

r+ _D14(Yz + z + w2+ uz) + A[lu + alwl + d(ab-c)lzl+61yl]ad- e

(A + 2)fs(x) sgn x + (A + 1)1 f(x)l + D([yl + [zl + [wl + lul + 1)

or

(9.11)

,r+ _D14(y2 + z + w2) +A [lul + alwl + d(ab-c)lzl+lyl]ad-e

+(A +2)lyl+(A +l)lfs(x)l+D(ly[+lzl+lwl+lul+l)

according to whether

Ixl >--law + ul or law + u[ >= Ixl.
We now see that the quantity

/x(x) =-{(A +2)[(x)sgnx-(A + 1)lfs(x)]} < 0, Ixl_-> o,
by (9.5), and

I/x(x)[<- D if Ixl -< ro

from the continuity of f(x). Hence using (9.4) in (9.11), we have at least

(9.12) Q+ <- -D4(y + z + W2) "" D(ly[ + Izl + Iw[ + 1)
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or

Next consider the case [w[ =< lul; + satisfies

9 --014(y2 " Z -- W 2) "[- A [lu[ .-.t- alwl +
d(ab-c) ]ad e

z + 3[y]

-(A + 1)lul- (A + 2)fs(x)sgn x + D(lYl+lzl+[w[+ 1)

d(ab-c) ]V -O14(y q- z q- w 2) -1- A ]bl 2r a[wl + ]zl + [yl
ad- e

-(A + 1)]ul + (A + 2)lyl

according to whether Ix] => law + u] or law + ul_->lxl. It follows that, at least for

(9.13) +<--D,4(y+z+w)+D(]y[+lz[+lw[+l)-lu];
so that + always satisfies (9.12). Hence there is a constant D such that

(9.14) V+_-< -1 if yZ + z + w => D.
We now show that the inequality (9.14) is still valid even if y+z+ w-< D 15

provided x+ u-_> D6 for some constant D6; that is,

(9.15) Q+ _-< 1 when y + z + w -< D5,

provided

X

__
/,/2 > D 16,

To prove this, let y + z + w<-D5 and assume initially that lu]-> D5. Evidently
]ul =>[w],and as a consequence 9 satisfies (9.13)"

9 -<- -o4y + z + w) + olyl + [1 + Iwl + 1)-lul
<-_-Iul/D<=-a,

if further, lul _-> D7_-> D5 for some constant D7. Hence

(916) Q+ <-1 ify+z+w <D,5 butlul >-Dv.
Suppose on the other hand

y+ z + w--< DI, lul -< D.
Then let Ix]->_max [O-o, (a + 1)D7], where ro is identified in (9.5). Clearly Ixl=>
(a + 1)D7 implies (since D7>=D5) that

Illaw+l,
and as a consequence of (9.6),

I)’ -<_-(A + 2)fs(x) sgn x + D.

Since -< D for the case under consideration, it is immediate that Q+ satisfies

I) -<-(A + 2)fs(x) sgn x +D
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for [u[>_-[w[ or

Q+-<-]f(x)l+D iflwl->lul.
Thus whichever case we consider, we have at least

9+<-- -D,Ifs(x)I+D;
and as a direct result of hypothesis (i),

9+<____-1

provided

Ix]-_> O,9_-> max [ro, (a + 1)D,7].

Concluding, we have

(9.17) %?+-<_-1 ify+z+w<-D5 and lul<-<_Da7 butlxl=>Da9.
Combining the two inequalities in (9.16) and (9.17), we deduce that

Q+=<-I wheny2+z2+w

provided

X -- U D9+ D7,
and this is (9.15) with D6-- Dz9-+-D7.

Finally a combination of the estimates (9.14) and (9.15) yields that

Q+ =< 1 if x + y2 + z: + w + u: => D5 + D6,

which proves (9.2) whenever e is sufficient|y small. The Lemma is proved, and as
indicated in 7, Theorem 3 follows at once.
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ERROR BOUNDS IN THE FINAL VALUE PROBLEM
FOR THE HEAT EQUATION*

ALFRED CARASSO’

Abstract. Consider the following problem. Given the positive constants 6, M, T andf(x) in L2(D),
find all olutions of u Au in f.x (0, T], u 0 on c3f x (0, T], such that Ilu(., T) filL2 _-< 61
Ilu(., 0)ILL2 _--< M. It is known that if ul(x, t), u2(x, t) are any two solutions, then

Ilul(’, t)- u2(. t)ll2 =< 2M(T-tl/:r6t/T.

Let N be the dimension of f, q an integer _>_ 0, and let a > N/2 + q. We show that there is a constant
K such that for 0 < < T,

max IlOaux(., t) D#tt2(., t)ll < K -’r/2 q- (r- t) -a/2 q- M(r-t)/r6t/r.
I#1-<q

1. Introduction. In a recent report [3], Buzbee and the author devised a new
method for computing the solutions of linear parabolic equations backwards in
time. This computatio,nal method is based on another equation altogether, the
so-called "abstract backward beam equation" [4], [5]. An important feature of
this approach is that it is not limited to parabolic equations for which one has an
explicit formula for the solution operator. In fact, the method is applicable to
problems with time-dependent coefficients and results in (sharp) logarithmic-
convexity type error bounds in the L2-norm [1], 3].

In the present note we consider this method as it applies to-the simplest
problem, the final value problem for the heat equation in a bounded domain f
in R, with zero Dirichlet data on c3f, and we obtain new error bounds in Sobolev
norms. We plan to treat problems with smooth variable coefficients in a later
report. An immediate corollary of our results are some maximum norm stability
estimates for the final value problem which appear to be new.

2. The final value problem. Let be a bounded domain in RN with a C
boundary c3f. Consider the following problem. Givenf(x) L2() and the positive
constants 6, M, T, find all solutions of

ut Au, xf, 0 < < T,
(2.1)

u =0, xc3f, 0< < T,

such that

(2.2) u(., T)- f / __< 6, u(., 0) / =< M.
Physically, f(x) represents a measurement of the temperature u(x, t) at time

T, which is known to be in error by at most 6 in the LZ-norm. M is a given bound
on the initial temperature obtained from physical considerations. The existence
of solutions to (2.1), (2.2) hinges on the compatibility of M with 6. Iff(x) is not
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smooth and 6 is small, M would have to be large in order to guarantee existence.
There are in general infinitely many solutions.

If u is any solution of (2.1), log Ilu(’, t) L2 is a convex function of [1]. Hence,
if ul(x, t) and u2(x, t) are any two solutions of (2.1), (2.2),

(2.3) ul(., t)- u2(. t)llL2 __< 2(M)(r-t)/r6t/r, 0 <= T.

Thus, the final value problem with a given bound is stable. These results are well
known;see, e.g., [6] and the references therein.

3. The spaces *(fl), s __. 0. It will be convenient to make use of the spaces
/:P introduced in [2]. Let (2m}= be the (positive) eigenvalues of the negative

x be the cor-Laplacian in f, with zero Dirichlet data on cf, and let {(p,,( )}m=
responding sequence ofL2-orthonormal eigenfunctions. For v L2(), let {flm}m%.
be the sequence of Fourier coefficients of v relative to the {0m}. For each s >__ 0,
the Hilbert space/_:/s(f) is the subspace of L2(y) consisting of all v’s for which the
norm

1/2

(3.) IIv

/:/oo(f) I’) >o /2/ is dense in every/:P, and if c3 C,
(3.2) /:/oo {vlv e C(),/X;v 0 on On, j 0, 1,...

If s is an integer, and if v e/zp, the s-norm of v is equivalent to the usual Sobolev
norm,

1/2

(3.3) Ilvllm--- [[D%[112
lal_-<s

Consider now the initial value problem for the heat equation

ut Au, x, >0,

(3.4) u(x,t) 0 on cf, > 0

u(x, O) g(x), x f.

Expanding in the eigenfunctions of -A, one easily proves the following
(see [2]).

THEOREM 3.1. There exists a unique solution to (3.4)for arbitrary g L2().
Moreover, u(x, t) I:I(D) for > O. For any and s with 0 <= s <= 1,

(3.5) u(., t) C(t) -(t-s)/2 g > O,

where C is a positive constant depending only on s.

(4.1)

4. The backward beam equation. We now turn to the problem

Utt (A + k)2u, x , 0 < < T,

u Au O, x c3f), (0, T),

u(x, O) g(x), u(x, T) f(x).
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Here, k is a given positive number which may turn out to equal several eigenvalues
of -A. Note that (4.1) is an "initial-terminal value" problem for an evolution
equation since data is specified both at 0 and T. We have the following
theorem.

THEOREM 4.1. There is a unique solution to (4,1)for any f, g in L2(), and, for
anyl>=O,

(4.2) u(. t)l[t
T-
---T-- g +- flit, 0t Y.

Moreover, u(x, t) is in I:t()for 0 < < T. If r, s >_ 0 and >= max (r, s), then

u(" t) < [kO-’)/2(T- t)
T + C(t) (l-s) jig

(4.3) - + C(T t)- (- r)/2 f

where C is a positive constant, depending only on l, r and s.

Proof Write g Z,, amqm, f Z,, b,,o,, and construct u(x, t) Z,, Cm(t)q,,.
Thisleads to"(t)= (2,. k)2cm(t),O < < T,c,.(O) a,.,c,.(T) bm,.m 1,2, ....
Hence

(4.4)
c,.(t)

T-t
+b,. if 2" k,

sinh (,. k)(T t) sinh (2,. k)tc,,(t) a,.
sinh (2,.- k)T + b,.sinh (2,, k)T

if 2" - k.

Since for any real fl, sinh flt/sinh fiT and (sinh fl(T- t)/sinh fiT are convex
functions of t, it follows from (4.4) that

(4.5) 1%(0] < ]a"]
(T- t)
"T +lb,.l- Vm,

and this leads to (4.2). Actually, even if f and g are arbitrary L2-functions,,, 2]c,.(t)l 2 converges for every 0 < < T and every _> 0. From (4.4) and the
Schwarz and triangle inequalities,

(4.6)

2lc,,(t)l 2 <= k-s(T- 02

T2 kS]am] 2
1/2

sinh2 (2"- k)(T- t)2-s sinh2 (2" k)r

k’-r Ulb,.l 2

sinh2 (2,. k)t
2E 2-sinh2 (2,. k)T.m

1/2

1/2
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Next, if _>_ max (r,,s) and , :/: k,

_ssinh2 (2.,- k)(T- t) C(t)-{l-s)(,mt)l- e 2 2m k]t

sinh2 (2, k)T
(4.7)

<__ C(t)-"-,
where C is a generic constant, independent of 2,, and t. Similarly,

sinh2 (2m k)t
(4.8) 2m-sinh2 (2m- k)T

C(T- t)-l-.

Since f is bounded, -A has a compact inverse and so only finitely many of its
eigenvalues can equal k. Hence the two sums in (4.6) involving those eigenvalues
always converge. Using (4.7) and (4.8) in the remaining two sums, one obtains (4.3).

5. Application to the final value problem. With the proper choice of k in (4.1),
one can use the backward beam equation to obtain a sharp L2-approximation to
the final value problem (2.1), (2.2). Futhermore, although the information in (2.2)
is provided only in the L2-norm, on 0 < < T, this approximation is a C()
function of x which is close to all the solutions of (2.1), (2.2) in norms stronger
than L2.

With f(x) as in (2.2), define w(x, t) to be the unique solution of

Wn (A 4- k)2w, 0 < < T, x e f,

(5.1) w Aw 0, x e c3f, 0 < < T,

w(x, O) O, w(x, T) erf(x), x

We then have the following theorem.
THEOREM 5.1. Set k (l/T)log (M/6) in (5.1). Let u(x, t) be any solution of,.

(2.1), (2.2). Then

(5.2) Ile-k’w( ., t)- u(., t)[lL =< M(T-t)/Ttt/r, 0 <= <= r.
For any > O, there is a constant C such that, if 0 < t < T,

(5.3)
<- C{(t) -l/2 + (T- t) -l/2} + M(T-t)/T(tIT.

Hence, ifq is an integer >= O, and a > N/2 + q, we havefor 0 < < T,

max e- ’Dw( ., t) Du( ., t)II
(5.4)

<_ const. (t) -/2 + (T- t) -/2 + T
M(T-t)/Trt/T"

Finally, if in (2.2) one has IlU(’, T) f tl <-_ 6, u(., O)ll/<-_ M for some > O, then

(5.5) Ile-kw( ., t)- U(’, t)lll = M(T-t)/T(t/T.

Proof If u(x, t) is a solution of (2.1), (2.2), let u(x, O) g(x). Then IlgllL= =< M.
By Theorem 3.1, u(x, t)e/:/(t2) for > 0, so that u Au 0 on cf. The same is
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true for v 8ktu. In fact, v(x, t) satisfies the system

Vtt (A + k)zv, 0 < < T,

(5.6) v=Av=0, 0< t< T, x

v(x, 0) g(x), v(x, T)= ekTu(x, T).

Let e(x, t) w(x, t) v(x, t). Then e(x, t) is a solution of the backward beam
equation with e(., 0)ILL2 =< M, lie(., T) L2 <= ekT6. Using (4.2) with 0, it follows
that

The choice k (l/T) log (M/6) minimizes the right-hand side of (5.7) as a function
of k and leads to (5.2). The proof of (5.5) is identical.

To estimate e-kte(x, t) in the/-norm for any > 0, we use (4.3) with r s 0
and obtain (5.3). Finally, (5.4) follows from (5.3) and Sobolev’s lemma.

COROLLARY. Let ua(x, t), Uz(X, t) be any two, solutions of thefinal value problem
(2.1), (2.2). Then for 0 < < T, and r > N/2 + q,

max [[Off(b/l( ., t) --/22(.

f lg(M/6)’/2}=< const. (t) -/2 + (T- t) -/2 + T
Mr-t/T6t/r"

Proof This follows from (5.4) and the triangle inequality.
Remark. In actual numerical computation of the final value problem (2.1),

(2.2), one uses finite differences and/or finite elements to approximate the related
problem (5.1). See [3]. The error estimates n Theorem 5.1 are then modified by
the inclusion of additional terms, which tend to zero as the mesh is refined, and
constitute the discretization error of the numerical procedure for (5.1).
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A GENERALIZATION OFTHE CARATHIODORY-FEJIR PROBLEM*
S. J. POREDA-

Abstract. Best uniform approximation and interpolation by rational functions having a fixed
number of free poles is investigated, and in some cases solutions to these problems can be calculated by
means of an algorithm. Other results dealing with maximal convergence by polynomials are also given.

1. Introductory remarks and definitions. For a function f continuous on a
compact set E in the plane let Ilfll maxzE If(z)l denote the uniform norm of f on
E. A polynomial is said to be of degree n, n 0, 1, 2, if the highest power of
z that appears is n or less. A rational function r is said to be of type (n, k) if
r(z) p(z)/q(z), where p is a polynomial of degree n and q is a polynomial of
degree k. A rational function b is said to be a Blaschke product of degree n if
b(z) kp(z)/z"p(1/z), where k is a constant and p is a polynomial of degree n. It
will also be helpful to let U denote the unit circle {Izl 1} and D the unit disc

In their 1911 paper [1] Carath6odory and Fej6r provided_an algebraic
method for determining the function analytic in the closed disc D, of minimal
norm on U, whose Taylor expansion about the origin has its first n coefficients
prescribed. Since then, this work has been expanded and generalized by Nevan-
linna, Schur, Pick, Walsh, Goluzin, this author and others. In particular, Akhiezer
[10, p. 270] generalized the earlier work by considering the problem of approx-
imating functions of the form f(z)/z", where f(z) is analytic in D and has its first n
Taylor coefficients prescribed by rational functions having no more than a fixed
number of poles in D. These results are obtained using techniques similar to those
introduced by Carath6odory and Fej6r. Walsh [2] considered the problem of
finding the analytic function(s) of minimal norm on U which interpolates n
prescribed values at n prescribed points (multiplicities counted). His techniques
required the use of an algorithm based evidently on one introduced by Nevanlinna
[8], [9].

The main problem we consider here can be viewed as a direct generalization
of Walsh’s in that we allow the interpolating function to be analytic except for a
prescribed number (or less) of poles in D. As we show, this problem is equivalent
to approximating a given rational function by rational functions having a pre-
scribed number of poles in D, on U. The approach is to prove existence and then to
apply an algorithm (similar to that used by Walsh) to calculate the solution.

2. Chebyshev rational functions. We generalize the idea of Chebyshev
polynomials in the complex plane so as to include also rational functions. In
particular, let {ak}_-i be a set of n distinct points in the open unit disc D, {Ak}___l
any set of n complex values, and 5[{a}_-, {A}7,=] the set of all rational
functions having K or fewer poles in D and such that if r , then r(a) A for
k 1, , n, where K is fixed, 0_<- K =< n 1. We ask if there exists a function in, of minimal uniform norm on the unit circle U, and if there is, we ask whether it

is unique and if it is possible to calculate it.

* Received by the editors April 23, 1973, and in final revised form February 20, 1975.
f Department of Mathematics, Clark University, Worcester, Massachusetts, 01610.
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Note that the restriction on K is natural; for if K -> n, then infr,, Ilrll 0 and
there is obviously no existence. The proof of this fact follows by using induction on
n and arguments essentially the same as those used in the proof of Lemma 1
following.

The case where K=0 has been settled for some time. Again, a good
treatment can be found in Walsh’s book [2, p. 286]. When K 0, there is a unique
function ro of minimal norm in o. Furthermore, ro is a finite Blaschke product of
degree n- 1, and there is an algorithm for its calculation.

The case where K n 1 has similarly been settled, but only recently by this
author [4]. Again when K n 1, there is a unique function r,_ of minimal norm
on U in ,-1, and it can be calculated using virtually the same algorithm as in the
case where K 0.

As we shall see, in the general case the situation is not quite so simple; in fact,
a minimal function may not even exist. We can show however, that if a minimal
function exists, it is a Blaschke product, and by putting a restriction on the values
{Ak}=l, it will be unique, of degree n- 1, and possible to calculate by way of an
algorithm. Our results do not completely settle the general case, and we will
discuss the remaining open questions as we proceed.

The motivation for considering this problem and one of the useful tools in its
investigation can be found in the following theorem.

THEOREM 1. Let be as before, and suppose there exists a function ra
such that

r,

Let f(z)= o’(z)/1-I=l (Z--ak), where o’(z) is the polynomial of degree n-1 with
values

(1) o’(ak) A I (1-jaa)
j=l

[ork=l,2, n.

it then follows that

gr(z)=f(z)-r(z)
--i

[ ,)+/-ak/
is a rationalfunction havingKorfewerpoles in D ofbest uniform approximation to f
on U.

Proof. The proof of Theorem 1 necessitates the following lemma.
LEMMA 1. LetK be as before, and for 0 <= M <- K, letK,M denote the set of all

rational functions having K-M or fewer poles in D and such that if r ,, then
r(a)= A for k 1, 2, n- M. It follows that

inf Ilrl[ inf
r-,K.M

Proof of Lemma 1. We may assume that M= 1. Let e >0 and choose
n, such that

rK.



202 s.J. POREDA

Let c, a2,, , ,, be the poles of rK, (m =< K- 1), and let-

e’B-(z-a,)q(z)
ru.(z)=rK,(z)+

(z a. + e’)II’-- (z )’

where B A,-rz(a,) 1-1’=1 (a,-ak), and q(z) is the polynomial of degree n-2
with values

q(ak)=e’B/(a-a,) fork=l, 2,..., n-1.

The function r, is then in . Moreover, by choosing e’ sufficiently small, we
obtain

Ilrllllr,,ll+e/2.
Consequently, inf, Ildl llrll inf,, Ilrll + e, and so our lemma follows
since e can be made arbitrarily small.

Returning now to the proof of Theorem 1, let R be another rational function
having K or fewer poles in D, and suppose

Some of the poles of R may coincide with those bf f, and so let us relabel the a’s
in such a way that those M poles that f and R have in common will be denoted by
a,-M+, a,. Now set

r,(z) (z)- R(z)]
z a

Now if we recall from (1) how f was defined and if we let, be as in Lemma 1,
then we see that r,v e ,v. Now by Lemma 1, we have that

and so since

our theorem follows by way of contradiction.
We now turn our attention to the existence of a function of minimal norm in. Let denote those rational functions in that are of type (m, m). If a

function of minimal norm in exists, then it is in for some m. In fact, a
stronger statement than this can be made. Namely,

inf Ilr}l inf Ilrll,

if m>-n+K-1.

In order to demonstrate this last statement and more, let m >- n + K- 1 and
{Sj}jZI be a sequence in such that limj_.oo I[Sj]lv infre Ilrl]t,. Since this sequence
may be assumed to be uniformly bounded on U, it is possible to also assume [2, p.
348] that it converges uniformly on compact sets in the entire plane minus at most
m points to a rational function (z) of type (m, m). The function r’(z) will have
no poles on U or at any of the a’s. There are at most K points in D where the
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sequence fails to converge to . If we relabel the ak’s in such a way that the
sequence converges to r7 at a l, a2 a,-M but not at a,-M+l, a,, it will
then follow that has at most K-M poles in D.

Now let/3,/32,...,/3N (N =< K-M) denote the poles of r in D,

4(z) (z) , Bk 4(a)

for k 1, 2,..,, n-M. We claim that &(z) is the rational function having no
poles in D with values th(a) B for k 1, 2,. , n -M, of minimal norm on U.
Suppose it is not, and 0(z) is. Set

O(z) H
1 ,z]FK,M Z

=’ z-/"
It then follows that rK,u is a rational function of type (n + K-M-1, n +K-M
-1)with K-M or fewer poles in D and values rK,u(a)=Ak for
k 1, 2,. , n- M. Furthermore,

Now using a similar argument to that used in Lemma 1, we can show that
IIr,l]u _-> inf, lit]Iv. Consequently we are led to a contradiction, and so our claim
about the function 4(z) must be true. As a result, &(z) must be a Blaschke product
of degree n-M- 1, and so r’d(z) is thus a Blaschke product of degree n +K-M

1. We can now state the following theorem.
THEOREM 2. For some M, 0 <= M <- K, there exists a Blaschke product rn,u of

degree n +K-M-1 having K-M or fewer poles in D with rK,u(a)= A for
k 1, 2,. , n-M (if we appropriately relabel the a’s) and such that

Ilrr,ullu- inf

Furthermore, if we let o,M be as in Lemma 1, then r,u is a function in, of
minimal norm.

Color,Any 1. If there exists a function r ofminimal norm in, then r must
be a Blaschke product of degree n + K-1. Should r have K’ poles in D where
K’ < K, then it is a Blaschke product of degree n + K’- 1.

Pro@ The proof of Theorem 2 and Corollary 1 are an immediate conse-
quence of our previous remarks and Lemma 1.

We will now show, via an example, that there is not in general a function of
minimal norm on U in . We do this by appealing to the dual problem as
described in Theorem 1.

Example 1. Let

f(z) 1(. : Z./2] 1 1
kz-1/21+z1/2 and Rl(Z)=.

z-l
Set a,=0, a=l/, a3=-l/, a,=l/2 and then Al=-l/2, Az
(2-)/(2+- 1), A (2+)/(-2- 1) and finally A4 -4/35. Using
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the notation previously introduced, let n 4, K 1 and o1 the set of rational
functions corresponding to the above points and values. We claim that there does
not exist a function of minimal norm on U in o1. Suppose this claim is false and r*is
such a function. By Theorem 1,

n,(z)=f(z)-r*l(Z) - \-z-_-.2 z- 1/2/
is a rational unction having one pole (or none) in D o best uniform
approximation to f on U. Thus,

(2)

There are two cases.
Case 1. Suppose there is strict inequality in (2). Then

Since f-R1 has constant modulus on U, as z traverses U, the argument of
(R-R) has the same net change as that of f- R, namely, -3. However, R-R
has at most 2 poles in D so this is impossible.

Case 2. Suppose now that there is equality in (2). Let

(zrl(Z)=[[(z)_R,(z)]ziEi? i_/2= -/2

The function r(z)-r(z) then has at least three distinct zeros in D and so also,
three distinct zeros in
degree 4 or less, and so r(z)- r(z) can have at most 5 zeros. Our example is now
complete.

Remark. A natural question to examine here is whether a minimal function
for is unique should it exist. As we shall see in the following, this is true
provided the values {A}=I satisfy a certain condition. This question remains
open in the general case.

By imposing restrictions on the A’s, k 1, 2,.’., n, it is possible to
strengthen Corollary 1.

THeOreM 3. Let be as before, and suppose that the A’s, k 1, 2, ...., n,
have distinct moduli, i.e., ]A,] e ]A} if j. Also suppose that there exists aNnction
r of minimal norm on U. B then follows that r is unique in having this
property, is a Blaschke product of degree n- 1 and can be explicitly calculated by
means of an algorithm.

Theorem 3 has a converse, of sorts. It is given here as a theorem, and we shall
find use for it in the proof of Theorem 3.

THOaM 4. Suppose there exists a Blaschke product r(z) of degree
n (K K’) 1 having K’ poles in D, (0 N K’ N K) and such that r . B then
follows that r is the unique function of minimal norm on U in.

Proof of eorem 4. Let r(z) satisfy the hypothesis of our theorem, and
suppose r is a different function in such that IIr ll There are two cases.

Case I$r ll < llrll. The proof in this case follows the same argument as
those used in Example 1, Case 1, and is omitted.
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Case 2. I[r*ll.t, [Ircl[v. Let
1 tikZtL a2 /"k=l

If Ir (z)l is not constant on U, then ]S (z)l is not constant on U, an-d so [5] there
exists a polynomial p such that

If we let

r*(z) r(z)--p(z) =, 1__ KkZ)z--ak

then r** fl and < and we are back to Case 1. Thus we may assume
that Ir*(z)[ is constant on U and consequently that r* is a finite Blaschke product.

Let K" denote the number of poles r* has in D, and let M"+ K" denote its
degree (as a Blaschke product). Also, let K’ be the number of poles r has in D and
let M’+ K’ denote its degree. The equation

(I) rK(z)/r*(z)= 1

has n roots in D (at al, a2,"’,a,,) and n roots in {Izl>l} (at
1/til, 1/i2, , 1/&). Ifwe let (M"-K")-(M’- K’), then (I) will also have It[
roots on U. Now let S K"- K’_-< K- K’. Equation (I) then has a total of

M’ + K’ + M"+ K"= 2(M’ + K’) + 2S +
_-< 2(n (K K’) 1) + 2(K K’) +
<_-2(n- 1)+t
<2n+ltl.

This leads to a contradiction and so the proof of Theorem 4 is complete.
The proof of Theorem 3 will now be given.
Proof oi’ Theorem 3. Let A  /llr ll , By relabeling the A’s, one of the two

following cases must hold.
Case 1. IA.I < 1/A. Set

gl(Z)
\ "a, / [1-a,A2rz(z)J"

Since r is a Blaschke product and since r,(a.) A,, it follows that gl is likewise a
Blaschke product and its degree is less than that of r,. Furthermore, if we let K’
denote the number of poles r, has in D(K’<-_ K), then g will likewise have K’
poles in D. This can be easily demonstrated using Rouch6’s theorem since
]l/fi,[ >llrKllt,. Finally, if h(z)is a rational function with K’ or fewer poles in D
and such that

h,(ak)= g,(ak) fork=l,2,’’’,n-1,
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then IIh,ll IIgll. Should this not be true, set

Then S:(z) will be a rational function having K or fewer poles in D, with values
S,(a)= A for k 1, 2,..., n and such that IIS,IIt, <llr,llu. This of course
contradicts our assumption about r:.

It should also be noted that by our assumption concerning the moduli
of the A’s, we have that Ig(a)l= 1 for at most one a. More precisely,
]AA] < I([AA] > 1)if and only if [g(a)l < l([g(a)] > 1).

Case 2. ]A.[> 1/,X. Set

Using arguments similar to those used in Case 1, it can be shown that g is a
Blaschke product, of degree less than that of r:, with K’- 1 poles in D (where K’ is
the number of poles r, has in D). As before, if h is any rational function having
K’- 1 poles in D and with values h(a,,)= g(a) for k 1, 2,..., n- 1, then
IIh,ll->-IIg,ll. Again this follows by considering the function

II + Aa,(lT gt"]h(z)l
1 | \,.,z.,.sa.,./ |.S(z) -/(1

It should also be noted that here again at most one of the values g(a),
k 1, 2,. , n- 1, has modulus one.

The proof that r is a Blaschke product of degree n-1 now consists of
reapplying this treatment to the. function g and in this way defining a sequence of
functions g, g.,..., g,-l. Let K be the number of poles that g has in D for
j= 1, 2,.. , n- 1. For j= 1, 2,.’., n-l, if h is a rational function with K or
fewer poles in D and with values h(a) g(a), k 1, 2,. , n -j (after the a’s
have been appropriately relabeled), then IIh, IIg,ll -Furthermore, IIg, i for
j 1, 2, , n 1, and so K,_ 0. (This follows from Lemma 1.) Consequently,
g,_ is the analytic function of minimal norm on U which takes on the value
g,_(a) at a. Thus g,-l(Z)= g,-(al), i.e., g,_ is a constant. Working backwards,
and solving for r, in terms of g,_, we see that r, is in fact as desired, a Blaschke
product of degree n- 1.

An algorithm for the calculation of r (when it exists) will now be described in
the case where the A’s have distinct moduli. This algorithm will also determine
whether r, exists. The algorithm is based on the same idea used in the preceding
part of this proof.
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Suppose there exists a function r,, in flK of minimal norm on U. We define a
sequence of rational functions {gk}2 by setting

and

1
go(z) Ar:(z), where= IIrllu

(3)
gt,(Z)-- gk(ak+l) )gk+l(Z)--(1-Z’k+’-’I-Z)(lz

ak+l gk(zi;(k+l
As was just demonstrated, rK is a Blaschke product of degree n- 1, so it follows
that g is a Blaschke product of degree n-k-1 for k =0, 1,..., n-1, and in
particular, g,_ is identically a constant. More precisely, g,-l(Z)--g,-l(a,), and
Ig.-(a,)] 1. Now g._(a,) is a rational function in ) whose coefficients depend
on, and can be calculated in terms of the a’s and the A’s. By multiplying this
constant, g,_(a,), by its conjugate and setting the resultant expression equal to
unity, one obtains a polynomial A(A) in A. Each positive real root of A yields a
rational function S, (z) which can be calculated using the inverse of (3). That is,
each positive real root of A yields a value for g,_(a,). Setting g,_(z) g,_(a,), we
can solve for g,-2(z) in terms of g,_a in (3). Proceeding in this way, we can finally
obtain go, and then set S,(z)= go(z)/A. If there exists a minimal r, then there
exists precisely one positive real root Ak of A(A) which yields Sa,,(z), a Blaschke
product of degree n (K K’) 1 having K’ (0 _-< K’ <_- K) poles in D. This follows
by Theorem 4. Conversely, if none of the positive real roots of A(A) yield such a
function, then there does not exist a minimal r .

If after calculating all of the positive real roots of A(A) and their associated
functions Sa (z), it is found that there does not exist a function of minimal norm on
U in r, one can nevertheless calculate the infr, Ilrllt,. This can be done by
attempting to calculate the rational function having K-M or fewer poles in D of
minimal norm on U, which takes on the given values at n m of the a’s foreach
O<M<-_K and for each subset of n,-M of the ak,’S. That is,.by applying.the
algorithm to the class of functions flK,M (see Lemma 1 for notation) for all
0 <M <_- K and for all possible relabelings of the. ak’s. Notice that when M K,
there always exists a minimal function so the set of all such functions is nonempty.
Now once this_is carried out, and we have calculated this set of minimal functions
and their norms on U, then that norm which is least is also infr,, ][rl]t. This follows
from Theorem 2.

It should also be noted here that this algorithm may be applied to those
situations that don’t satisfy the conditions of Theorem 3. That is, even if the
moduli of the A’s are not all distinct, it is possible to apply this algorithm. The few
such cases calculated do, in fact, yield a function of minimal norm in K. One
might, therefore, conjecture that Theorem 3 holds for whatever A’s are chosen.

3. Best uniform approximation by rational functions with a fixed number of
free poles. Let f(z) t(z)/I-]= (z a), where o’(z) is a polynomial and the ak’s
are distinct and lie in D. The problem considered here is that of approximating f
on U by rational functions having fewer than n poles in D. More precisely, for
each K, 0 <- K -< n 1, we ask if there exists a rational function having K or fewer
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poles in D of best uniform approximation to f in U. Furthermore, we ask if such a
function exists, then is it unique and can it be calculated.

Throughout this section let Ak r(ak)/[IT---1 (1-dial) for k 1, 2,..., n,
K =({a}_-l, {A}_-) for 0<-K<-n-1, as before and, as in Lemma 1, for
O<=M<=K let fln,u =K,u({a}2, {Ak}2. Also let denote the set of all
rational functions that have K or fewer poles in D, for 0_-< K _-< n 1.

Theorem 1 has already established a strong connection between this problem
and that of investigating Chebyshev rational functions which was considered in

1. A theorem which is a converse to Theorem 1 and which will play a central role
in our subsequent discussion of this problem is now given.

THEOREM 5. Let f(z) be as above and suppose R is a best uniform approxi-
mant to fon Ufrom Yt. Suppose also thatR has a pole (orpoles) located at each of
the points a,_u+, , a,, but not at a, az, , a,_, Set

rn.M(z) If(z)- Rn(z)] 1 \i--dz
The function r,u is then a function of minimal norm on U in the class

Proof. Suppose there exists a function r,u fl,u such that [[r*,lv
Set

The function R*. will then be rational with K or fewer poles in D and

I1-ell < I1-ell, thus yielding a contradiction.
The existence of a best uniform approximant to on U from the class now

follows easily. By Lemma 1 and the preceding argument, we see that

(4) inf -el infllel.

By Theorem 2, for some 0 NMNK and some appropriate relabeling of the a’s,
there exists a function r, of minimal norm on U in, such that

If we let

1- dz]
then R will then be a best uniform approximant to f on U from the class .
Moreover, by Theorem 2, the deviation f-R will be a Blaschke product of
degree 2n / K- 1 (or less).

The question of the existence of an algorithm for the calculation of a best
approximant to f from Yt also follows from our work in 1, subject to a
restriction on the moduli of the values o-(ak), k 1,..., n.

THEOREM 6. Let f and be as before and suppose that the values
A r(a /’;: (1 tja have distinct moduli for k 1, 2,. , n. There then
exists a unique best uniform approximantR to fon Ufrom. Furthermore, f- R:
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is a Blaschke product ofdegree 2n 1 and RK can be calculated explicitly by means
of an algorithm.

Proof. By (4) and our previous remarks, the K,M can be relabeled so that for
some 0 =< M_-< K, there exists a function r,M of minimal norm on U in K, such
that

(i) inf IIZ-NII ,
RR

(ii) 1- tikz/, Z
is a best approximant to f on U from . Furthermore, by assumption about the
moduli of theA’s we have, by Theorem 3, an algorithm for the calculation of r,
and hence for RK.

The method for calculatingR is now clear. For all possible relabelings of the
a’s and for each M, 0=<M=< K, we attempt to calculate r:., the function of
minimal norm on U in ,. Of all such functions that exist we choose one of least
norm U. This function will then yield (5) a best approximant R to f on U from. The existence of at least one such rK, is guaranteed and by Theorem 3 and
f-R will be a Blaschke poduct of degree 2n- 1.

Since there is no guarantee that there is no more than one function r.r of
minimal norm on U, there is likewise no guarantee that R: is unique. Only in the
case where there exists a function of minimal norm in does this analysis insure
the uniqueness of the best approximant in K. It is thus an open question as to
when R is unique. Attempts to prove the uniqueness of R seem to lead to the
following problem which also arises when we attempt to prove Theorem 3 without
any assumptions about the moduli of the A’s. That is, if B(z) is a Blaschke
product with N zeros and P poles in D where P-N 2K-> 0 and if R is a
rational function with exactly K poles in D, is RK the unique best approximant to
g(z) B(z)+ R(z) on U from? It should be noted here that if K =0 (and so
R: Ro is the set of all polynomials), then the answer to this question is no [5]. If
the answer is no for all K, then it will follow that RK will always be unique and
Theorem 3 will hold for any choice of the Ak’s.

Remark. Let us briefly look at generalizations of this work that have been
heretofore overlooked. To begin with, the initial assumption that the a’s be
distinct can be dispensed with. That is, one can prescribe not only the value but
also the first m derivatives at a and obtain the same results given in 1. The
results in 2 can likewise be generalized.

It is also possible to extend the results in 1 and 2 by replacing the unit circle
by an arbitrary closed Jordan curve. However, in this case, the corresponding
Chebyshev rational functions and best rational approximants can be calculated
only in terms of the mapping function for the interior of that curve. The details of
the generalization can be found in [6].

An example of how our algorithm can be applied to a specific case will not be
given, for a single example will provide little instructive information. However, a
systematic set of calculations could provide information dealing with the locus of
the poles of the best approximant as a function of the locus of the poles (and their
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weights) of the functions being approximated (we refer to 3). Such information is
nonexistent at present and may prove to be useful in other areas that use rational
approximations. The author hopes to carry out such an investigation.

4. Best maximal convergence. For a continuous function f defined on E, a
compact set, for each n =0, 1, 2,"’, let p, (f, E) denote the polynomial of
degree n of best uniform approximation to f on E and let

p,(f, E) IIf-p,,(.f,

As a special case of Walsh’s theorem [2, p. 75], we have that if f is analytic in the
open disc, (lzl< R}, R > 1, and meromorphic in {lzl<-R} (i.e., f(z) has a finite
number of poles on (Izl- R}), then the sequence {R"p,(L U)}7=o is bounded
above. Our final application of the Nevanlinna-Walsh algorithm is thus to show
that this sequence does not converge and that it is possible to determine the set of
all of its limit points which may, in fact, include a continuum.

The main tool used here is the algorithm developed in 2 applied to a very
special case. It may be less confusing to use Walsh’s book [2, p. 286] or this
author’s paper [6] as a reference here. Before constructing our example we first
give two lemmas.

LEMMA 2. Let f(z; O)=(z-r)-+ei(z +r)-, where 0<r< 1, and let
(O)=[lim,_.oo p, Of(z; 0), U)]-. Then h(O) is a nonconstant function of O.

Proof. Let f(z)=((z-r)/(1-rz))f(z), and let F(z) be the function
analytic in {[z[ <= 1} and of minimal uniform norm on U which interpolates the
values

F(r) f(r) and F(-r) f,(-r).

It then follows that IIFIlu A(0)-a. Furthermore, if we set

then IFl(-r)l 1. This yields the following equation for ,(0):

1 + r2][-A(O)Ae’-_A(O__)A]-2; ] I+A(O)2A e ’ J =1,

where A 2r/(1- r4). This may be written as,

A(0)le ’ + ]1 (1-r:)l +A(O)ZA e’l.
Squaring both sides, this expression yields,

(1-r2)2A4A(O)4+2[(1-r2)ZA cos 0-(1 +cos O)]A(O)2+(1-r2)Z=O.

If we now treat r and hence A as constants and differentiate with respect to 0, we
obtain the following derivative:

A’(0)
[(1-r2)2A sin 0-sin 0]

2(1 r)2A4A(O) + 2[(1 r)A cos 0-(1 +cos 0)],X (0)

It is easy to show that the denominator of this expression is nonzero and that the
numerator vanishes only when sin 0 does, that is, when 0 0 or 7r. As a result, we
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see that A (0) is not a constant function of 0 and our lemma follows. Furthermore,
a closer examination of this expression indicates that the function A (0) attains its
maximum value, (1- r4)/2r, when 0- 7r and its minimum value, (1- r4)/2, when
0--0o

LEMMA 3. Letf(z O) and A (O) be as before. Then, given any e >0, there exists
an N such that if n N,

Ipn(f(z; 0), U)-A(O)-I<e forall 0[0,27r].

Proof. Assume that the above conclusion is false. There then exists an e > 0,
an increasing sequence of positive integers {nk)kl and a sequence of arguments
{0k)kl, such that

Ipn(f(z, 0), U) ,k (Ok )-’ > e for k 1, 2,.’..

We may assume that the sequence {0k}= converges to some 0o. It will then follow
that the sequence of functions {f(z; 0k)},=l converges uniformly on U to f(z; 0o).
Consequently limk-.oo A (0k) A (0o).

Setting pk- Pk (f(z; 0o), U), we can write

p,,k (f(z 0o), U) tlf(z
->/If(z; o)-p.(z)ll.+llf(z; Oo)-f(z;

>=,(0)-’ +e-&,

where & -> 0 as k --> . However, A (0k)--> A (0o) as k --> , and so we have that

lim p.z; 0o), U) >- A (0o)- + e.
koo

This is a contradiction since limk_.oo p, (f(z; 0o), U) A(0o)-, and so our lemma
follows.

We are now able to construct an example that will substantiate our main
contentions.

Example 2. Let g(z)=(1-rz)- +(1 + rz)- where, as before, 0<r< 1. Then
the sequence {p,(g, U)/r"}.=o does not converge.

Proof. Let p. p,(g, U). We can then write

However, we have that

+ p,(z)p,,(g,U)
1 rz l+rz

-IIz+ z
z-r z+r

-r z+r

Z
n+l

n+lz
z+r

.n+l
+S.(z),
z--r

z+r
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where S, and t, are polynomials of degree n, and so we have that

0.(g, U)/r" ro.(f(z; (n + 1)r), U),

where f(z;(n+l)r)is, as before, the function (z-r)-l+(-1)"+l(z+r)-’. In
light of Lemmas 1 and 2, wc have that thcscqucncc {p(g, / --o does not
converge and does, in fact, have precisely two limit points;namely, 2r/(1- r4) and
2r2/(1-r4).

The same analysis can be carried out on functions of the form g(z)
(1 alz)-l+ Re’ (1 a2z)-+ h(z), where la[ [al r- and h(z)is analytic in

r{[zl < r-l}. In this case, one finds that sequence {O,(g, U)/ s,=o has as many limit
points as does the sequence {(al/ ,=o. It is also possible to determine the range
of these limit points.

In light of the available examples of best uniform polynomial approximation
[7], it seems reasonable to guess that the only functions f, as described in the
introduction for which the sequence {R"p,(f, U)},o, does converge, would be
those of the form

o’z
f(z)= ,vR

+ h(z),

where k, m{0, 1, 2,... }, 0-<k-<m and h(z) is analytic in {[z[-<R}.
Finally, the methods employed here can be extended in a straightforward

manner so as to allow one to calculate explicitly the range of any sequence
{R"p,(f, U)},o, where f and R are as in the introduction of this section.
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ASYMPTOTIC INTEGRATION OF LINEAR DIFFERENTIAL EQUATIONS
SUBJECT TO INTEGRAL SMALLNESS CONDITIONS INVOLVING

ORDINARY CONVERGENCE*

WILLIAM F. TRENCH,"

Abstract. The problem of asymptotic behavior of solutions of an nth order linear differential
equation is reconsidered, and a result obtained by Hartman under integral smallness conditions
requiring absolute integrability is shown to hold with most of the conditions stated in terms of ordinary
integrability. Results of Fubini and Halanay for linear perturbations of nonoscillatory second order
equations are similarly extended.

1. Introduction. We study the behavior as of solutions of the scalar
equation

(1) xn)+ pl(t)xn-1)+ + p,(t)x 0, > 0,

with n _>_ 2. Except when stated otherwise, all functions are permitted to be
complex-valued; is a real variable throughout.

Our main result is the following theorem.
THEOREM 1. If P l, "’", Pn C[0, ),

(2) Ip(t)l tq dt < ,
and the integrals

(3) pk(t)tq+k-l dt, 2 <= k <= n,

converge--perhaps conditionally--for some q > O, then (1) has solutions Xo "", x._
which satisfv

(4)

-j

x(t) (r j)
(1 + o(t-q))

o(t--),

O<=j<=r,

r + <=j<=n- 1.

Hartman [4, Thm. 17.1, p. 315] has shown that the conclusion of Theorem
holds if

lpk(t)ltq+k- dt < l<k<=n,

for sorne q >__ 0, and Hartman and Wintner [5] had earlier obtained the result for
q 0. (For a history of the problem with q 0, see [4, p. 321] .) The contribution
here is that ordinary--rather than absoluteonvergence is sufficient in (3) if
q>0.
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A special case of Hartman’s result, due to Hille 6, part of Thm. 31, is that if
t21p(t)l dt < , then

y" + p(t)y 0

has solutions Xo and X such that limt_. Xo(t)= and lim,_. (xl(t)- t)= O.
Theorem shows that this conclusion holds even if.(o tZp(t)dt converges con-
ditionally.

2. Proof of Theorem 1. To avoid unnecessary subscripts, we let r be a fixed
integer (0 =< r =< n 1) throughout. For convenience, let

(5) Mx-- pkX(n-k)
k=l

(thus, (1) can be written as x(" + Mx 0) and define the transformation y Tx
by

(6) y(t) . +

if 0 __< r __< q, or by

(7) y(t)

(t s)"-
(n- 1)!

(Mx)(s) ds

(Mx) (s) ds

if q < r =< n 1. Here [q] is the integer part of q and to > 0.
Under the hypotheses of Theorem 1, we will show that T maps the space

V[to, ), consisting of functions in C"-1[to, m) and satisfying

(8) x(J)(t) O(tr-J), 0 <= j n- 1,

and

(9) (t-rx)(t))’= O(t-q-1), 0 <__ j <= n- 2,

into itself, and is a contraction mapping with respect to the norm

(10) Ilxl[ sup d-’lxJ)(t)l q- tq+l 2 I(d
t>=t j=0 j=0

if to is sufficiently large. (The condition (8) is partially redundant, since (9) and the
condition that x(t) O(t) imply (8); however, it is convenient in the following
proof to define x as in (10).) Since V[to, ) is a Banach space under this norm,
it will then follow from the contraction mapping principle I1, p. 11] that T has a
fixed point (function) which, we will show, is essentially the solution of(l) which
satisfies (4).

Throughout the rest of the paper, it is to be understood that all estimates
hold for _>_ to.

The following lemma is the key to the proof of Theorem 1.
LEMMA 1. Suppose the hypotheses of Theorem hold and x V[to, ). Then

(11) If (t- s)i(Mx)(s)dsl< xllm(t)ti-’-q+r+ O < < n + q r-1
i!
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where m is continuous on (0, ), decreases monotonically to zero as - , and does
not depend on x or to.

Proof First observe that

(12) sJpl(s)x("- )(s) ds

where

IIx E(t)tj-"-q+r+l,

E(t) slp(s)l ds,

O<=j<=n+q-r- 1,

converges and satisfies

(13)

where

because, from (10),

and

II,,(t)l 5

Eu(t) (1 + t-ffq) sup [e,(s)[,
s>t

It"--’x"-(t)l <= x

ek(s)(s"-k-’X"-k)(S)) ds xll (sup le,(s)l) s -a-1 ds.
s>__t

which exists, because of (2). For k 2,..., n 1, define

ek(t) s + q- p(s) ds,

which exists because of the assumed convergence of (3). Then

rx(ns"+q -p(s)x"-)(s) ds ek(s)s -)(s) ds,

which, by integration by parts, equals
tl ttl-e(s)s"--rx"-)(s) + ek(s)(s"--’x"-)(s)) ds.

This converges to a finite limit as approaches , since

le(t,)t]--’xt"-k)(t,)l <= [Ix[[ le(tl)l,

le,(s)(s’--x’-(s))’l <= Ilxll le(s)ls -- ,
and lim,_. e(t) O. Therefore, the integral

Ik(t) s"+q-- p(s)x-(s) ds

ek(t)tn-k-x(n-k)(t) + ek(S)(sn-k-rx(n-k)(s))’ ds
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(Here we need the assumption that q > 0.)
Now, if0 <j < n + q r 1,

SJpk(S)X("-k)(s) ds sJ-"-q+r+ I’(s) ds

ik(t)t-.-q+r+l + (j_ n q + r + Ik(s)s--q+ ds

and, because of (13) and the obvious monotonicity of Ek,

(14) sJpk(S)X(n-k)(s)ds <= 2 xllEk(t)tj-n-q+r+ 1, 0 <= j < n + q r- 1.

This inequality also holds for j n + q r 1, because then the integral on the
left is just Ik(t) (cf. (13)). Now, from (5), (12) and (14),

sJ(Mx)(s) ds <= xll El(t) + 2 Ek(t tj-n-q+r+ 1,
k=2

and so (11) holds, with

m(t) 2 El(t) + 2 Ek(t)
k=2

O<=j<=n+q-r- 1,

(15) H(t) f, (t s)
(n 1)!

(Mx)(s) ds

is defined whenever x Vto, v), and that

(16) IH(J)(t)l <- Ix m(t)t"--, 0 j n- 1.

Since (6)can be rewritten as

y(t) . + H(t),

(16) implies that

(17) y)(t) O(t-)), 0 <= j <= n 1.

Moreover,

(t-y(J)(t)), (tJ-HO)(t)), tj-- l[(j r)HO)(t) + tHO+ 1)(t)]
O<j<=n-2,

Since El, ..., E, all decrease monotonically to zero as , this completes the
proof of Lemma 1.

Returning to the proof of Theorem 1, we consider two cases.
Case 1. Suppose 0 =< r =< q. Then Lemma implies that the integral
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so (16) also implies that

(18) ](tJ-o.y)(t))’ ](tJ-o.H(J)(t))’l <= x (IJ- r] + 1)m(t)t -q-l,

O<=j<=n-2,

which, with (17), implies that y VIto, oo); thus, T maps Vto, oo) into itself.
If 2, Vto, oo), then

TYc(t) T(t) f, (t S)n-1

(n 1)!
IM(Y ,)-1 (s) ds

and, by setting x in (15) and using (16), (18) and the monotonicity of m,
we find that

T- T <__ Yc- c m(to) nt + j- r[ + 1)
j=O

Since re(t) o(1), this implies that

T:- T <1/2[[-

if to is sufficiently large. Hence, T is a contraction mapping of V[to, o) into itself,
and therefore has a unique fixed point (function) xo. such that Txo. x i.e.,

(t-s)"-x(t) +
(n 1)

(Mx)(s)ds.

Clearly, x satisfies (1) on (to, ), and it can therefore be extended as a solution
of (1) over (0, ). That x satisfies (4) can be seen from (16), with x x in (15).

Case 2. Suppose q < r. Then Lemma implies that the integral

(t S)"-r+[q]-
(19) g(t)

(n- r + [q] 1)!
(Mx)(s)ds

is defined whenever x V[to, oo), and that

(20) Igi)(t)[ <= x m(t)ttq]-q-i O < < n- r+ [q]

Now (7)can be rewritten as

y(t) . + 6(t),

where

(21) GJ)(t)
(r- [q]-j- 1)!

(f ,)o.-[q]-j- lg(/) d2,

O<=j<=r- [q;- 1,

and

(22) 6J(t) CJ-+t"(t), r- [q]__<j=<n- 1.
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From (20) (with 0), (21) and the monotonicity of m,

(23)

[q]

ft(r i -- J 1)!
[g(2)[ d2

< lix m(to)tr-[q]-j-
2[q]-q d2i; -7/--

xllm(to)V--(1 + [q] q)(r [q] j 1)!’
From (20)(with j r + [q]) and (22),

(24) [G(J)(t)[ _-< [Ix m(t)tr-J-q,

0 =<j__< r-- [ql-- 1.

r-- [q] =<j=< n-- 1.

Using (23) and (24) and a computation similar to that of Case 1, it is straight-
forward to verify that y, as defined by (7), is in V[to, oo) and that T is a contraction
mapping if to is sufficiently large. The function left fixed by T satisfies

(25) x,(t) . +
(r- [q]-- O d2

(n r + i-q-] - i)! (Mxr)(s) ds,

and so is a solution of (1) on (to, oo), and can be extended as such over (0,
Since the integral on the right of (25)is G(t)(cf. (21)), with x xin (19), it is clear
from (24) that x satisfies (4) for r q] _<_ j __< n 1. The same conclusion cannot
be obtained from (23) for 0 _< j __< r [q] 1, since the last member of (23) is
O(t-a-q) rather than o(t-J-q); hence, a different analysis is needed for this case,
as follows. Again let x xr in (19). From (20) (with 0) and (21),

IGJ(t)l
(r [q] j i)! m(2)2[q]- d2,

0 =<j=< r-- [q]-- 1;

hence

Ilx, tq-tal-1
Ita-+GJ(t)l =< (r -dj----1)! m(2)),tql-q d2,(26)

which shows that (4) also holds if 0 j =< r [q] 1, since the right side of (26)
approaches zero as oo. (This is obvious if the integral converges, and it follows
from l’H6pital’s rule if it diverges, since m(t) o(1).)

This completes the proof of Theorem 1.

3. A related result.
THEOREM 2. Suppose Pl Pn e C[0, z3) and r is afixed integer, 0 <= r <= n 2.

Then (1) has a solution x, satisfying (4) if

(27)

(28)

o"
lPl(t)l dt < oo,

’Pk(t)t
k- dt existsfor2<=kn-r- 1,
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and, for some q > 0,

(29) pk(t)tq+k-1 dt exists for n r <= k n.

We omit the proof of this theorem, which is very similar to that of Theorem 1.
The essential difference is the need to restrict further the domain VIto, v) of the
transformation T, by defining V[to, v) to be the subset of C"-lit0, ) consisting
of functions x which satisfy (9) and

O(t’-J),
O(t’-J-q),

O<=jr,

r + <=j<=n- 1,

instead of(8), and defining x by

x sup
>=to j=O j=r+

+ q+l I(tJ-xtJ)(t))’l
j=o

instead of (10). The other changes required to adapt the proof of Theorem to
that of Theorem 2 stem naturally from these and the differences between the
hypotheses of the two theorems.

Hartman [4, p. 315] has shown that the conclusions of Theorem 2 hold if the
integrals in (27), (28) and (29) all converge absolutely.

The essential difference between the conclusions of Theorems 1 and 2 is this:
the former states that (1) has a fundamental system {Xo, "", x,_ } consisting of
functions which satisfy (4), while the latter implies that (1) has a "partial" system
oft + (<n)solutions {Xo,-", x} such that

ti-j

j)( + o(t-.)), 0 j i,
xJ)(t) (i

o(ti-J-"), i+ j n- 1,
for0ir.

4. Linear perturbations of a nonoscillatory second order equation. We now
apply Theorem to obtain a result on the asymptotic behavior of solutions of

(30) (r(t)x’)’ + g(t)x O, > O,

considered as a perturbation of

(31) (r(t)y’)’ + f(t)y O, > O,

which is assumed to be nonoscillatory. In this case it is known [4, p. 355] that (31)
has solutions Yo and Y such that

(32) yo(t) > 0 and y l(t) > O, _>_ (for some ),

(33) r(YoYl Y’oY l) 1
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and

Yl(t)
(34) lira oe.

,-oo Yo(t)

THEOREM 3. Suppose r, f, and g are continuous, r > O, and f is real-valued on

[0, oo). Let (31) be nonoscillatory on (0, oo), suppose Yo and Y are solutions of(31)
which satisfy (32), (33) and (34), and suppose

(g(Z) f(t))(yl(t))q+ l(yo(t))-q+ dt

converges--perhaps conditionally--for some q > O. Then (30) has solutions Xo and
x such that

(35)
Xo(O yo(t)( + o(s-")),

X’o(t) y)(t)(1 + o(s-q)) + y’(t)o(s -q- 1),

and

(36)

where

Xl(t) yl(t)(1 + o(s-q)),

x’(t) y’(t)(1 + o(s-q)) + y’o(t)o(s -q+ 1),

y,(t)
(37) s s(t)= > .

Yo(t)’

Proof From (33),

(38) s’(t) r(t)(Yo(t))2 >
O, >= ,

so (34) implies that s s(t) maps [, ) one-to-one onto [sq), ). By rewriting (30)
as

(r(t)x’)’ + f(t)x + (g(t) f(t))x 0

and making the change of variables s s(t) and u(s) x(t)/yo(t), it is straight-
forward to verify that (30) is equivalent to

d2u
(39)

ds2 +- p(s)u O,

with

p(s)-- r(t)(yo(t))4(g(t)- f(t)), (s s(t)).

From (37) and (38),

sa+ lp(s)ds (g(t) f(t))(yl(t))q+ ’(yo(t)) -q+l dr,
(3)

which exists for some q > 0, by assumption;hence Theorem implies that (39)
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has solutions Uo and ul such that

and

Uo(S) + o(s-"),
aUo(S)
ds

O(S- q- 1),

au(s)
u(s)-- s(1 / o(s-q)), / o(s-q).

ds

Now let xi(t) yo(t)ui(s(t)) (i 0, 1); then Xo and X are solutions of (30), and
elementary manipulations (which make use of (33), (37) and (38)) show that they
satisfy (35) and (36).

Halanay [3] obtained the conclusion of Theorem 3 for r and q under
the stronger assumption that

lg(t) f(t)l(yl(t))2 dt c.

He also obtained the conclusions of Theorem 3 for r and q 0 by assuming
that

(40) Ig(t) f(t)lyo(t)yl(t)dt

of course, Theorem 3 does not improve on this, because it applies only if q > 0.
(Hartman and Wintner obtained a similar result for q 0, under an assumption
weaker than (40); cf. [4, Thm. 9.1, p. 379] .)

By considering

(41) x" x + P(t)x 0

as a perturbation of y"-y 0 and taking a 2q, we obtain the following
corollary to Theorem 3.

COROLLARY 1. If P e C[to, c and o P(t) eat dt converges--perhaps condition-
ally--for some a > O, then (41) has solutions Xo and X such that

(42)
x)(t) (-

x]J’(t) et( + o(e-a’)),
j O, 1.

This corollary contains a result obtained by Fubini [2] for a 2, under the
stronger assumption that o ]P(t)] e2’ dt < however, Fubini did not specify
the order of convergence in (42).
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A PRIORI INEQUALITIES AND THE DIRICHLET PROBLEM
FOR A PSEUDO-PARABOLIC EQUATION*

VINCENT G. SIGILLITO’

Abstract. Inequalities are developed which can be used to give norm error bounds for approximate
solutions of the Dirichlet problem for a pseudo-parabolic equation. Alternatively the inequalities can
be used as the basis of a method for obtaining approximate solutions with computable error bounds.

1. Introduction. In this paper we derive two inequalities which give norm
error bounds for any approximate solution to the Dirichlet problem for a pseudo-
parabolic partial differential equation. Alternatively, the, inequalities can be used
as the basis of a method to compute approximate solutions, with associated error
bounds [1], [2].

The first inequality is an explicit a priori inequality, which bounds i’D w2 dV,
(w is an arbitrary C (D) function) in terms of the "data" of the initial-boundary
value problem (IBVP)

(1) Lu =- A(u+ u,)-u, =f(x,t) inD.

(2) u=g(x) onB.

(3) u=h(x,t) onS.

The second inequality is a bound on J’D (u w)2 dV, where u is the solution of the
semilinear equation

(4) Lu f(x, t, u)

with initial-boundary values (2) and (3). Here D is the three-dimensional space-
time cylinder D B (0, z), 0 < : < oo, and B is a bounded region in the
x (xl, Xz)-plane. The sides of this cyfinder will be denoted by S cB I0, z),
and the top by Be D f’l {t z}. The outward pointing unit normal vector on
the surface of D will be denoted by n (n l, n2, nt). Evidently, nt 0 on S while
nt -1 on B and nt + on Be. The notation u,i will be used to mean cu/cxi
and when a Latin index is repeated in a single term, summation over that index
from one to two is assumed. Greek indices appear occasionally and when they are
repeated in a single term, summation is assumed to go from one to three, the third
variable being the time t. The restriction to two space variables is not necessary
and, in fact, the results are immediately generalizable to higher space dimensions.
We have chosen to limit the results to two spatial dimensions because the physical
problems which are described by the IBVP (1)-(3) are one and two-dimensional
in nature.

Equation (1) is a member of a class of equations referred to as. pseudo-
parabolic [3]. It has recently begun to receive attention because of its appearance
in a variety of such important physical processes as the nonsteady flow of second
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order fluids [4] the seepage of homogeneous fluids through fissured rock [5]; the
diffusion of "imprisoned" resonant radiation through a gas [6], [7], [8] (which has
applications in the analysis of certain laser systems [9]) and finally in the two-
temperature theory of heat conduction of Chen and Gurtin [10].

Because of the relationship between (1) and the heat operator A c/ct, many
of the results for pseudo-parabolic equations bear a close resemblance to well-
known results for the heat equation [3], [11], [12], [13]. The work reported herein
is related to the author’s earlier work [14].

2. The a priori inequality. In this section we derive the following a priori
inequality:

If w is any Ca(D) function (a condition which can be weakened somewhat
with respect to the variable), then

where cz 1, 2, and are explicitly determined constants which are independent
ofw.

The development of the inequality begins with the introduction of the
auxiliary function u which satisfies

(5) L*u =A(u-u,)+ u,= w inD,

(6) u=0 onBeU$.

For results concerning the existence of such functions, see [3], [11], [15] and
references cited therein.

Then, using (5) and (6) and the divergence theorem, we obtain

from which follows

(7)

1/2

by the Schwarz inequality. Here 21 is the lowest fixed membrane eigenvalue for
B. The object now is to bound the integrals containing u on the right-hand side
of (7) by .fD w2 d V.
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(8)

To obtain the desired bound on j’n [u2 + (Au)2] dx, we proceed as follows"

fB It/2--(Ab/)2] dx Yo (O[U2 -I- (Au)2]/COI) dV

=2fo(u-Au)L*udV+2
+ 2 f Au(Au + ut)dV.

But since

(9) fB uZ dV <= J,- fD U, iu, dV

(see (3.10) of [14]), we obtain, again using the divergence theorem,

f, f,, ’2av’< fB [2 + (’2] dx

(lO)

and substitution of (8) into (10) yields

[u2 + (au)2] dx +

1

Now by (6) and the divergence theorem,

Thus, if we drop the negative terms indicated by (12), recall that o u Au dV
-fo u,u, dV, and use an apwopriately weighted arithmetic-geometric mean

inequality we obtain,

(13) fn[u2+(Au)2]dx+2fou2dV<{2+2}fow2dV’=221-
Before proceeding to bound the second term on the right-hand side of (7),

we derive three useful inequalities. We start off with

fo(Au)2 dV foAuL*udV + foAuAutdV- foutAudV,
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which, by the divergence theorem and (6), becomes

(Au)2 d V fz AuL * u f (Au)2 dx u,u, dx
2 2

(14)
__< fo AuL* dV.

An application of the Schwarz inequality now yields

The second inequality we need follows from (14) also, for we have

f(Au)2 clx < foAuL*udV,2

which yields, by the Schwartz inequality and (15),

(16) lf(Au)2dx<flwZdV.2

To obtain the third inequality we use the fact that u 0 on S to write

(17) fo u,iu,i dV fn u Au dV fl uL*u dV fz) u Aut dV + fo uu, dV

But by (12) and since (.z gut dV -1/2fn u2 dx <= O, we have fou.,u.,dV
_< -. uL*u dV, which, by (9) and the Schwarz inequality, yields

(18) u,iu, dV <= 2-( fD W2 dV.

Now to bound the second term on the right-hand side of (7)" we begin with
the inequality

(19)

fu,L * u dV fu,,(cu/cn)da f,iu, iu, dV - fnu, iu, da

fagtoU, iU, dx + - fa, aU, iU, dV2 taB,:

+ f flu,ot(ut ARt) dV,

where f" denotes the eth component of a piecewise continuously differential
vector field. But since u 0 on S, u, ni cu/cn and thus the first and last terms of
the right-hand side of (19)combine to give 1/2sf’n,(cu/cn)da. Furthermore, by



226 VINCENT G. SIGILLITO

(6), u,i 0 on B and thus we can write (19) as

fn(c3u/dn)z dcr fu,L*u dV + f,iu, iu, dV + - n,u, iu, dx
2

fof,u,iu,dV-2

Now choose the fl, (l 1, 2), such that fnl has a positive minimum, say pro, on
S, to obtain

Pm/Zf’u/n)" fo f=u’=L’uV+ fo fgu’’u’V +fo fiu’iu’Jdg

(20) f 3u,u, dx fu,#, dy f3(u,)g dy

Consider the last two terms; we have

fof3utAutdV --fof3U,iru,,dV,
and

if f,] 0, i= 1,2,

;l)fiu’i lut dv fBfiu’i Au dx fgfiu’i, ltl dV, if fi=0, i= 1,2.

Using these results in (20) (along with the arithmetic-geometric mean inequality)
we have

fS fl) fl) 1;D [f’3if’3i](tlt)2dV-Pm {6u/an)2 da <_ f3(L *u)2 dV + a f3(ut)2 dV +
fl

+ U, iU, dV + fiu, iu,j dV f3u, iu, dx

lfofe=u,,u,,av-fof3(u,)2dV fDf3u,,u,i, dV2

fnflf lfo f+ U,iU, dV + f3(ut)2 dV- flu, u dx

where we have imposed the further condition that f3 0 in .
Such vector fields are usually easily obtained. For instance if B is star-shaped with respect to

the origin we may choose f x. For more complicated boundaries see [16].
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If we now choose fl 2f,3if,3fff 3 we obtain that

lfs {33 fjfJ};
D fDf,jf,j +

-Pm (63u/63n)2 da <= f3 t

u, iu, dV + [f3[M L’u)2 dV

(21) + fiu, iu, dV- - ffu, iu, dV - f 3u, iu, dx

fDf 3u, itu, it dV f.f’u,, Au dx fof’ Au dVU, it

+ fn fiu’iL* u dV,

where 1. I denotes the maximum of the absolute value of the quantity. Now,
straightforward applications of the arithmetic-geometric and Schwarz in-
equalities results in the following:

fiu, Au dx f 3u, iU, dx + (Au)2dx,

fZ 2dVfiu, il Au dV f3u, itu, it dV + f(Au)

fofiu,iu’dV If’jf/jl2 fou,,u,,av,
fo f’f’fofu,L* u dV u,u, dV + (L * u)2 dV.

Combining these inequalities with (21) yields

{-Pm ((u/(n)2 da =
(22) +

(23)

3 3 fjfjf,jf,j +
3 + If!jf!jl + 1/21f,l

M

f fl }L u, iu, dV + -M

4 f3 a
(Au)2 dV + (If3lt + 1/2) L’u)2 dV,

and the desired bound is now obtained from (22) using (15), (16), and (18), i.e.,

fs(c3u/an)2<- K f, w2 dV,

where

2I{f33fjfJIj,. [f!jf!j[/l2 @ "t-K -1 f’jo + 1/21 f’[
Pm M

+lSl +

finally the a priori ineqoality follows from (7), (1$) and (7]) via the afithmetio-
7eometrio ineqoality. We obtain

=, =(1+7), =(X+2)X7.
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3. The semilinear case. Let v be a solution of the semilinear equation
Lv f(x, t, v) where f satisfies a Lipschitz condition in v with Lipschitz constant
M. Let v- 4 where b is an arbitrary C3(D) function. We now derive the
following inequality"

;D 02 dV <- B 02 dx nt- 2 fs (02 t-0t2)drnt-3 fD F2 dV

where F(x, t) f(x, t, 49) L(ck) and 1, 2, 3 are explicitly determined constants
depending on the domain geometry, M and a positive constant b to be introduced
shortly.

The derivation follows closely that of 2 after a few preliminaries. Introduce
the function

W t eb(r t),

where b is a positive constant. Then

(24) L(6) (Lw bw) e -b(-’),

and we now want to bound

fo e2b’-’)d/2 dV fo w2 dV.

To do this introduce the function u which satisfies the IBVP

L*u- bu w inD,

u=O on S U B.

Proceeding as in 2 we obtain

w2 dV <= (w2 + w2t)do" (c3u/cn)2

+ (b + 21) u2 dV 2 W2 dx + 2- (Lw bw) dV

and the two important inequalities corresponding to (13) and (23) are

(13’)

and

fB [u2 + (Au)z] dx + (b + /l) ou2 dV < { 2 + b + )l}2(b + 21)

(23’) f(c3u/cn)2dcr<= K’foW2dV,
where K’ K + bl flM/22

To complete the bound we write

(25) ]L()] =< MIk] + V
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so that

by (24) and (25). The bound then follows from (7’), (13’), (23’) and (26), and we
obtain

2(2 + b+ 21)
01 /2. (b + 21)

2K’/2
O2

2(2 + b +/ll) e2br

3 /’2. (b + 21)

where/ M(2 + b + 21)1/2/(b + 21) and b is chosen so that/ > 0.
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LIE THEORY AND SEPARATION OF VARIABLES FOR THE
EQUATION

U,+AU-(+)U=O*

CHARLES P. BOYER’

Abstract. This work constitutes a detailed study of the symmetries of the time-dependent
Schr6dinger equation in two spatial dimensions with an added inverse square potential of the form
((a/x2,)+(fl/x)). An intimate connection between these symmetries and the coordinate systems in
which the equation separates is established. It is shown that there is a 1-1 correspondence between
orbits of commuting pairs of symmetry operators--one taken from the Lie algebra of the symmetry
group G and the other a second order symmetry operator--and Gminequivalent separable coordi-
nate systems for the equation. The spectral analysis for all the basis functions corresponding to the
different separable coordinate systems is computed. Then, making use of the symmetry group G, many
addition and expansion theorems for the basis functions are derived. In this way, we find many special
function identities involving Jacobi and Gegenbauer polynomials, Laguerre and Hermite polynomials,
Whittaker functions, Bessel functions, parabolic cylinder functions, Airy functions, anharmonic
oscillator functions, generalized spheroidal wave functions, generalized Ince functions and others.
Many of these relations appear to be new.

Introduction. In [3] (hereafter referred to as VI) the authors gave a detailed
investigation of the nine-parameter symmetry group for the free particle time-
dependent Schr6dinger equation in two spatial dimensions. There it was found
that this equation separates in 26 coordinate systems and that to each coordinate
system there corresponds a commuting pair of orbit representatives (under the
action of the Galilei group 2) from the set of second order symmetry operators
for the equation. One member of the pair of commuting symmetry operators is
taken from the Lie algebra of the symmetry group.

In this article, we consider the analogous problem when one adds an inverse
square potential of the form ((a/x)+(fl/x2)). The problem of separation of
variables carries over from VI with only slight modifications and is treated in 2. It
is found that the equation

(A) + U=0

separates in 25 coordinate systems when a 0 and in 15 coordinate systems when
a : 0. Moreover, for each separable coordinate system there is a pair of commut-
ing second order symmetry operators of (A) which describe the separation. In
contradistinction to VI, the second order symmetry operators, found in 1, are
not members of the universal enveloping algebra of the symmetry algebra of
(A). However, this is not a disadvantage since we prove a lemma which states that
the set of second order symmetry operators ow forms a representation space for the
symmetry group G of (A). Then in 3 it is seen that there is a 1-1 correspondence

* Received by the editors December 10, 1974, and in revised form March 11, 1975.
Centro de Investigaci6n en Matemfiticas Aplicadas yen Sistemas, Universidad Nacional

Aut6noma de M6xico, M6xico 20, D. F. Mexico.
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between all G-inequivalent separable coordinate systems of (A) and commuting
pairs of orbit representatives (K, S) under the action of G where K cg and S .

In 4 the spectral analysis of all basis functions corresponding to the
separable coordinate systems is performed first in a simpler two variable model
(i.e., 0) of the problem and then in one of the systems labeled by superscript (1)
which appear in Tables 1 and 2. In this way, we are able to derive, in some cases,
new integral identities for the basis functions. Furthermore, in 5 the overlap
functions are calculated between many basis functions in the simple two variable
model. This then allows us to derive many apparently new addition and expansion
theorems satisfied by the various special functions which occur as basis functions.
Our method also provides simple derivations of generalized eigenfunction expan-
sion and inversion formulas some of which involve multiparameter eigenvalue
problems.

This work is a continuation of a program of studying the connection between
Lie theory and the separation of variables for partial differential equations of
mathematical physics initiated a few years ago by Winternitz and collaborators
[14], [23], [24] in connection with investigating the scattering amplitudes occur-
ring in high energy physics. While the present paper should certainly have some
relevance to nonrelativistic physical problems, it is in the spirit of the work of
Miller 16]-[ 18], Kalnins and Miller 10]-[ 12] and Kalnins, Miller and the present
author [3], [4] (references [12], [3], [4] are hereafter referred to as V, VI and VII,
respectively) that the paper is written. Its purpose is to establish the intimate
connection between Lie theory and the theory of special functions and from this to
derive special function identities many of which appear to be new. In this regard
we mention also the work of Kalnins [9], Patera and Winternitz [19] and
Koornwinder 13].

1. Symmetries of the equation. Let X denote the partial differential operator

(1.1) X O, +OXlX, +Ox2x2 (+-2)
acting on the space C of locally infinitely differentiable functions of the real
variables xi, t, with -< < o, 0 < xi < (when a O, -< xl < c). The
maximal invariance algebra for the equation

(1.2)
Xu iu, + Ux,x, + u2- + u 0

was determined in [2]. Here we omit the details and merely present a brief review.
Now an infinitesimal generator for a group of space time transformations

takes the form

L a(x, t)0, + b,(x, t)O, + c(x, t),

where a, b,, c Coo. A necessary and sufficient condition for L to be an infinitesi-
mal generator of a group of symmetries for (1.2) is

(.3) [, x] (x,, t)x,
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where A (x,, t) e C. The condition (1.3) completely determines [2] both L and A
the results are the following generators:

Case 1. O.

K2 -t O,- tx, Ox, +-(x + x), K-2

(1.4) D x, 0x, + 2t 0, + 1, E i,

P1 0,, BI --80Xl + iX1/2.

Cse 2. 0. The generators are (1.4) with P and B missing and E is
irrelevant (i.e., can be removed by a change of basis).

The commutation relations are given by

[D, K:] 2K:, [D, B,] B1, [D, P,] =-P,,

(1.5) [K2, K_2] D, [P1, B,] E,

[K_2, B,]=-P1, [K2, P,]=-B,,

where E is in the center of and all other commutators vanish. Hence we have the
structure (2, R) Wl for Case 1 and (2, R) for Case 2, where w,
denotes the one-dimensional Heisenberg-Weyl algebra generated by P, B, and
E, and is an invariant subalgebra of ; denotes the semidirect sum.

As in VI we can exponentiate to obtain a local Lie group G of operators
acting on C and mapping solutions of (1.2) into solutions. The action of the Weyl
group W in Case 1 given by the representation

T(w, z, e)= e’ 8el

is

(1.6) [T(w, z, e)f](x, t)= e(i/4)(2’-t’w+4e)f(x tw+z, t),

where the vectors w and z are (w, 0) and (z, 0), respectively. The action of the
representation T(A) of SL(2, R) is

[T(A)f](x, t)=exp [ib(x+x)]4(d+tb) (d+tb

(1.7) (d+lb)-lx’ d+lbJ’

c d
eSL(2, R).

The adjoint action of SL(2, R) on W is

T-’(A T(w, z, e) T(A T(wA, zA, e’),

where e’ e + (1/4)(w z wA zA).
Now the group G acts on the Lie algebra through the adjoint representa-

tion

(1.8) K T(g)KT-I(g)
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for g G, K and splits into G-orbits. We classify the orbit structure of the
factor algebra ’ Cg/E. Writing a general element of the o((2, R) subalgebra as
A2K2 +AoD + A_2K_2, it is easily seen that I A2A_2 +A is invariant under
(1.8). Thus we have the following orbit representatives for 3: In Case 1 (a 0),

(i) (I<0) K_2-K2,

(1.9a) (ii) (I 0) cD, 0 # c R

(iii) (I 0) K2 + P1, K2, P,

In Case 2 (a # 0), where P1 and B do not appear, we have the usual orbits for
o’(2, R), viz.,

(i) (I < 0) K_2- K2,

(1.9b) (ii) (I > 0) cD,

(iii) (I=0) K2.

As in VI we need to determine the second order symmetry operators of (1.2)
in order to establish the connection with the separation of variables. We only
consider operators S which are first order in O, since this can be related through
(1.2) to a second order operator in the spatial derivatives. More precisely, we look
for all operators S which take the form

(1.10) S a(x, t) 0, + b,(x, t) Ox, + cij(x, t) 0x,x, + d(x, t)

and satisfy the equation

(1.11) [S,X]=RX,

where it follows from (1.2) and (1.10) that R can at most be a first order operator.
LEMMA. The space 9 of symmetry operators having the [orm (1.10) and

satisfying (1.11) [orms a finite-dimensional vector space and the ad]oint action of
the symmetry group G on 9 defines an automorphism on 9.

Proof.. The vector space property of ow is clear, and the finite dimensionality
will be seen explicitly below. By expanding the group action infinitesimally and by
using the Jacobi identity, it can be seen that [L, S] 5. Exponentiating to the
group we get the desired result. We notice that as long as 9 is finite-dimensional,
the proof is independent of the explicit form of the potential V(Xl, x) and its
symmetry group G.

Now before finding an explicit basis for ow, it is convenient to simplify (1.10)
somewhat. We do this by constructing the factor space

/{X}, where {X} {O O 6X, 4) 6 C},

under the equivalence relation S’= S if S’= S + &X form some & C. We can
always choose 4’ such that no 0, terms appear in S.
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As in VI, a straightforward but somewhat tedious calculation yields, modulo
the above equivalence relation, the following second order symmetries:

Case 1. a 0. A basis for is given by the six operators (1.4) plus

Sl t2(Ox,x, 0x2x2)- it(x1 0,- X20x2) -[" -- --3I (X-- X),
X2

(1.12)

S2 2t(0x,,- 0xx)- i(x, 0, x2 0)+

S3 (OX,X, 0X2X2) +2,
Xz

$4 2t(x 022- x2 0,x2) + ixz(x2 0l x Ox2)- Ox --x

X2

Hence, in Case 1, defines a 12-dimensional vector space.
Case 2. a 0. A basis for is given by the four operators in (1.4) not

including P and B (here E is irrelevant) plus

S t(O,x,-Ox)-it(x O xO) ( )t (x x1-- 2)

(1.13)

X

Si x 0,, + X 0-2xx Oxide- x 0, x 0- x + x /"

In Case 2, defines an 8-dimensional vector space. Notice that for a 0, we have
S, S Sz, S S and S, $6. We remark that in contradistinction to VI the

second order symmetries are not members of the universal enveloping algebra of
the symmetry algebra (1.4). In fact they are more closely related to the underlying
group of motions.

We consider next the orbits of /{X} under the action of G. In fact we
discuss the orbit structure of the factor space /{E}. For Case 2, which is simpler,
the representation of G SL(2, R) on /{E} is reducible and splits into three
irreducible compbnents /{E} , +(+), where the representation ,u is
the adjoint representation of G on its Lie algebra % is a three-dimensional
representation spanned by S], S, S, and is a one-dimensional representation
with S] as its basis. It is a straightforward computation to show that the orbits of G
in + lead to precisely one of the orbit representatives given by S;
S] + a(S + S’), S + aS, S+ aS’ S, S’, S + S’. Moreover, it will be seen later
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that there is a 1-1 correspondence between the set of all commuting pairs (K, S),
where K is one of the.orbit representatives of from (1.9b) and S is one of the
above representatives of @, and the set of all G-inequivalent separable coordinate
systems for (1.2).

Case 1 is more complicated owing to .the fact that the representation of
G SL(2, R) x)W1 on /{E} is indecomposable. Our procedure then is to search
for all members of /{E}, which commute with a given orbit representative of
/{E} given by (1.9a). Once this is done for each orbit in q3/{E}, we augment our
definition of equivalence in /{E} by considering two elements Sa, Sb to be
equivalent if they differ by the member K 6 we have chosen; i.e., Sa Sb if
Sa S + cK, c R. Then with this extended definition of equivalence, we will see
later that there is a 1-1 correspondence between commuting orbit pairs (K, S),
K c/{E}, S /{---} and G-inequivalent separable coordinate systems for (1.2)
with c 0. These results will be presented later in Table 2.

2. Separation of variables for the equation. The separation of variables for
(1.2), proceeds in the same manner as in VI with only slight modification. We
present only a brief sketch here and refer to VI for the details. The results are
given in Table 1. In general, we are interested in R-separability. That is, we
consider a change of variables

(2.1) xl G(vl, v2, v3), xz H(vl, vz, v3), F(vl, vz, v3)

such that the solution u(xl, x2, t) of (1.2). can be written as

(2.2) u(G, H, F)=

where S(vl, v, v3) is a function determined from the analysis and the functions
A(vl), B(v2) and C(v3) reduce (1.2) to ordinary differential equations in the
corresponding arguments. When the function S is a sum of functions of each of the
individual variables vi, we have ordinary separation (this is equivalent to S 0).
Furthermore, the separation process always allows us to take t--F-v3, so this
will be assumed in what follows.

Now the classification of separable coordinate systems is actually a classifica-
tion of equivalence classes of coordinates. Any two coordinates which can be
related by rotations, translations, or inhomogeneous Galilei transformations of
the underlying space (x, t) are considered to be equivalent; i.e., two systems which
lie on the same orbit under a transformation in the extended Galilei group are
equivalent. Finally, we mention that our notation is the same as VI. There the
coordinate systems are labeled by two letters and a superscript. The first (capital
letter) indicates the type of Hamiltonian to which the system in some sense
corresponds, F free particle, L linear potential, 0 harmonic oscillator, and
R --repulsive harmonic oscillator; of course, now we have an extra centrifugal
type potential added in each case, but we will retain the notation. The second
(small letter) indicates which of the separable coordinate systems for the two-
dimensional Helmholtz equation appears, i.e., c --Cartesian, r --radial (polar),
p ---parabolic, and e --elliptic. The superscript (1) or (2) indicates two separable
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coordinate systems which are equivalent under an SL(2, R) transformation, but
not under the above described equivalence (more will be said about this shortly).
Suffice it now to say that the system with superscript (2) corresponds to precisely
one of the physical Hamiltonians mentioned above, while the superscript (1)
indicates a system whose spectral analysis is simple (simpler than that of (2)). The
"subgroup coordinates", i.e., system 22-25 in Table 1 are only labeled by the type

Xof Hamiltonian and correspond to the equation ux2x2 + iu,-(/3/ 2)u 0 treated in
V.

3. The operator characterization of separation of variables. In this section,
we give a characterization of the separation of variables of the preceding section in
terms of symmetry operators. Corresponding to each of the coordinate systems
listed in Table 1 there is a commuting pair of symmetry operator (K, S) in ow. The
first operator of the pair K is a first order symmetry operator and is a member of
the Lie algebra . The second member S is a second order operator in ow. In
contradistinction to VI, the second order elements in are not members of the
universal enveloping algebra of . However, this is no di_sadvantage. What is
important is that the adjoint action of the group G map 5e into itself, which is
assured us by the Lemma. This action as seen previously splits ow into G-orbits,
and it is straightforward to classify all commuting pair (K, S) in the way described
in 1. However, as mentioned previously, there are in general from the point of
view of separation of variables, two points on each G-orbit of pairs (K, S) which
correspond to separable coordinate systems. Nevertheless, in the next section we
will use explicitly this G-orbit structure of the pairs (K, S) by performing the
spectral analysis and expansions at a simple point (Y{’, 9) on the orbit pairs. Then
by an arbitrary action of the symmetry group, the pair (Y{, ow) is transformed to a
pair (K, S) where the spectral analysis and expansion theorems are much more
difficult. This is the power of the group theoretical technique in deriving special
function identities.

The separation of variables is thus characterized by three simultaneous
differential equations

(3.1) Xu O, Ku Au, Su lu,

K 6 , S 5. From the discussion of the preceding section it is straightforward to
determine the commuting operators K and S corresponding to each of the
separable coordinate systems listed in Table 1. The results are presented in Table
2, and it is seen that the list exhausts all commuting pairs of G-orbits. Systems
which differ only by the superscript correspond to the same G-orbit but different
separable coordinates. We mention that for the second order operators the
unprimed S’s refer to Case 1 equation (1.12) while the primed S’s refer to Case 2
equation (1.13). When no primed S’s appear it means that Case 2 does not admit
that particular separable coordinate system.

As just noted above, the coordinate systems denoted by Ab and Ab in
Tables 1 and 2 are equivalent under the action of the symmetry group G.
Including this equivalence then, there are 16 inequivalent separable coordinate
systems in Case 1 and 9 inequivalent separable coordinate systems in Case 2. As in
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VI, this equivalence can be described by considering the operator J=
exp (Tr/4)(K2-K_2). Then using (1.7) we find that

TABLE 2
Symmetry operators associated with variable separation

Coordinate System 1st Order Symmetry K 2nd Order Symmetry S

1. Fc K2 S,, S’
2. Fc2 K_: $3,
3. Fr K: S, St
4. Fr2) K-2 S6, St
5. Fpt) K2 $4
6. Fp K-2 $5
7. Fe( K $6 ’++S1, $4 S1
8. Fe K_ $6 +$3, S+$3
9. Lc K+ 2aP S + 2iaP

10. Lca K_ 2aB $3 2iaB
11. Lp K+ 2aP $4 + a(iK_ + $3)
12. Lp: K_ + 2aB S5 + a(iK- S)
13. Oc K_-K S+ S, Sg +
14. Or K_-K $6, S. Oe K_-K .&-(S3 + S,), S-(S; +
16. Rc D 2S, 2S
17. RC K_ +K $3- S, S- S’
18. Rr D S, S
19. Rr K_: +K $6, S
20. Re D $6 +zS, S+zS
e. e’’ K_ + &+&-S, S: +S;-
22. F1 P $3
23. O1 P -i(K-K_)+S
24. R1 P iD + S
25. R2 P, -i(K+ K_)+ S

(3 2) Jr(x, t) -t exp (1 + t)-’x x V/(1 + t)-’x
t- 1

Then it follows that

J2f (x, t) t-l exp I- 1x’x f(t-lx, __/,-1),

(3.3) J4f(x, t)--f(-x, t),

JSf(x, t)= f(x, t).

It is easy to see that J(K2+K_)J-=D, J(S3-S)J-=2S, JS6J-=$6 and
similarly for the primed pairs; hence, the three systems Rc-, Rr( and Re( are
equivalent under J to Rc(, Rr( and Re(, respectively. Furthermore, denoting
I= JKJ-, we see that

O,=-B,, /,=P,, /-:=-K2, /2=-K_2,
E3 =-D, 3 St, 1-’-S3, 5 "--$4, 2 --S2
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and similarly for the primed S’s. As a result we find the six pairs Fc (2), Fr2), Fp(2),
Fe 2), Lc2, Lp2 are equivalent under j2 to Fc1, Fr, Fp’), Fe1, Lc, Lp’,
respectively.

4. Basis functions: Two and three variable models. We now wish to construct
unitary representations of G on the Hilbert space %(R2) of Lebesque square-
integrable functions on the half-plane, R /2, -co< x < oe, 0 <-- x2 < oo, in Case 1 and
the quadrant R 2//, 0 < xl, x2 < oe, in Case 2. First consider for Case 1 the space of
functions , with compact support in the upper half-plane away from the x1-axis,
and for Case 2, the space of functions 0%’ with compact support in the upper
right-hand quadrant away from both axes. By introducing the inner product

(4.1) ([,, /) dx, dx /,(x)/(x),

where R2 denotes R in Case 1 and R in Case 2, and completing and ’,
respectively, with respect to the norm ]lfll (f, f),/2, we obtain the Hilbert spaces
denoted by 2(R) and 2(R+), respectively. Hereafter, it should be understood
that R2 denotes R in Case 1 and R in Case 2.

Now we describe the Lie algebra (g with basis (1.4) as a subset of ow by setting
t=0 and replacing O, by i[(O.... +0....)--(a/X21)--(/X)], viz.,

(4.2)

(Y{2 =(Xl "ql-X), Y{--2 Ox,,,,-]-Ox2x

Xl Ox,-k-Xa Ox2q-1, - i,

=0x,, =x, fora=0.

Xl X92

The script letters in (4.2) correspond to the block letters in (1.4) under the
transformation K e’X-2Y{e -’: 2. Now it is clear that the generators (4.2) are
skew-symmetric in ff and ’ with respect to the 5U(R2) norm. Moreover, we can
find skew-adjoint extensions in the usual manner. The only operator for which
there is any difficulty is Y[-2. However, when a,/3 _-> or a 0,/3 _-> there is a
unique self-adjoint extension [6, Chap. 13], [21]. For simplicity in what follows we
make these restrictions. Thus the map Ad e ’x-2 is an isometric isomorphism of
(4.2) onto (1.4).

The integrated group action of the operators (4.2) is given by

(4.3) [U(w, z, e)f](x)= e’("+(’/z)’x’)f (x, + z1/2),

where U(w, z, e)= eWB’ e Z< ee (for Case 1 only).

(4.4) (eCf)(x) eCf (eCx) ebX2f)(X) ei(b/n)xf (X).
The action of e c-2 is more complicated since Y[-2 is a second order operator. We
have the Oreen’s function problem.

(4.5) (e’2f)(x) I.i.m. II dk G(x, y, t)f(y)
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with the boundary condition

(4.6) l.i.m. G(x, y; t) 6(x-y) 6(Xl- yl) a(x2- y_).
t0

We find then the following:
Case 1.

(4.7a) G(x, y, t)=
q:(ir/2)( +v)e e-((f’-Y’)2+xa2+y)/4it(y2X2) ,\-j

Case 2.

e ’"(1 +( u)/2)

(xx2yly2)l/2e(4 7b) G(x, y, t)
4t

(xe+’2’/4’ J,2":
where J,(z) is a Bessel function [7], q: is taken for t<>0, respectively, and

/,2a =/x -,/3 -. Similarly or by the group composition, we can give the action
for a general transformation in SL(2, R); however, we only have need for the
transformation (4.5), so we omit writing the general form.

We obtain the full vector space of second order symmetries ow in our
t-independent formalism by simply putting t- 0 for the operators in (i.12) and
(1.13); i.e., we define the operators Si(t=0) and similarly for the primed
operators. It is clear that the operators (7) are skew-symmetric in (R2) when
defined with the domain ff(,’), respectively.

The spectral analysis for the different bases proceeds as follows: We first
perform the spectral analysis of the pairs of commuting operators corresponding
to the point on each orbit where 0, i.e., the script operators just discussed.
Then by performing the unitary transformation e ’A"2 given explicitly by (4.5) and
(4.7), we obtain the spectral analysis for the separable solutions of (1.2) with
superscript (1) listed in Table 1 corresponding to the operator pairs (with
superscript (1)) appearing in Table 2. One important consideration here is that the
spectral analysis for the script operators always reduces to two separate Sturm-
Liouville problems (in general irregular), whereas the operator pairs listed in
Table 2 do not always do so. This type of multiparameter eigenvalue problem
occurs in parabolic and elliptic coordinates. Hence, our procedure provides a
simple resolution of this problem when it occurs. Another important considera-
tion is that in many cases the transformation (4.5) provides us with new integral
equations for the basis functions. This happens when the integral in (4.5) cannot
be computed by previously known results. Then since we know that the trans-
formed basis functions satisfy certain ordinary differential equations modulo the
multiplier function e is, we know the solution up to a normalization constant which
can be computed by inserting fixed values of the arguments of the functions:

A third point is that since we are dealing with continuous as well as discrete
spectrum problems, many of our eigenfunctions and transformations are to be
interpreted in the generalized sense. The procedure for obtaining expansion and
inversion formulas for a general irregular Sturm-Liouville problem is, of course,
well known [6, Chap. 13], [21]. It is only noted here that we construct our
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(generalized) eigenfunctions to be normalized in the generalized sense, i.e.,

(4.8) (A’b’,,2, Abx,,x2) (a’b’,,,, ab,,,,2) 6(A’,, ,)6(’2, 2),

where 6(A, ’) means 6,x when the spectrum is discrete, and 6(A -’) when it is
continuous. When the spectrum is continuous, we can apply a unitary transforma-
tion of the group interpreted in the generalized sense to any one of the generalized
eigenfunctions preserving the orthonormality property (4.8) as well as the Parse-
val identity [21],,
(4.9) f fa2 dx’ dx2lf (x)]2= f lsd’ dA2l (ab;"a2’ f)[2’

where So denotes the spectrum of the pair of commuting operators under
consideration. We note that when computing integrals involving generalized
eigenfunctions, it is customary to perform a contour integral. This will be done in
many places in what follows without further mention. It is noted that the systems
labeled with the superscript (2) can be treated by applying the transformation
(3.2) or (3.3).

Finally, when computing the spectral analysis, we treat Case 2 first (with S’s
denoted by primes) since then Case 1 appears as a special case.

Fc system.

k k2_k
iYGf --f, ,f 2____,4 f"

The generalized eigenfunctions are

fCkl,k2(X .(X k,) 3(x2- k2).

In the three variable model we have

FCk,,kz,x,,)-- e tYC-zfck,,k2(X,), etX-(-iY{2, 9’1) e -’x- (-iK2, S’I)

with the generalized eigenfunctions obtained trivially from direct integration as
the Green’s functions (4.7), i.e., Fck,,k(x, t)= G(x, k, t).

Fr system.

k
-ix d= f, y’, d -sd

with the generalized eigenfunctions

(4.1 la) fr,,,(x) N,(I, u)
6(r-k) sin,+/2 0 cos"+l/20p’"(cos 20)4;

where x r cos 0, x2 r sin 0, s + ce +/3 (2m + z + t, + 1)2, rn a nonnegative
integer and the P’"(z) are Jacobi polynomials [7] with

(4.1 lb) N,,,(tz, u)=[Zm!F(m++u+l)(2m+tz+u+l)] /2

F(m+ + 1)(m+ u+ 1)
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The transformed pair (-iK2, S’4) gives rise to the generalized eigenfunctions

(4.12)
Frk,,(x) e*’="++’’‘+vVZN"

k’/2 e’r+k’v4’ /\k.tl)J2m++v+l sin v+l/2 0
2t

COS+I/20 P’(cos 20).

Then making use of the transform (4.5) we find a generalization of Sonine’s finite
integral [22]

(4.13) IOrr/2 dO’ sin v+’ 0’ cos"‘+ O’J’‘(z cos 0 cos O’)J(z sin 0 sin 0’)U,""(cos 20’)

(-1)"z-J2,+,,+,+,(z) sin" 0 cos" 0 P,"’’‘(cos 20).

Similarly one can apply the inverse transform on the basis (4.12) and express the
double integral of a product of three Bessel functions and a Jacobi polynomial in
terms of the functions (4.11). This integral however, collapses with aid of (4.13) to
the completeness statement for Bessel functions.

Now in Case (c 0), we have a special case of the preceding. The basis
functions for the pair (--]{’2, ’906) with eigenvalues (k2/4,--S) are given in terms of
Gegenbauer polynomials [7] as

8(r k) sin+,/2 0 C+I/2)(COS(4.14a) fr,,,(x) N,,(u)

where

(4.14b) N,,(u) I n!(n+u+1/2) ]1/2rr2-2F(n + 2v + 1)
F(u +1/2)

and s +/3 (m + v + 1/2) with m a nonnegative integer. In this case there is a
further symmetry. We see that the eigenfunctions have definite parity under
0 rr- 0. When this is to be emphasized, we write the positive parity eigenfunc-
tions as fr,2,(x) and the negative parity ones as fr,2,+,(x).

Then transforming to the three-variable model, we have

(4.15) Fr,,,(x)=
e:(irr/2)(m+v+(3/2))Nm(P) (i(r2+kZ)/4t)k’12 (ktl)2t

e Jm+u+/2 sin+/2 0

C+I/2)(COS 0).

Using the transform (4.5) now with the kernel (4.7a) to transform (4.14) into
(4.15) leads directly to Gegenbauer’s finite integral [22].

Fp system. Only for Case 1 (a =0) do we have separability. The pair
(-iYg2, 4) with eigenvalues (k2/4, -ks), respectively, have generalized eigenvec-
tors as in VI and 16] except the domain of the variable 2 is half of that in VI and
consequently the multiplicity of the continuous spectrum is one. We have the
orthonormal eigenvectors

"q-COS O)iS--(1/4)(1--COS O)-is-(1
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with -c < s <. Then for the transformed pair (-iK2, S4), we find

e:{i’/2{+[’( -+ is) (I+vF is)
Fps(X,. t)=

2 2
e (ij2)/(4I) e (/(1)12q-1922)2/)/16

2rri’/gt[P(1 + 13)]2(1 .)2) 1/2

(4.17) -ikv),
where xl (t/2)(v-v), x2 wlv2 and Mi..v/2(z) is a Whittaker function [7]. In
this case, the integral is known [8].

’1) with eigenvaluesFe system. In Case 2 we have the pair iYG 4+
(k2/4, -s). The first equation is again trivial whereas the second equations yields
after some algebra

Is+a+/3-1 /./,2/2 u2/2 k2 1(4.18) (1-ze)&-2zg+
4 l+z 1-z z g=O,

where the eigenfunctions of +Ol are related to the functions g(z) through

re(z)=(1--z2)l/4g(z), Z =cos 20.

We shall refer to the solutions of (4.18) as generalized spheroi0al wave functions
since they are related to the ordinary spheroidal wave functions [7], [14] in the
same way Jacobi polynomials are related to associated. Legendre polynomials.
The spectral analysis of (4.18) is quite similar to that of the Jacobi equation [6,
Chap. 13]. Indeed for/x, v _-> the deficiency indices are (1, 1) near each endpoint
(Weyl’s limit point), thus (0, 0) for the entire interval and there exists a unique
self-adjoint extension of 4+l. Moreover, it follows from the general theory
[6, Chap. 13], [21 that the spectrum is discrete, bounded from below and simple
with eigenvalues

A.-,V(k 2)
4

assumed ordered as Ao< A < 12’’ for fixed/x, v and k. Such solutions of (4.18)
are denoted by sin 0 cos" OPs,"*(O, k 2) generalizing the notation of Meixner and
Schfifke 15] for ordinary spheroidal wave functions. The normalized generalized
eigenvectors are taken as

(4.19) fe,,(x) =3(r-k----) sin+’/2 0 costx+l/20Ps,"’(O, k2).

It is convenient to expand the functions Ps’ in a Jacobi series

(4.20) Ps(.*’’( O, k2)= E A("’’(k2)p’"’(cOs 20)
m=O

then the normalization condition implies upon choosing the A2’,2 to be real

(4.21) ] =--’--’:--’ 1
m=O I_N,,(/x, v)
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Now the eigenvectors of the transformed pair (-ik2, $4 +$1) take the form
Fit ik2]Fek"(x"t)=’

kl/2 e-i(l+’"+>/2>3/"’">(k)zt exp [(sinh p+cos )+j
(4.22)

(sinh p sin )+(/2)(COSh p COS #)"+’/2>Ps<#’>(ip, k2)Ps"’)(#, k),

where x cosh p cos #, x2 sinh p sin #, and 7"’>(k 2) is a normalization con-
stant. Then using the transform (4.5) we obtain the analogue of (4.13) for
generalized spheroidal wave functions, viz.,

dOJ coshpcos#cos0 L sinhpsinsin0 cos+0sin
ao

(4.23) 7’)(k 2) cosh p sinh"p cos # sin # Ps"’>(ip, kZ)Ps

By multiplying both sides by (cosh p cos #)-(sinh p sin #)- and evaluating at
p 0, # /2, we find

2--"-’ k"+"A <"’">
n,O(4.24) y?’"(k 2)

A similar analysis for Case yields the normalized eigenvectors

6(r- k) sin+,/ OCs+,/2(O k2(4.25) fe,,(x, t)=

which again have definite parity and eigenvalues &,(k 2) s +- and A,+,
s +-3 for parity states, respectively.

Here we have introduced a type of spheroidal wave function Cs which is
related to Gegenbauer polynomials through

(4.26) Cs,(O, k) Z A" +/.,( C (cos 0),

where a similar relation holds for the odd parity functions with 2n, 2m replaced by
2n + 1, 2m + 1, respectively. The Cs are related to the usual spheroidal wave
functions [7], 15] by

(4.27a)

and

(4.27b)

sin+1/20Cs;.(O; k2) 2 e-(’="V2F(u+ 1)ps;(cos O, k :)

sin "+’/20Cs;n+l(O; k2) 2" e-(i="V2F(v + 1)ps;l(cos 0; k)

with the proper identification of the coefficients occurring in the expansions.
Normalization conditions similar to (4.21) can be worked out from (4.25) and
(4.26).

Now in the three variable model the eigenvectors of the transformed pair
(-iK2, $6 -- S1) are

(4.28) Fek,.(x, t)
2 tx/-

yT,(k 2) e (it)/4[(sinh20+cszr)+k2] sin+’/2 cr sinh"+1/2 p

CsV+l/2(ip, k2)Cs’+1/2(0., k 2)
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The transform with the kernel (4.7a) will then give an integral formula closely
related to but not identical with one given by Meixner and Schfifke [15, (33), p.
314], viz.,

(4.29)

dO e -(ik/2cs" sin,+, 0J ksin r sinh p sin 0 C8;+1/2(0, k 2)

2 y,(k
(sinh p sin 0-)" Csr,+’/’-(ip, k 2) Cs+1/2 (0" k2),

The normalization constant 3’/, can be computed as in (4.24)
Lc system. Both the Lc and Lp systems are separable only for Case 1. The

eigenvalue equations in the two variable model are

i(2a, + Y{2) f Af, k22(9, iY{2) f -f
with -oo < a < oo 0 < k2 < O0 and normalized generalized eigenfunctions

(4.30) lcxk(x)=a(x2-k2)4rrla[ i( k _22)2
exp- Ax,+Xl+

2a 4

Then in the three variable model the eigenfunctions of the pair (iK2 + 2aiP1, S1-
iK2) with eigenvalues (a, k2,./2), respectively, are

Lc,.k2(x, t)=
2 i[t

k,/vJ .k2 2.. expi t4 2t 1i3

(4.31)

where Xl v,t+(a/t), x2 tzt and Ai (z) is an Airy function [7].
Lp system. Here we have the eigenvalue problem for the pair (iY{2 + 2ai,

4+ a(iY{_2 + 3)) with eigenvalues (A, -Ix), respectively. The first operator yields
the same functions as the previous case, whereas the second operator gives rise to
the equation

(4.32) hx2x2- Ix
+4azX2+16a2+ h=0.

This is the equation of the anharmonic oscillator with an inverse square potential.
It also appears in the Stark effect problem in the hydrogen atom (see [21, vol. 2, p.
134]). The spectrum is discrete, simple and bounded from below [20], and so we
assume the eigenvalues x, to be ordered as Xo < jill < [-1’2 <" The normalized
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eigenfunctions are written as

(4.33) lp..(x)
2x/rrla h. X2; a2; (4a)

Then in the three variable model corresponding to the pair (iK2+2aiP1,
$4 + a(iK_2+ $3)) with eigenvalues (A,-t*), we have the generalized eigenfunc-
tions

I 22)2
-Z v22) a2]Lp...(x,t)=e

"’/2)1 v)y..a(A)
exp __(Vl+V a A

k 12(4.34) 16 ’+t
({)2

h,(O1; A, a)h,(iv2; A,-a),

v)+(a/t) x2 V,vztand 77,.o(a)isanormalizationconstant.where x, (t/2)(v,
Now upon writing the transformation (4.5)explicitly with the kernel (4.7a),

we obtain the integral equation for anharmonic oscillator wave functions

(4.35)

/2 //)1 )2 1/3 V )2
dyy Jv[--y Ai a

2 a 4a 2’

al/3T,,,(a)(o, o2)-/2h,(o,; A, a)h,(io2; A,-a).

We remark that at best we can express the normalization constant y,.(a) as an
integral of a product of h functions.

Oc system. For Case 2 we have the pair (i(Y{--YG), ’3 + Y"I) with eigen-
values (A, A’) and orthonormal eigenvectors

(4.36)

where A-a’=2n+/x+l, A+A’=2n2+v+l, and L.(z) is an associated
Laguerre function [7]. Then for the transformed pair (-i(K_2- K2), S; + S’1) with
the respective eigenvalues, we find

(4.37)

OC.... (]J, t)= (r/, !n2!)1/2(1 + it)-’((1-it) + it))’’+"2+{++’)/2

where x, x/1 + 12 V,, X2 %/1 + t202.
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Similarly for Case 1 we find

[nl!F(n + v+ 1)]/2(’’+">/2-(1/417r /4
H, L.,

where H,(z) is a Hermite polynomial [7]. In the three variable model then we
have

Oc....(x, t)=
(n2!)’/2((1 -it) + it))("’/2)+"2+(/2)+(’/4 v- ’/2 e

[n, !F(n2 + u + 1)]/22("’+)/2-(3/4),7-/"1/4 (1 + it)

(4.39) .H,, L7,2

Or system. In Case 2 we have the pair (i(57_2-57{2), ’4) with eigenvalues
(a, -s), respectively. The eigenvalue problem for was solved for the Fr system,
and the operator i(Y{-2-Y{2) in radial coordinates with t*, v-> 1 as indicated
previously has a unique self-adjoint extension. In all we have the orthonormal
eigenfunctions

(4.40)

Or., (x)
(n !)l/2N.(tx t) e-r/4r2"+’++

[F(n + 2m + t* + v + 2)]’/22

L(,2m+"++’(r2/2) sin"+’/2 0 COS+1/20P’" (cos 20),

where n, m 0, 1,. ., A 2n + 2m +/x + v + 2 and N,,(/x, ) is given by (4.1 lb).
Then for the transformed pair (i(K-2- K2), S), we calculate the integral explicitly
using the identity (4.13) to obtain

(4.41 a)

1- it) "+’+"++)/2Or,,,,(x, t)= N;,(tx, u)
1 + it

(1 + it) -1 COS"+1/2 0 sin +’/2 0

P’"’(cos 20)e-(/4)(1-it)t)2m+*+v+ll.‘2m++’+l)(l)\--1,

where v, rill1 + and

(4.41b)
(n !)’/N(t,, v)

N,(t,, u) 2.,+2+{.+)/2[lP(rt + 2m + t* + v + 2)] 1/2"

Similarly for Case we find

(n!)’/2N,,,(v) e-.2/ar
or ,,,() L (.’++’/2)( r2/2

(4.42) [F(n + m + v + 3/2)]’/22("+")/2

sin "+’/2 OCt,+/ (cos 0),
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’wheren, m=0,...,,=2n+m+v.+3/2and + is taken form
odd /’ respec-

tively. Again transforming to the three variable model we have using Gegen-
bauer’s finite integral [22]

(4.43a)

--it)"+(m+)/2+l/4(1 + it) -1 sin "+1/2 0’ C-n+I/2(COS 0)Or.., (x, t)= NT,(v)
1 + it

e-(V’/4)(1-it))r++l/2L(m++ll2)(V/2),n

where again v, r/1 + and

(4.43b)
(n!)’/2Nm(v)

N,(v) 2(,,,+)/2+l[F(r + m + v + 3/2)] 1/2"

Oe system. For Case 2 we have the pair (i(]{_2--7{2),aCf’a--(acf’3+,’l)) with
eigenvalues (a, r/), respectively. This gives rise to the eigenvectors

(4.44)

where x cosh p COS O’, X2 sinh p sin o-, 0 < o- < rr/2 and hp,,,, (o, 1/2) is a solution
of the equation

(4.45) h + +2 - cos 2o+-- cos 4o
1 +cos 2o- 1-cos 2o"

This equation is a generalization of both the Whittaker-Hill equation (hence
Ince’s equation) [1] and the generalized spheroidal wave equation (4.18). We
know from the previous analysis that a 2n +/x + v + 2, n 0, 1,... and the
eigenvalues rt,, will form a discrete set. A detailed analysis of this equation will be
given in a forthcoming work using an appropriate Hilbert space of analytic
functions in analogy with VII. We know however, from our general analysis here
that in the three-variable model the pair (i(K-2-K2), S’4-S-S’1) has the
corresponding eigenfunctions

Oe,.,, (x, t)= y(2’)(r/,,)e "(si"h2 v,+ v2)/4( 1-1,+ itit) ("+++1)/2(1 + it)-lhp(2;)(ivl 1/2)
(4.46)

(,v)[

where xl x/1 + cosh v, cos {)2, X2 /1 -- sinh v,, sin {)2 and y("")(rt) is a nor-
malization constant which can be calculated by evaluating the transform (4.7b) at
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special values of the arguments. In this case the transform can only be written as a
double integral so we omit writing it explicitly. Since Case 1 reduces to a special
case (i.e., a 0) with o- extended to 0 < o- < rr and we have no further need of the
functions in this article, we omit writing them explicitly.

Rc system. For Case 2 we have the pair ((-i@ + Y’)/2, (-i@- ow)/2) with
eigenvalues (A,, A2) and generalized eigenfunctions given by the two-dimensional
Mellin transform kernel

(4.47)
1

..iAI_I/2xA2_I/2rcx,,x(x) --,with -oo < A,, A2 < oo. Then in the three variable model the eigenfunctions of the
pair ((-iD + S’2)/2, (-iD- S)/2) are

(4.48)
t- 1/2+i(a, +a2)/2e i(v+v)/8

(D1 Q2) 1/2

iv M )\4

where x vt/2, X2: V2t 1/2 and q: indicate tO, respectively. For Case 1 the
eigenfunctions of the pair ((-i@ + 2)/2, (-i@- 2)/2 are

(4.49) rCIA2,(X)--- .--X]I--1/2.,,iA2--1/2
2rr 2

where -oo < A,, A2 < oo and e + with

,=Ix *, x>0, x_= { 0, x>0,
x+

tO, x<0, (-x), x<0.

Transforming to the three variable model we find

(4.50)

R ec,,,2(x, t)
e i-rr( +v)/2 e --rr(A +A2)/4+irr/8

1/27r3/ZF(v / 1)v2
2’a/2+’a2-7/4F(ia, / 1/2)

F(iA2+v+I) +a2)/2 ,0,+,,)/SD_i,i(x e 1--1/2
2

where D (z) is a parabolic cylinder function [7].
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Rr system. In Case 2 the pair (-i@, 0]) with eigenvalues (A, -s) gives rise to
the generalized eigenfunctions

(4.51) rr,,,(x) =N’(Ix’ V)r’*-’ sin ,+1/2 0 cos"+1/2 0 P’">(cos 20)

with s + a +/3 (2m + tx + u + 1)2 and -< A <. Transforming to the three-
variable model the eigenfunctions of (-iD, S’4) are

(4.52)

e :Vi(m+ +(/+ v)/2) e -7rh/4

Rr,,,(x, t) xF(2m + Ix + v + 2)
N. (IX, V)2/a-’/2

F( ia + Ix +V+m + 1)t{’a-’V2sin"+’/20 cos’*+’/20 P’(cos 20)
2

iv2/8

MiM2,m+O.+v+l)/2
\ 4 !

where r 1)t /2. Similarly for Case 1 the eigenfunctions of the pair (-i, 6) with
eigenvalues (,-s) are

(4.53) rr,, (x)
N,,,(v) r,a_ sin+,/2 0 Cr+’/2)(COS 0)

with -m < < m, even, odd parity corresponding to m even, odd, respectively,
and s +/3 (m + v + 1/2)2. Upon transforming to the three variable model we find

(4.54)

Rrx,m(X, t)= ,/,/.-1/2 e:(i/2)(m++312) e_,,,/4N,,,(v)2,;,_l/2F{iA\ + v + m
2

sin "+’/2 0 C+’/2)(cos 0)
e’2/8

MiM2,m+v/2+l/4\ 4 /’

where +/- indicates X 0, respectively, and r vt /2.
Re system. For Case 2 we consider the pair (-i@, ,94-so0;) with eigenvalues

(A, -r/). Here we consider the arbitrary real parameter sc for purposes of general-
ity. As before, the first operator gives the Mellin transform kernel in the variable r,
whereas the second equation takes the form

(4.55)
2a

0 &o + i sin 20g0 + (rt + a +/3 + c(a + i) cos 20)-
1 +cos 20

]1-cos 20
g"
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Notice the following special cases of (4.55)" When a =/3 =0 we have Ince’s
equation [1] treated in VI; when : 0 (4.55) reduces to the Jacobi equation, and
in the limit A-> oo, j-> 0 such that Aj is fixed (4.55) becomes the generalized
spheroidal wave equation (4.18). The spectral analysis of (4.55) is similar to that of
the Jacobi equation. For a,/3 restricted as previously, there is a unique self-
adjoint extension with a simple discrete spectrum with eigenvalues r/,")(A, :)
assumed ordered as r/o< /1 < r/2 <’". The normalized solutions of (4.55) are
denoted by COStX+l/2 0 sin+1/20Ge"’")(O, , A) and we call the Ge(,"’ associated
Ince functions. It is convenient to express these in a series of Jacobi polynomials,
viz.,

(4.56) Ge(,"(O, ,, h)= D2",2(,, h)P’(cos 20),
r=O

where a normalization condition similar to (4.21) holds. It is a straightforward
calculation to show that the coefficients D(’’).,., satisfy a three term recursion
relation; however, it is somewhat complicated and since we make no further use of
it we do not give it explicitly.

Thus the generalized eigenfunctions are

FIX-1
(4 57) re,,, (x) Ge. (0, , A),

where we have chosen sc for convenience. Then in the three variable model we
find the solutions

Re.,.(x, t)=
(v,t)[(4.58) Ge,"’")(iv, , A) Ge, , , A),

where x / cosh vl cos v, xa / sinh vl sin v, and K,")(A) is a normaliza-
tion constant. Using the transform (4.7b) explicitly we obtain the integral equa-
tion

r/2

dO cos’+1 0’ sin2+10’A["’(v,, v2; O’)Ge’")(O, , A)

(4.59a)
K(’)(A)e-i(i"h’+2)/4

where the kernel A (Vl, v2; 0’) is given by
e--X/4 F(m + 1 +(/x + v+ iA)/2)

=0

(4.59b) "[--ic0sh2191C0S2132C0S20]m4
F(-m,-pc-m; ,+ 1; thvl tan: v2 tan 0)

and F(a, b; c; z) is a hypergeometric function I-7] which in the above case is a

polynomial of its argument. We can compute the constant K(,’"(h) by evaluating
the above expression at v 0, v zr/2.
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A similar analysis for Case 1 gives the normalized functions which are
solutions of (4.55) with c 0 and 0 < 0 < 7r"

rip-1
sin,+l/2(4.60) re,,(x) 0 Ge,(O, , A),

where the functions with 2n, 2n+ 1 are even and odd, respectively, under
0- r-0. In this case we have an expansion in a series of Gegenbauer poly-
nomials, viz.,

(4.61) Ge,(O,z,A) D,,2,,,(/) C2m(v+l/2)(cUi._. 0)
r=O

with a similar relation holding for odd parity functions with 2n and 2m replaced
by 2n + 1, 2m + 1, respectively. Again the coefficients DT,,, satisfy a three term
recursion relation and a normalization condition. Again in the three variable
model we find the eigenfunctions

Re,,(x, t)= ei/2)+V)K,(A)t"-l)/2(sinh v sin v2)V+/2Ge,(ivl, 1/4, A)
(4.62)

Ge,’+/-(v2, A ).

This gives rise to the integral equation

dO sin/ on(-1/’(v, v, O)Ge;(O, , .)
(4.63a) o

K;(A)Ge;(iv, , )Ge;(v, , ),

whereas the odd functions satisfy
’/2

dO sin2V+0 cos OA/2’)(v, v2, O)Ge2,+(O, , A)

(4.63b) -Kz,+(h)(cosh v cos v)-’ e’-/4sin’+soGe:,+(iv,, , )
Ge,+(v2, , ).

Again the constant K, can be computed by evaluating the integrals at special
values of v and v.

5. Overlap functions and expansion theorems. In this section we compute
the overlap functions between the different bases given in the last section and
apply them to the derivation of various expansion theorems. We concentrate on

giving only those overlap functions which are readily calculable in closed form.
Moreover only those expansion formulas which appear to be new and which can
be written as a single sum or integral are given explicitly; the double sum and
integral expansions, however, are straightforward to calculate and only one such
expansion is written explicitly.

The overlap functions are always easiest to calculate on the point on each
orbit which corresponds to the two variable model where the generalized eigen-
functions are written as ab,,(x), where a f, l, o, r and b c, r, p, e as discussed
previously. The important point is that the overlap functions are invariant under
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an arbitrary transformation of the symmetry group G, viz.,

(5.1) Ua’b’.i.., Uab,a)= (a’b’...s, abe,a2).

In particular when Ug e+X-2, the functions Ugab.,..(x, t) are written explicitly in
the last section. Thus using the spectral theorem we can derive expansion formulas
written in the form

(5.2a) A’b’.;a;(v, t)= I dOl (,) dcr2 (2)(ab.,. 2, a’h’i..)Ab.,a(x, t),

and conversely

(5.2b) Ab.,a2(v, t)= f dOl (,’1) do2 (’2)(a’b’.(a;, ab.,.2)A’b’...,(x, t)

It should be mentioned that the above formulas in general are relations between
generalized eigenfunctions, so the corresponding expansion formulas are to be
interpreted in the generalized sense. The classical type expansion formulas,
however, can always be obtained by an appropriate analytic continuation.

One further point which should be clear is that in all cases where the
right-hand side of (5.1) is evaluated, (5.1) provides us with the evaluation of the
double integral on the left-hand side which in many cases is far from trivial to

compute directly. We do not, however, write such integrals explicitly. Even in the
case when the right-hand side cannot be found from known results, in most cases it
can be reduced to a single integral. Thus (5.1) gives an evaluation of a double
integral in terms of a single one.

We begin with the overlap functions relating the Fc system to an arbitrary
system Ab (i.e., Fc-Ab). Owing to simplicity of the functions fc,.(x) of (4.9), all
such overlap functions are calculable, viz.,

(5.3) (fCk,.k, ab,,,)= ab,a(k)

and can be obtained explicitly from the previous section. We will only repeat
writing them explicitly in the case that the corresponding expansions appear to be
new. For future convenience the vector k is written with components in either
Cartesian or polar form as k k cos 4’, k2 k sin 4’. A simple example of an
expansion using (5.3) is the Fc-Fr system which leads directly to Bateman’s
expansion formula involving Bessel functions and Jacobi polynomials; see [22, p.
370].

Fr-Fp.

F(m + 1)(k k’)Nm(,)2F -is +-+ F is +-+ + 2,

(fr,,,,,,, fp.)= ,,/m !F(2, + 1)r( + 1)
(5.4)

"3F2[ -m’,+l, m+2v+l,-is+(u-1)/2],+l;1
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where N,,(u) is given by (4.14b) and w, is a generalized hypergeometric function
[7]. Equation (5.4) leads directly to the expansion

e_.,/N(u)(2u+l).3F -m, m+2u+l, -is+(u-1)/2
,,=o m! v+ 1, v+ 1

(5 5) C+1/2 D--D2
Jm++l/2kv+v2 4

(V+ O)+1 i..is,/2[)Mis,/2[ 2
F(p+ 1)2a+/2kl/(vva)+

where (a), is Pochhammer’s symbol [7]. From the inverse expansion we find
equation (6) [5, p. 158].

Fr-Fe.

(5.6) (fr,,,.,fe,,.)=6(k-k’)--
A(",,)(k)
N,. (/x, u)"

This leads directly to the expansions

(5.7)

A[,’",,,)(k2)P""’(cos 20)J2,,,+.+.+1 x/sinh2 O -’-COS2

=T:,.)(k2)(sinhpsin"+l/2

cos 0
Ps(.’")(ip, k)PsT’")(o", k)

and

2 "YT’’)(k2)A(:’2)(k2)psT")(iP, kZ)PsT’’(o’, k)

P’’)(cos 2o’)J2,,,+,+ v+,( x/sinh2p + cos2o-),
where here tan 0 tanh p tan or. Alternatively we can derive (5.7) from (4.13),
(4.20) and (4.23).

Fc-Fe.

(5.9) (fC,l,k2, fe,,,,,) fe,,, (k)



256 CHARLES P. BOYER

given explicitly by (4.19). This leads to the expansion

E T(,,’")(k2)ps"u)(iP, k2) (v,.) 2)Ps,, (or, k2)ps(,,"u)(, k
=0

k (k(sin 4’ sinh p sin o-) (cos 4’ cosh p cos o-)-"J. cos 4’ cosh p cos o

Jv(-sin 4, sink p sin or).
We remark that (5.10) can be obtained by multiplying (5.8) by a Jacobi poly-
nomial, summing over m and using Bateman’s expansion [22]. Similar expres-
sions can be found for the Case basis functions, which are actually special cases
of the above.

Fr-Lc.

(5.1 la)

x/Nz,,(v) sin v+’/2 d) C;+,/2(cos d))(frk,2mlca.k2) ,/rlalklcos 4,1

k2k___2+cos aa Ak,+
4 12/

for k2 kl+ k2

(5.1 lb)

frk,2m+ Ic:,,:)
dN2m+l(p sin+’/2 4

i/rrlalklcos 1
u+l/2C2m+l (COS (D)

sin aa Ak, +
4 - for k k + k2.

When k27 k-t-k2 the above overlaps vanish. These overlap functions lead to
integrals given in the Bateman project, equations (12) and (13) of [8, vol. 2, p. 44],
while the inverse expansion collapses by using a special case of Bateman’s
expansion [22].

Fp-Lc.

(5.12) (fp,s, lc,,,<)

Re [(1 +cos ()is-1/4(l --COS ()-is-l/4

exp -a Ak,+ k "- 12/ for k

0 otherwise,
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where Re [z] indicates the real part of z. From (5.12) we obtain the integral

(5.13)
J(1-----X 2) 2 1 +.,/1-x 2/ -(v2-v:2)J1

u+l
F is+..

2

2k[F(1 + Jd)]2vl v2
ik

while the converse expansion reduces, using (5), of [5, p. 158] to the integral
representation of an Airy function.

Lc-Lp.

15.4) (tc.,,, Ip..)=a(a-a’) ( a )7rx/
h; k2, (4a)-22a2,

We obtain the expansion formula, for anharmonic oscillator wave functions

( __A (4a)_2)hT,(v,, A, a)h(iv2, A, _aZ y;,a(a)hT, k2;
2a2,

n=O

(5.15)
a1/

-/4( 1/& Ai a +-+-e K2D, v2) k2 iv2 1/3

42al 2 a 4a /

From the inverse expansion one finds again (4.35).
Fr-Or.

3==,(n ),/2 e-aa/4k2m+u+v+3/2
(5.16) (&,,, or,,=)[F(n+2m++p+2)],/a2++(,+vaL(+"++’(k/2
From this overlap one can derive the Hille-Hardy formula [7], [18], as well as a
known integral [9] involving a product of a Bessel function and an associated
Laguerre polynomial.

Fr-Oc.

N(, )
(frk.ttl, OCtlItI2 --+37/f[n,!n2!F(n, +ix + 1)F(n: + v+ 1)] 1/2 g-k2/4kt+"+3/2

(5.17)

,,t12 (-k2/2)i,+:F2
jl,J2=(’ j,!j!

-m, Ix+v+m+l, j2+v+l 1]v+l, /,+j2+IX+ v+2

F(n,-j, + 1)F(n2- jR + I)F(jl +j2 +/,t + v + 2)"

In spite of the complicated form of (5.17), it gives rise to expansions which can be
reduced to known results. Similar results hold for Case 1.

Fp-Or.

(5. is) (j:p,,, or,,)
!)1/2 e-ka/4k,.,+,.L{..,++,/2)(k2/2)(fp,,., fr,,m)
,,[F(n + m + v + 3/2)]x/22(’+’)/2
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where we have introduced the notation of designating an overlap function modulo
6(k k’) with a tilde, e.g., (fpk, frk,,,,) 6(k k’)(fp,s, fr,,,).

In the above case we can use the Hille-Hardy formula to rederive (5.5), and
for the converse expansion using (6) of [5, p. 158] yields a known integral.

Fe-Or.

A,;,"(k)
(5.19) (fe,,, or,,,,)= (fr,,,, or,,,,).

N,,,(tx, r,)

Here the expansions reduce to a combination of Hille-Hardy, (5.7) and (5.8).
Fc-Oe.

(5.20) (/Ckl, oe,,,) P,,, tO, )hp,,,, (o,1/2),

where k cosh O cos r, k sinh O sin o-. We obtain in this case the only double
expansion formula which is given explicitly, viz.,

l-z) (-z)-("+"V(sinh 2Vl sin 2v sinh 20 sin 20") 1/l+z

exp (sin
z

v q-cos2/)2 if-

j,[izcosh, v cos v2 cosh p cos o-’jfizsinhj\
D1 sin v2 sinh p sin o-]1-z 1-z

As previously mentioned the functions hp",; will be studied in much more detail in
a forthcoming work. There we will also treat the overlap functions for the different
harmonic oscillator systems Oa-Ob.

Lc-Or.

(5.22) (oc,,,,,, lc;,.)=
(/’/2!) 1/2 e-a/4k+l/2L;2(k2/2)C.,(a + k2/4, a)

[n, !F(n2 + v + 1)]l/21all/2’rg3/42(n’+")/2+3/4
where following V and VI, we can define C, by the generating function

(5.23)

4rra ’/ exp -+ y + 2ffiaz Ai a 1/3

The overlap function (5.22) also gives us the integral representation for C,,

(5.24) C,(y, a)= dx exp --J-/yx H,
2a 4 24a

which can also be viewed as a Fourier transform. Using these results and
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Hille-Hardy, one of the expansions coming from (5.22) can be reduced to

2 2)
H,

v,
C.(y, a)

(5.25) 4ral/ [ z vl 2ai(i + z)z
-(l-z) 1/2 exp 1-z 2 (i-z)

vl+ +Ai al/

(l+z) +2a 1+2)31’’ + ,,---,,Y -T-(-

We remark that (5.25) can be obtained also from the integral representation
(5.24) and the use of Mehler’s generating function for a product of Hermite
polynomials [7]. Some further properties of the function C. are C,(y, a)---
C,(y,-a) (-1)"C,(y, a). The converse expansion leads to

(5.26) dy Ai a 1/3 u, + Cn(y, a) e
y(l+z)/(l-z)=x/a.-----

a 1/3 x42/

where Vl=[Ul-a((1 +z)/(1-z))](1-z)/2z. All of the above results for this
case can be obtained from the results of Kalnins and Miller in V.

Rc-Rr.

(5.27)

(rra,,,,, rc,,2) ----372-_-/- ---- a- 2 2
4rr2 rt +1)
3F2r -m, m + + v + 1 (v + iA2 + 1)/2

u+l (+u+iA)/2+I

This leads to the expansions

Nm(/X, v) (/x + v + iA

fo F(2;+2) 2

3F2 [ -m, m+/x+v+l,
v+l, (tx+v+ia)/2+l

(u + iA2 + 1)/2

(5.28) P’")(cos 20)M,,/2,,,,+o.+.+1)/2(ir2)

2(sin 0)-"-1(cos
FOx -+- 1)F(v + 1)

M,(,_,2)/2,,,/2(ir cos20)M,,/2,,/2(ir sin 0),
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and conversely,

do F /x+iA-icr+l io’+v+l

2
F

2

.3F [ -m, m+/x+v+l, (v+io-+l)/2
v+l, (/x+u-iA)/2+l

M,(._v2,,/2(ir cos20)M,/2,/2(ir sin 0)
(5.29)

4’2F(/x + 1)F(v + 1) F(/x+u-iA2 +1)
F(2m +/x + v +2)

P,’"(cos 20)Mia/2,+(.++/2(ir2).

2
gin 0 cos"*’ 0

Similarly expansions for Case 1 can be obtained which are special cases of the
above.

(5.30)
(nn’

kiX_l/2"(fr,.,, rr.,.)

From (5.30) we can derive.equation (7.5.19) of [8, vol. 1].
Fr-Rc.

(5 31) (fr..., rc.,..)=
k’("’+"-/

(?,+,,,., rc

Here we can use the Mellin transform of Frk,,(x, t) to reduce one expansion to
(5.28), while use of (5.29) reduces the converse again to equation (7.5.19) of [8].

Fp-Rr.

(5.32) (fp,,., rr,,.,) vkiA--1/2[ ’.’

Here we can use the Mellin transform of a Whittaker function to rederive (5.5)
and (6) of [5, p. 158] to obtain the Mellin transform of the Fr system.

Fp-Rc.

k’+-/ F(iA + 1/2)F(is + iA/2)
(fp..., rc2,.) (2)3/ F(iA + is + iA2/2-1/2)

(5.33a)
iA2 iA2 1 1)2F1 is +---- 1, ial + 1/2; is + iA1 - 2 2’

and

(5.33b) fpk,s, ’Cl ,’2) fpk,--S, rc -1 ,A2),
In this case one expansion can be reduced by using the integral representation for
the overlap functions and the inverse Mellin transforms of a Whittaker function
and a parabolic cylinder function, while the inverse expansion gives a rederivation
of (5.13).
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Fe-Rr.

(5.34)
kiA-1 A(,.)(k2]

fek, rrA, .]- "rr N., Ix r,

The corresponding expansions can be reduced with the aid of equation (7.5.18) of
[8, vol. 1], (5.7), and (5.8).

Lc-Rc.

(5.35a)
2-,,/]a 4

where C,.k(A1) can be written as a Mellin transform

(5.35b) CA,(y, a) dx x ’A’-l/2 e

By taking the inverse Mellin transform we arrive at the continuous generating
function for CA (y, a) discussed by Kalnins and Miller in V. In fact both expansions
can be obtained from the results of V. It is easily seen by using the expansions
themselves or directly from the integral (5.35b) that we can obtain the continuous
version of (5.25) and (5.26) involving parabolic cylinder instead of Hermite
polynomials and CA instead of C,. We omit the details.

Oc-Rc. Again there is no more content here than in V.

2iA’+iAz+"+"-3)/2[F(tl + t.t, + 1)F(n + v, + 1)] 1/2

(oc,,,2, rCA,A2) rr/n?n2!F(/x + 1)F(u + 1)

(5.36) F(/z + iM+2 1)r(’+ iA2+2 1)F(-hi, Ix+ iA,+12 ,/x + 1 2)
p-k i/2 -- 1 )F --n2,

2
V+ 1; 2

Indeed, the results of V give the generating function

(5.37)
,F-n,/x +iA + 1 )2

=o 2
,/x+l;2 L,

e-irr( +.)/2

1 + z
e-{V/2)z(2-z)/(1-ZZ)MiAI2’"/2 (1 z 2) /

and the continuous generating function

2F(-n, -io- + Ix + 1
2

1-it]""]T/’ ![F(j[.[, -- 1)]2
1 + it/ (e"t)("+’)/2

F(n +/x + 1)2"+1/2(1 4- it)"+’

);/x + 1; 2 Mim,/2\ 4 /(it)

+I-v(1-it>/8(l+it>LtX( t__ ).Vl e
"\2(1 + 2)

similar results can be derived for Case 1 which are special cases of the above.
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Or-Rr.

or,,.,, rr..,
r3m,,,,[F(n +2m +/x + u+2)]’/22"/’"/("/-’V2F(m + 1 +(tx + .+ iA)/2)

x/--’rr(n !)’/2F(2m +/x + u + 2)
(5.39)

F(-n,m+l+ tx+u+iA 2m+/x+u+2" 2)
These expansions are equivalent to (5.37) and (5.38).
Or-Rc.

(5.40) (or.,.,,, rc,,..)= (or.,.., rr.,+.,.,)(Fr.,+.,,.rc.,a).

Using (5.37) one expansion reduces to (5.28) while using (5.29) reduces the
converse to (5.38).

Rr-Re.

(5.41) (rr.,,,., re.,.) 6(A A’)

From (5.41) we find the expansions

(,.)EX)F(/X
+ + ih

n,m 2 +m+l)
m=O

(5.42)

N,,, (/z, u)"

Ge(,,",,’)(ivl ..(,,,),h)Ge, (v2, , h),

where tan 0 tanh vl tan v2, and conversely, we have

(5.43)

Fr-Re.

(5.44)

Or-Re.

e-=’V4N2,,(t.t, u)F(m + 1 +(/x + u+ ih)/2) e P,’") cos 2 O),F(2m +/x + u+ 2)2’/2-’; (sinh v, -COS )2)(+u)/2+l

"M,/2,,,+o,+,+vz (sinh v+cos v2)

(5.45) (or.,m, re,l) (or.... rrx,.,) [,.(tx, )"
The expansions from both (5.44) and (5.45) can be reduced by using (5.42) and
(5.43). Again Case 1 yields special cases of the above.
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Further expansions can be obtained by suitable manipulations of the above
results. It should also be clear that many more results can be obtained by analyzing
in detail the most general overlap functions, that is, cross-basis matrix elements of
G as well as the ordinary matrix elements. This problem will be studied in the
future.
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INCLUSION THEOREMS FOR THE ZEROS OF CERTAIN
RECURSIVELY GENERATED POLYNOMIALS*

GLADYS HAYES CRATESt AND JOHN W. JAYNE$

Abstract. Consider the sequence {q,} of monic polynomials generated by the recurrence relation
0o 1, q, z-bo, o,/, =(z-b,)q-co_,, n >= 1, b,, c complex and independent of z, c (). This
paper contains two theorems of the inclusion type for zeros of the polynomials qn. The results are
obtained by applying majorization techniques to certain tridiagonal matrices associated with such
polynomial sequences. If each b, is real and each c > 0, the polynomials are orthogonal with respect to
some distribution on some set of points of the real line, and the zeros are real. Two additional theorems
deal with the smallest interval containing these zeros, i.e., the true interval of orthogonality.

1. Introduction. Let {qn} be a sequence of monic polynomials generated by
the recurrence relation

o 1,

(1) ql z-bo,

(,n z b. q. c.q.

n >_-1, where c. -0 and b., c. are independent of z. The importance of such
sequences is well known, especially in the theory of polynomials orthogonal with
respect to some distribution on some set of points of the real line (in which case b.
is real and c. > 0), but there are other significant examples as well, e.g., the Bessel
polynomials.

Of particular usefulness in studying these polynomials is the familiar fact that,
for each n, q. is the characteristic polynomial for the indecomposable tridiagonal
matrix

/bo c, 0 0 0 0

1 b c 0 0 0

0 1 b2 c3 0 0

(2) C.

0 0 0 0 b,-2 Cn-1

0 0 0 0 1 b.,
and also, if b. is real and c. > 0, for the real symmetric matrix

o oo... o ot
4V, o o o o

(3) S.= xc2 b2 0 0 0 0

0 0 0 0 b._2 x/--.
0 0 0 0 fc,_, b,_,/
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INCLUSION THEOREMS 265

Consequently, matrix methods, particularly those dealing with characteristic
values, are available for use in studying recursively generated polynomials. For
instance, it follows from (3) that if each bk is real and each ck > 0, then the zeros of
q, are real, and those of q,-1 interlace those of q, (cf. [6, pp. 103-104]).

This paper is concerned with theorems of the inclusion t]ipe for the zeros of
the polynomials generated by (1). Our approach is based largely on matrix theory,
and in order to facilitate the proofs, we first present some necessary supporting
theorems and lemmas.

2. Results.
THEOREM (Ky Fan [2]). If C= (cq) is a matrix of order n with nonnegative

elements such that ]aq]_-< cq(i, j 1, 2,..., n; i j), and if I >-_0 is the maximal
characteristic value of C, then every characteristic value of the matrix A (aq) lies in
at least one of the n circular disks ]z a,] <= c,, 1, , n.

Let {P,} be the sequence of polynomials generated by

Po- 1,

(4) p, z,

n _-> 1, where 8, > 0, and suppose the sequence is orthogonal on the true interval of
orthogonality (-a, a). The nonnegative indecomposable tridiagonal matrix

0 61 0 0
1 0 62 0
0 1 0 6s

0 0 0 0
0 0 0 0

0 0
..0 01
..0 0

then has P, as its characteristic polynomial, and the following lemmas apply.
LEMMA 1. For each n, A, has a positive maximal characteristic value tz, (which

is the largest zero of P,), and a corresponding positive characteristic vector X,
:(x,... ,x,).

Proof. The proof is immediate by the Perron-Frobenius Theorem (see e.g.,
[5, p. 124]).

LEMMA 2. The sequence {,,} is monotone increasing, and lim,_/z, a. (cf.
[1]).

LEMMA 3. Let X, (xl, , x,) be the positive characteristic vector associated
with ,, as noted in Lemma 1. Then xk+/x P(tz,)/6P-l(tZ,), k 1,. , n 1.
(el. [3, p. 253]).

Proof. By hypothesis A,X, =/z,X,, or

(ii) x__l + 6x+1 ,xi, 2," n 1,
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It is clear from (i) that x2/x, tx,/61 PI(tx,)/61Po(tX,). Also, from (ii), if 2
=< n 1 and the assertion holds for k =< i- 1, then

P,(tx,,)/,P,-,(tx.),

so the assertion holds for k i, _-< n 1. The statements (ii) with n 1 and (iii)
together assert that /x,P,_(/x,)-,_P,_2(/x,)=0, which being equivalent to
P, (/x,)= 0, is certainly true.

LEMMA 4. _For fixed k and n > k the sequence {Pk+(tx,)/Pk(lx,)} is monotone
increasing, and lim,_oo Pk+(/x,)/P(/x,)= P+(a)/P(a).

Proofi For all n>k, P(/,)#0. Also, for x>/xk, d/dx(P+(x)/P(x))
=[P’+(x)P(x)-P+,(x)P’(x)]/P2(x), and the numerator is positive by the
Christoffel-Darboux identity. The limit assertion follows from Lemma 2.

Let C (cij) be any complex n n matrix. The spread of C, denoted by s(C),
is defined to be s(C) max,j I-i 1, where -, -; are characteristic values of C (cf.
[5, pp. 167-8]). For any hermitian matrix C, s(C) ---,, if ’,. , -, is a listing
of the characteristic values of C in nonincreasing order. For the matrix S, in (3),
we have the following result.

LEMMA 5. Given S, in (3), let S, be the matrix obtainedfrom S, by replacing the
entries on the main diagonal with zeros. Then s(S,)>= s(,).

Proof. Let s,. , s,, ,. , , be the characteristic values, respectively, of
S, and S, arranged in nonincreasing order. Let X, =(x,..., x,) be the unit

X,S,X, =. If Y, =(y,..., y,)where yivector having the property that 7"

i--1 T"Y,S, Y, g, - and-1) x, i=l, n, then it is easy to verify that
s(.)=2. If we now let D,=diagS,, then we have Xr,S,X,
Xr,.X, + Xr,D,X, , +Y’= xb;_,, and correspondingly, Y,S,y,T --1

T T+Y.= x2b_,. But s max Z,S,Z, and s, min Z,S,Z,, where the maximum
and minimum are taken over all unit vectors (cf. [6, p. 99]). Hence the inequalities
s >- +Y,=, xb_,, s, <=-, +Y,j-_x2b_, hold, and so sl-s, s(S,) >=
=s(.).

We are now in position to state and prove the main results. The first of these
was suggested by a study of Fan’s theorem noted above, and the proof is an
adaptation of his proof.

THEOREM l. Let {qk be the sequence generated by the recurrence (1), with b,
c complex, c # O, and let C, be the matrix associated with q, as defined in (2). Let
{P} be the sequence generated by the_recurrence (4) and having the properties noted
there, so that Lemmas 1-4 apply. Then for arbitrary fixed n (n >= 1), the zeros of
lie in the union of the n disks

(6)
k=0,1,...,n-1.
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Proof. Let X. (xl,’’’, x.) be the positive characteristic vector associated
with/x., as already noted in Lemmas 1 and 3, and let D. diag X.. By Gershgo-
rin’s Theorem applied to the matrix D- C,,D., the characteristic values of C. lie in
the union of the disks

Iz-bol<-lclx/xl,

Iz <= x lx +, + 1,’.., n 2,

But by Lemma 3, these are the disks

Iz bo] =<

(since P.(.) 0).

Theorem 1 is of particular interest when [ck+[ < 6k+, k 0, 1, , n 2. For
then, since P+(tz,)/P(Ix,) > 0 as noted in Lemma 3, the inequalities (6) provide a
better estimate than either Gershgorin’s theorem applied to the matrix C, or
Fan’s theorem applied to the matrices C, and A,. However, the radii of the disks
in (6) are not readily computed, nor is their dependence on n easily assessed, and
so it is desirable to have a more practical set of estimates, even at the cost of some
loss of precision. Theorem 2 which follows provides such estimates.

THEOREM 2. Given the sequences {q} and {P} as in Theorem 1, suppose ]:or
arbitrary n that the following inequalities hold:

(i) Ick+,l < &+,

and

(ii) Ibl < ( -Ic+,l/6,,+,)P,,+,(a)/P,, (a),

k O, , n 1. Thenfor each K, 1 <= K n, the zeros ofqK lie in the union of the K
disks z-bk[<a-lb[, k =0,..., K- 1.

Proof. Because of (i), (ii) and Lemma 4, there is an integer N> n such that

(7)
< (1 k=O,...,n-1.
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Consider the polynomials b, generated by

o- 1,

el I ol,

and

k 1,.", n-l,

(k+l Zk- kk-1, k n, n + 1," ", N- 1.

By Theorem 1 the zeros of b, lie in the union of the disks

Iz -[b,l <-/zu-(1

k 0, ,, n 1, and the disk [z N. Hence these zeros also lie in the union of
the disks

k 0,.’., n- 1, and the disk z[ u. By (7) and the hypotheses, this union is
clearly z[ , which is contained in ]z[ < a. Since [c[ > 0 and b[ is real, the zeros
of u are real, and hence they lie in the interval (-a, a). By the interlacing
property, the zeros of ,...,

_
also lie in (-a, a). If now we apply Fan’s

theorem to the matrices

Ct(--0 1 b2 0 0 ,,,= 1 [b21 0 0

O 0 0 0 CK-- 0 0 0 ICK-11
0 0 0 1 b,_,/ \0 0 0 1

where _-< K-< n, we obtain the desired conclusion, since the maximal positive
characteristic value for dT: is less than a.

Theorem 2 is easier to apply than Theorem 1 because of the relative ease of
computing Pk+(a)/Pk(a) rather than Pk+(I,)/P(t,). For instance, one suitable
choice for the sequence {P} consists of the monic Legendre polynomials gener-
ated by Po 1, P z, P,+ zP,-[n2/(4n2- 1)]P,_,. Here a 1, P+(1)/P(1)

(k + 1)/(2k + 1), and the hypotheses (i) and (ii) are readily checked.
Note that Theorem 2 implies also that all the zeros of q,,..., q. lie in the

disk ]z[ < a. If each bk is real and each c > 0, then these zeros are real and lie in the
interval (-a, a). The remaining two theorems deal with the question of the
smallest such interval.

THEOREM 3. Let the sequences of polynomials {Q,}, {q3,} and {P,} be
generated, respectively, by (i) Qo 1, QI= z, Q,+I zQ,-T,Q,_I; (ii) q3o 1,
qS z, qSn+ ZqS.- C,q3._, (iii) Po 1, P z, P,+ ZPn- 6,P,_; n >-_ 1. Suppose
the sequence {Q,} is orthogonal on the true interval of orthogonality (-a, a) and that
all the zeros of each P. lie in (-a, a). If y, <- c, <- 6, for n >- 1, then all the zeros of
each , also lie in (-a, a), and this is the smallest such intervalfor the sequence
as well as the sequence {Pn}.
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Proof. Because of the orthogonality hypothesis, 7. > 0 for each n. As before
let/x, denote the positive maximal characteristic value for A,, and let o-,, r. denote,
respectively, the positive maximal characteristic values for the nonnegative
indecomposable tridiagonal matrices

/1/ ,, 0 o... o0 17 c, 0 o o
0 y_ 0 0 c2 0 0

0 1 0 73 0 0,= 0 1 0 c3 0

0 0 0 7--
; 0 c,_0 0

0 0 0 1 O/ 0 0 0 0 O/

whose corresponding characteristic polynomials are, respectively, the polyno-
mials O., qS,. By Fan’s theorem, the zeros of O. lie in the disk Izl---- r., while those
of 95, lie in the disk lzl--</x,. It follows that o-, =< r, <-/x, < a. But r, - a as n - oo;
hence a is the 1.u.b. for the set of maximal characteristic values of the matrices A,,
’., F,, n -> 1. The corresponding conclusion holds at -a because of the symmetry
of O,, 95, and P.. The zeros in question are real since 7,, c, and 6, are all positive.

As an illustration, let 3’. 1/4, 6, n2/(4n- 1), n => 1. Then the polyno-
mials C), are the Chebyshev polynomials of the second kind normalized to be
monic, while the polynomials P, are the monic Legendre polynomials already
noted. Both these sets are orthogonal on the true interval of orthogonality (-1, 1).
Consequently, if 1/4 <- c, <- n2/(4n2- 1), n _-> 1, then the zeros of each qS, all lie in
(-1, 1), and this is the smallest such interval. A more significant example involves
the associated polynomials [4, pp. 43-50]. If the polynomials {q,(z)} are gener-
ated by (1), then the associated polynomials {q,(z, r/)} are generated by

qo(Z, rt)= 1,

,(z,n)=z-b.,

(4n+l(Z, ql) Z bn +.o (n Z, 31 Cn+(4n_ Z, T ),

n => 1. The following corollary to Theorem 3 is easily proved.
COROLLARY 1. In Theorem 3 let 3", a2/4 and suppose the sequence {c,} is

monotone nonincreasing, with c, >- a-/4. If the sequence {95,} is orthogonal on the
true interval of orthogonality (-a, a), then for every q the associated sequence
{, (z, )} also has (-a, a) as the true interval of orthogonality.

Proof. It suffices to note that the polynomials Q, with 3’, =a2/4 are
orthogonal on the true interval (-a, a), since aside from an appropriate linear
change of variable they are the monic Chebyshev polynomials of the second kind.

The monic Jacobi polynomials P(2’) generated by

1 P"’") z,0

P(2;)= zP(2")-[n(n + 2c)/(4(n + c)- 1)]P(,t’),
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n _-> 1, satisfy the hypotheses of Corollary 1 for -1/2 < a _-< 1/2, with a 1, and so
all the associated polynomials P’ (z, ) for the indicated range of a are
orthogonal on the true interval of orthogonality (-1, 1).

Theorem 3 and Corollary 1 dealt with the smallest interval containing all the
zeros for the symmetric case, i.e., all b, -0. Theorem 4 below is concerned with
the nonsymmetric case, but it also includes the symmetric case.

THEOREM 4. Let the sequences {O.} and {q.} be generated, respectively, by (i)
of Theorem 3 and (1), with b. real, c. > O. Suppose also that b., c. satisfy any
conditions which insure that all the zeros ofeach q. lie in (-a, a) (e.g., conditions (i)
and (ii) of Theorem 2 hold for every n, or in the symmetric case, the hypothesis
< 8. ofTheorem 3 holdsforeveryn). Thenifyn <c.forn > 1, theinterval (-a, a)On_

is the smallest interval containing all the zeros of each p..
Proof. Let S., S. be the matrices of Lemma 5, and define the matrix G. by

Gn

o 0 00... 0 0

0 o o
0 0 00 o o

0 0 0 0

0 0 0 0 0

Then O. is the characteristic polynomial for both F. and G., and similarly q. is
the characteristic polynomial for the matrices 7., . (F. and ’. as defined in (8)).
Thus the maximal positive characteristic values for G. and . are, respectively, o..
and r., with o.. =<r. as shown in Theorem 3. It follows that s(.)= 2r.->2o-.

s(G.). By Lemma 5 s(S.)->s(.) and hence s(S.) >- 2o.. - 2a as n -.oo. But all
the characteristic values of each S. lie in (-a, a) and so s(S.)<= 2a for each n.

Acknowledgment. The authors wish to express their appreciation to Prof. T.
S. Chihara for constructive criticism of an earlier version of this paper, and to the
referee, whose improvement of a theorem of ours in turn suggested Lemma 4.
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THE CHARACTERIZATION OF SOLUTIONS OF V2 +A2 0
BY A FUNCTIONAL EQUATION*

A. McD. MERCERt

Abstract. If E"(n >-_ 2) denotes real n-dimensional Euclidean space, then the following result is

known. If f is a solution of V24 + A 24, 0 throughout E" -{0}, then

f(x+y)err:F(v+ 1) rr "J.(hr)f(x),
S(r)

Here v (1/2)n- and S(r) denotes both the (n- 1)-dimensional manifold [lY[I and its volume.
The present paper treats the converse problem and proves that if f is continuous in [[x[[ > 0, if

V4, fis soluble in Ilxll > 0 and if lira r-2{H(0 +)- H(r)} exists (= A 2/2n, say), then the functional
equation

S(r)
f(x +y)o-r H(r)f(x),

implies that V2f+ A2f=O throughout E"-{0} and that H(r)= F(v+ 1)(2/(Ar))"J(Ar).
In conclusion, it is noted that if one assumes that f has spherical symmetry, then the present result

reduces to a special case of the author’s earlier theorem on Besscl functions.

1. Introduction. With n_->2 let E" denote real n-dimensional Euclidean
space and let f be a real-valued function defined on E" -{0}. Then an immediate
consequence of a result proved in [1] (see Theorem 2 there) is the following
theorem.

THEOREM A. Iff is a solution of V2(--A2) --0 throughout E"-{0}, then

(2)1
f(x+y)o-=F(v+l) L(r)f(x), 0<r--llyll<llxll.(1.1)

S(r) r)

Here v=(1/2)n-1, S(r)denotes both the (n-1)-dimensional manifold Ilyll r
and its volume while trr is the volume element in S(r).

If we write H(r)= F(v+ 1)(2/(hr))"Jv(hr) it is seen at once that H(0+) exists
and has the value 1. Furthermore limr_.o+ (1/r2){H(O+)-H(r)} exists and equals
A 2/(2n).

It is the purpose of the present note to consider the converse problem, that is,
to study the functional equation

1 Is f(x + y)O’r H(r)f(x), 0 <r Ilyll < Ilxll,(1.2)
S(r)

subject to the side condition that the lim,_o+ (1/r2){H(O+)-H(r)} exists. It will
appear later that this side condition is quite weak and cannot, apparently, be
discarded.

* Received by the editors February 18, 1975.

" Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada.
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For (1.2) to be meaningful at all we must impose some condition on f to
ensure the existence of the integral, and we shall assume throughout that f is
continuous when Ilxl[ > 0. In fact, it appears necessary to impose another condition
on f, and this is stated in our main result which is the following.

TIEOREM 1. Suppose that f is continuous when [Ixl[ > 0 and has the property
that V,b f is soluble in [[xll> 0. Let the functions f and H satisfy (1.2) and in
addition let the limit limr_,,+ (1/r2){H(O+)-H(r)} exist (= A2/(2n), say). Then f
satisfies V24) + A 24) 0 throughout E" {0} and

g(r)=F(,+ 1)
2

J(Ir).

It should be noted that both here and in (1.1) above we have treated I as
being nonzero and we shall continue to do this. However, little modification is
needed to treat the zero case also, and indeed the results obtained are precisely
those one gets by letting I 0 formally in the various formulas.

We introduce an operator A defined by

(Ag)(x) lim
2n Is {g(x +y)- g(x)}m, r ]IYl],

and the next section is devoted to proving two properties of this operator which
will be needed.

2. Properties of the operator A. We shall prove the following lemmas.
LEMMA 1. Let V2g be continuous for [Ixl[>0. Then Ag exists there and

(Ag)(a) (V2g)(a) whenever [lal[ > 0.
LEMMA 2. Let g be continuous for [[xll > 0 and letAg 0 there. Then 7 g 0 in

Proof of Lemma 1. If I[all > o, then

2n Is g(a -+- y)O’r

is defined for all suciently small r > 0 and we shall define G(O) G(O +). Then,
provided that the limit exists, we have

1
(Ag)(a) lim ={G(r)-G(O)}

r-+O+ r

The hypothesis on g ensures that G’ exists in (0, r) for sufficiently small r > 0, and
so by Cauchy’s mean value theorem we have

2 1
G(r) G(O)} -G’(r) for some e (0, 1).

Hence, provided that the limit exists, we have

1
,((ag)(a) lim rr G r).

r-+O+
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Since S(r)= 2r"-lTr"/2/F(n/2), then G(r) and W(r), defined by

W(r) r -" | g(a + y)rr,
(r)

differ only by a multiplicative constant, and W’(r) has already been calculated in
[].
In fact we have

and from 1],

nF(n/2)
G(r) W(r)n/2

W’(r) r-" Is (*dg)(a + y).
(r)

(Regarding the notation here, we refer the reader to [2].) Hence, using Stokes’
theorem in E", we find

1
2r

n II (d*dg)(a+y).
n

(*dg)(a + y) ’S(r) yll<r
G’(r)

rS(r) (r)

But d*dg: (V2g)w where o is the volume element in the ball I]yl[_-< r. Hence

1
G’(r)=

n I (V2g)(a +y)w"(2.1) 2 rS(r) lyll----r

Now (rS(r))/n is simply the volume of the ball Ilyll r. Since V2g is continuous at a
we can let r0+ in (2.1) obtaining the required result, namely, that (Ag)(a)

(Vg)(a).
Proof of Lemma 2. It is sufficient to prove that g is harmonic in any open ball

which excludes the origin. Let B {x- IIx-all < with Ilal] > 6 be such a ball.
First we remark that there exist unique functions w and satisfying

Ww 0 in B, w(x) g(x) on 6B,

V212=1 inB, O(x)=0 onaB.

Furthermore we will have (x)_-__ 0 in B. This can be seen from 5(c) of 1 ], for
example.

We write (x) w(x)- g(x) and if (x) 0 for all x e B we are finished. If not,
then wil! assume a nonzero value there, say at c, which we may suppose to be
positive.

Choose e > 0 to be so small that if q,(x) (x) / e l)(x), then q,(c) > 0. Now q
is zero on 6B and q(c) > 0 with c B. So 4’ attains its supremum, which is positive,
in B, say at b. Next if r > 0 is sufficiently small, we will have

Is {w(b +y)- o(b)}o-r 0
(r)
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because w is harmonic in B and

s(,,
{D.(b +y)- a(b)}o’, nn S(r)

by virtue of 5(b) in [1]. Hence we find that

I 2n I {g(b)-g(b+y)}o+e.
2n

{b(b+Y)-q(b)}cr"
r:S(r)

(2.2)
rS(r)

Letting r --> 0 + and noting that (Ag)(b) 0 by hypothesis, we obtain a contradic-
tion because e > 0 while the limit of the left-hand side of (2.2) must be nonposi-
tive. This completes the proof of Lemma 2.

3. The proof of Theorem 1. If we choose a value x for which f(x) # 0 and let
r 0+ in (1.2), we find H(0 +)= 1. Next it follows from (1.2) that

1 I {f(x +y)-f(x)}o, {H(r)- 1}f(x).(3.1)
S(r)

Multiplying this by 2n/r and letting r 0+, we obtain

(3.2) (af)(x) -A 2f(x).

By the second hypothesis on f, we can find a function F such that

(V=F)(x) f(x), Ilxll > 0,

WF is continuous in I1 11 > 0 and so, by Lemma 1, (WF)(x)= (AF)(x), and so

(3.3) (AF)(x) f(x), Ilxl[ > 0.

By (3.2) and (3.3) we have

A (f+ A =F) 0 in Ilxll > 0.

Then by Lemma 2 it follows that

V2(.fnt- A2F) 0 in Ilxll > 0,
and so

72f+ &f 0 in Ilxll > 0.

This is the required result so far as the function f is concerned. Since f satisfies this
differential equation it follows from Theorem A that

1
f(x+y)cr,-F(,+l) "L(Ar)f(x), 0<r-llyll<llxl[.

S(r) S(r)

Comparing this right-hand side with that of (1.2), we find that H(r)
F(, + 1)(2/(Ar))"Jv(Ar), and the proof of the theorem is complete.

It may be mentioned here that the assumption concerning the existence of the
limr-,o+ r-{H(0 + )- H(r)} can be seen, by (3.1), to be equivalent to assuming that
there exists a single point a # 0, with [(a): 0 at which A/(a) exists. It appears,
then, that this assumption is indeed a weak one, and it is by no means clear how it
could be discarded.
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4. Conclusion. If we had assumed at the outset that f had spherical symmetry
so that f(x)= g(x), say, where we have written x for ]lxl], then by taking an
appropriate choice of polar coordinates in E, (1.2) would have read

(4.1)
2r

g(xr,o)]sin O]2 dO K(r)g(x), 0< r < x.

Here we have written Xr, =- [x + r 2rx cos 0] 1/2, K(r)
=-(1/x)(F(u+1/2)/F(u+ 1))H(r) and as before v (n/2)-l(n -_>2). If we assume
then that geC(0, oe) and that the lim_.or-2[K(0+)-K(r)] exists
(=F(u+1/2)/(xF(u+2))(A2/4), say), we find from Theorem 1 that the
only solutions of (4.1) are given by g(x)=(Ax)-"{AJ,(Ax)+BY,(Ax)},
K(r)(1/x)F(u+1/2)(2/(,r))"J,(Ar). This is a special case of a result proved previ-
ously in [3] where it was shown to hold generally for u->0. Obviously the
restriction on u in the present instance is due to the fact that 2u + 1 n is the
dimension of the space. On the other hand, the present theorem is more general in
the sense that we are not now restricted to cases of spherical symmetry.

In the paper [3] cited above there appeared a short description of similar
investigations carried out by other authors. We shall not repeat this here but
merely refer the reader to that source.

Note added in proof. Professor T. Koornwinder has brought the interesting
reference [4] to my attention. On page 399 of that book, the functional equation

IK f(x y) dk f(x) f(y)

on a symmetric space G/K is considered. The method there, which would seem to
require spherical symmetry, is quite different from the one given in the present
paper and our right-hand side in (1.2) is somewhat more general.
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TEMPORALLY INHOMOGENEOUS SCA’ITERING THEORY. II:
APPROXIMATION THEORY AND SECOND ORDER EQUATIONS*

JEROME A. GOLDSTEIN’ AND CHARLES J. MONLEZUN:I:

Abstract. Of concern is scattering theory for a pair of abstract Schr6dinger equations

du/dt= iH(t)u, ]=0, 1.

Sufficient conditions are given for the existence and completeness of the wave operators and for the
unitarity of the scattering operator. Approximation theorems are established; these show that the
wave and scattering operators depend continuously on the Hamiltonians Hi(t). These abstract results
are applied to quantum mechanical potential scattering with time-dependent potentials. Finally a
scattering theory is developed for certain classes of second order evolution equations. Examples
include scattering theory for the pair

02/Ot Au,

O2u/Ot + ir(t, x) Ou/Ot Au q(t, x)u,

where either q is independent of or 0.

1. Introduction. Let Ho, H be self-adjoint operators on a complex Hilbert
space Y(, and let U U(t) exp (itH) (-, c)} denote the unitary
group generated by i/-/. Of fundamental importance in scattering theory are the
wave operators

(1.1) f f+/-(H, H0)= s-lim Ul(-t)Uo(t).

Here s-lim means limit in the strong operator topology.
If the Hamiltonian =/-/(.) is a self-adjoint operator-valued function of

time (t e ), then (in many cases) determines a family of unitary evolution
operators, and wave operators can be defined by a formula similar to (1.1). (A
precise formulation of this is given in 2). Temporally inhomogeneous scattering
theory refers to scattering theory in this context of time-dependent Hamiltonians.

There is much motivation for studying temporally inhomogeneous scattering
theory. Problems involving time-dependent Hamiltonians arise in laser physics,
solid state physics, magnetic resonance, and quantum field theory (cf., e.g., [28]).
Scattering theory for the Dirac equation with time-dependent potentials may be
able to explain certain creation and annihilation phenomena [27]. Finally, in
Remark 2.9 below we will indicate how temporally inhomogeneous scattering
theory subsumes long range potential scattering with modified wave operators by
introducing a time dependent unperturbed Hamiltonian.

Temporally inhomogeneous scattering theory was studied in [26]. The main
results of [26] were theorems guaranteeing the existence and completeness of the
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temporally inhomogeneous wave operators. These results are strengthened and
greatly simplified in 2. An important problem not dealt with in [26] is the
following approximation problem: Show that the temporally inhomogeneous
wave operators depend "continuously" (in a suitable sense) on the Hamiltonians
H1 and Ho. A result of this nature is established in 3, and it is applied to the case
of potential scattering with time-dependent potentials.

Section 4 deals with temporally inhomogeneous scattering theory for a class
of second order evolution equations. The existence and completeness of the wave
operators are established, as is the "continuous dependence" of the wave
operators on the perturbation. Examples are included. Some of the results were
presented at the Colloquium for Analysis at the Federal University of Rio de
Janeiro in August, 1972 [9] and at the N.A.T.O. Advanced Study Institute on
Scattering Theory at the University of Denver in June, 1973.

2. Summary o previous work. Let Y( be a complex Hilbert space. For
j 0, 1, t6 --[-, ], let/-/(t) be a self-adjoint operator on .

Assume the following:
(A1) (i) , the domain of H.(t), is independent of j 0, 1 and t6 ;

(ii) /-/(.)(iI-/-/(0))- is piecewise strongly continuously differenti-
able on for j 0, 1.

This means that each compact interval in can be written as a finite union of
subintervals [a,b] such that for each of these subintervals [a, b] there is a
strongly continuously differentiable function Q on [a, b] such that
Q(t) H.(t)(iI-I-I(O))-1 for a < < b. When (A1) holds, the Cauchy problem

u’(t)= iH(t)u(t),

is well-posed and admits a unique (strongly) continuous and piecewise continu-
ously differentiable solution. This follows by an easy modification of a classical
result of Kato [17]. Writing the solution as u(t)=U(t,s)f, the family
U. { U(t, s) t, s It} is called the family of evolution operators determined by
i/-/. Each U(t, s) is unitary.

Let (A1) hold. The (temporally inhomogeneous) wave operators are defined to
be

W,(o-) W+/-(o-; H,, H0)= s-lim U,(o, t)Uo(t, o-), o’Er,

We shall also call W(o-) the wave operator with initial time r. These wave
operators (when they exist) are isometries. Note that. if does not depend on t,
then W(o-; H, Ho)= f+/-(H, Ho) for all o- (see (1.1)).

The next assumption is that/-/(+t) tends to/-/(+oo) in a suitable sense as
too.

(A2) There is a ->0 such that for t> ’, /-/(+t)-/-/(+/-oo) is a bounded
operator and

for j O, 1.
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(A3) The wave operators l+/-(Hl(s),Ho(s)) exist and are complete for

THEOREM 2.1. Let (A1)-(A3) hold. Then the wave operators
W(o) W+/-(o’; HI, Ho) exist and are unitary, and the (temporally inhomogene-
ous) scattering operators S(o’) W+(cr)* W_(o’) are unitary operators on Y(for each

This is a variant of a result in [26]. We now sketch a proof of Theorem 2.1
which is considerably simpler than the proof given in [26].

First consider the special case where Hl(+/-eo)= Ho(+/-eo). Fix f e @, o-6 l.
Then

(d/dt) Ul(O’, t) go(l, r) f -iU(tr, t)[H(t) Ho(t)]Uo(r,

for all but countably many values of t, whence

IlU,(o, t)go(t, or)f-- U(r, r)Uo(r,

(2.1) -i U,(r, x)[H,(x)-Ho(x)]Uo(x, r)f dx

=< IIH, (x) Ho(x)ll dx

Using (A2) we conclude that {U(, t)Uo(t, )f} is Cauchy as t e, whence
W(; H,, Ho) exists.

For the general case, let

(+) for
n+z(t)

S(-) for 0

k =0, 1. Using (A3) it is easy to see that W(; H, H) exists. By the above
paragraph, W(; H, H) and W(; H, Ho) exist. By the chain rule (see [25],
[26]), W(; H, Ho) exists and

(2.2) w(; H,, Ho)= W(; H,, H)W(; Ha, H) W(; H, Ho).

The conclusions are symmetric in the subscripts 0, 1, since the hypotheses are, so
that W(; Ho, H) exists. The chain rule implies that W(; H, Ho) is unitary
and

S() W(; H,, Ho)* W_(; H,, Ho)= W+(; Ho, H,) W_(; H,, Ho)

is unitary.
Remark 2.2. The above proof is essentially a Banach space argument, and

one can formulate a Banach space version of Theorem 2.1.
Now let Ho, H be self-adjoint on . It is customary to work with the

generalized wave operators

w+/- w(H,, Ho)= s-lim U,(-t)Uo(t)Po,

where Po is the orthogonal projection onto the subspace of absolute continuity of
Ho (cf. 19, pp. 516-517, 535 ft.]). The next result is a variant of Theorem 2.1 in
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the context of generalized wave operators. For this purpose we introduce, in
addition to (A1), the following condition.

(A4) For j 0, 1, s +/-oo, the subspace M of absolute continuity of/-/(s)
does not depend on s; and the orthogonal projection P onto M commutes with
exp (irH(t)) for all r, t [.

Let (A1), (A4) hold. The generalized (temporally inhomogeneous) wave
operators are

lY’(o’) +/-(o’; H,, Ho)= s-lim U,(cr, t)Uo(t, o’)Po, O’Er.

When they exist, these operators are partial isometries with initial set Mo. They
are called complete when their range is M. For this case (A3) can be weakened to
the following:

(A3’) The generalized wave operators oo(I-l,(s), Ho(s)) exist and are com-
plete for s +/-.

THEOREM 2.3. Let (A1), (A2), (A3’), (A4) hold. Then the generalized wave
operators W+/-(o’)= W(o’; H1, Ho) exist and are complete, and the (temporally
inhomogeneous) scattering operators S(o) W+(cr)* W_(o-) are unitary operators on
Mo for each r .

This is a generalization of [26]. In [26] (A4) was replaced by the stronger
hypothesis that the subspace of absolute continuity of/4(t) was independent of
e . This stronger hypothesis is unnecessarily restrictive.

The proof of Theorem 2.3 is similar to that of Theorem 2.1, except that the
chain rule part of the proof is more delicate and (A4) is used at that point. We omit
the details.

The hypotheses of Theorem 2.3 hold in some cases when the hypotheses of
Theorem 2.1 fail to hold. However, we shall use Theorem 2.1 in the applications
since we have been unable to find any significant application of Theorem_2.3 not
covered by Theorem 2.1.

Remark 2.4. There are many known conditions, for instance those involving
the trace class, which can be used to check that (A3’) holds. However, since the
subspace Ygac(H) of absolute continuity of a self-adjoint operator H tends to be
quite unstable with regard to perturbing H, it seems difficult to check (A3) when
Hl(OO) and Ho(OO) are different operators unless Ygac(H(o))= Y(,c (Ho(OO))= Y(, in
which case (A3’) is the same as (A3) (if the same is true for H,(-o) and Ho(-Oo)).
(An exception to this is the smoothness criterion of Kato [16].)

We will verify (A3) in the applications in one of two ways: (i) H,(s)= Ho(s)
for s +/-oo, or (ii) (A3’) holds and Y(,(/-/(s))= for j 0, 1 and s +/- oo.

Remark 2.5. From the intertwining relation

s() o(,, 0)s(0)o(0, ),

we see that there is in effect only one scattering operator; i.e. S(0) and Uo
determine S(o-) for all real o-.

Remark 2.6. If/-/(t) and Hk(s) commute for j, k {0, 1} and all t, s (in the
sense that exp (irI-I(t))=exp (iuHk(s)) for all r, u ), then (A2) can be replaced
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by the weaker condition

(A4’) t)- H (+/-oo))f[I dt < oo

for all f in a dense subset D of , 0, 1. In this case (2.1) becomes

IIUl(, t)Uo(t, )f Ul(ff, r)Uo(r,

II(S,(x)-So(x))fl dx

for f e Do, and the rest of the proof of Theorem 2.1 applies. As an example, we
may take (t), a differential operator of the form

(t) ai(t) O/Ox Ox + b’(t),

acting on L(N"), where the coefficients depend on but not on x. (Cf. [26].)
Remark 2.7. The proof of Theorems 2.1 and 2.3 are much simpler than the

proofs in [26]. However, the proofs here seem to depend crucially on the linearity
of (t), whereas the complicated proofs given in [26] can be extended to a
nonlinear situation; see Wichnoski [33].

Remark 2.8. An alternate proof of Theorem 2.1 (and Theorem 2.3) can be
based on the following observations.

(d/d)U(, t)f iSl(t)Ul(, t)f

iHo(t)U(, t)f+ i[H(t)-Ho(t)]Uo(, t)f,

whence by the variation of parameters formula,

U,(, t)/= Uo(, t)f+i Uo(m r)[H(r)-Ho(r)]Uo(, t)fdr.

This Volterra equation can be solved by iteration, and with the aid of (A2), one

gets a series expansion for

W+(tr) s-lim U,(tr, t)Uo(t, r)

from which the conclusions of Theorem 2.1 can be shown to follow. The series
expansion for W(o-) appears to be known to physicists [29, p. 331].

Remark 2.9. We point out a motivation for considering a time-dependent
unperturbed Hamiltonian. This observation was pointed out to us by Amrein and
Piron [4]. In studying long range potential scattering, Dollard, Buslaev, Matveev,
Alsholm, Kato and others (cf. [3], [10] and the references therein) defined
modified wave operators

(2.3) w+/- s-lim U,(-t)Uo(t) Yo(t),
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where = L-("), Ho A, H, Ho- V(x), V(x) being the potential, and Yo(t)
being a certain unitary operator which depends on the long range part of V(x) and
which commutes with Uo(s) for each s . If we set Uo(t, O)= Uo(t)Yo(t), then
formally we get

(d/dt)Uo(t, 0)f (-iHo+ Y’o(t))Uo(t, s)f,

and so (2.3) can be regarded as defining the wave operator w+/- W(0) for the pair
H1, Ho(t)= Ho-iY’o(t). Thus, formally at least, long range potential scattering
with modified wave operators is a special case of temporally inhomogeneous
scattering theory.

3. Approximation theory. Suppose we have a sequence /-/(t; n) of self-
adjoint operator-valued functions of time. The main result of this section can be
roughly stated as follows. If for j--0, 1, /-/(. ;n) satisfies the hypotheses of
Theorem 2.1 uniformly in n, if/-/(t; n) converges to/-/(t; oo) (in a suitable sense),
and if the wave operators for /-/(+oo; n) converge to the wave operators for
/-/(+oo; oo), then W(o-; H(.; n), Ho(’; n)) converges to W+/-(o-; H(. ;oo),
Ho(’; co)) as n oo for each real r.

Let [No {1, 2,. ., oo}. The following hypotheses will be made.
(B 1) For j 0, 1, n [No,/-/(" n) is a self-adjoint operator-valued function

on [ such that (A1)-(A3) hold with (n)= dom(/-/(t; n)) possibly depending on

(B2) The strong derivative of /-/(t; n)(iI-I-I(O))- is bounded indepen-
dently of K, n [No, j 0, 1, where K is an arbitrary compact interval in !.

(B3) (Uniform version of (A2)). There is a " > 0 and a 0 L [-, oo) such that

II(+/-t; n)-(+/-oo; n)ll<--_q(t)
for all _-> r, n 6 No, 0, 1.

(B4) For t=

s-lim l)+/-(H(t; n), Ho(t; n))= 12+/-(H(t; oo), Ho(t; oo)).

(B5) For all a \{0}, , j 0, 1,

s-lira {iI- cd-/(t; n)}-1: {iI- ce/-/(t; a3)}-1.

THEOREM 3.1. Let (B 1)-(B5) hold. Then

s-lim W+/-(cr; Hi(’; n), no(’; n))= W+/-(o’; Hi(" ;oo), no(" ;0(3))

for all tr. Moreover, s-lim,_. S,(cr)= So(tr) for all cr6 , where S,(tr) is the
scattering operator for the pair H(.; n), Ho(’; n) with initial time

Proof. We shall treat the case of W+; the proof for the case of W_ is analogous
and will be omitted.
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Let Hk+2(t; n)= Hk(oe; n) or H(-oo; n) according as 0_-<t=<oo or 0> ->
-oo, for n 6 [No, k 0, 1. By (B 1), Theorem 2.1, and (2.2),

W+(o’; Hi(’; it), Ho(’; n))= W+(r; H,(’; n), H3(’; n))

(3.1) W+(o’; H3(’; n), H2(’; n)) W+(o’; H2(’; n), Ho(’; n)),

and a straightforward calculation using (B4) shows that

s-lim W+(o-; H3(’; n), H2(.; n))= W+(o’; H3(’; oo), H(’; oo)).

Consequently, as was the case in the proof of Theorem 2.1, we may assume,
without loss of generality, that Hi(t; n)-Ho(t; n) tends to zero as t +/-oe for all
n 6o. Let {U(t, s; n)} be the family of evolution operators determined by
i/-/(. ;n) for no,/’=0, 1. By (B1), (B2), (B5) and a known approximation
theorem for evolution operators (Goldstein [7, p. 571], Kato [21]),

(3.2) s-lim U(t, r; n)= U(t, r; c)

for all t, r 6 1, j 0, 1. Also, (2.1) and (B3) imply

IIu(, t; n)Uo(t, ,; n)l- u,(, r; n)Uo(r, ;
(3.3) [IU(, t; n)Uo(t, ; n)f- W+(; H(’; n), Ho(’; n))f[I

I(x)l dxIlYll

for all n No, f , and N r. Writing W+(a; n) W+(; Hi(" n), Ho(" n)), we
have that

where

J1 "-IIW+(o’; )f-Vl(O t; n)Uo(t, a;

J2 IlU,(tr, t; n)Uo(t, o; n)f-Ul(O’, t; oo) Uo(t, r; oo)f] l,

J3 I[U,(o’, t; oO)Uo(t, o’; oo)f- W+(r; oo)fl I.
Let e > 0 be given. By (3.3) and (B3) we can choose so large that Jl < e/3

and J3 < e/3. Fix this t. Next, using (3.2), we can find N N(e, f) such that J2 < e/3
for all n > N. It follows that

for all n > N. This proves the first assertion of the theorem.
Next, S,(o-)= W+(o;n)*W_(o’;n) for each o- and each nNlo. But

W+(o’; n)*= W+(o-; n)-1, and W+(cr; n)-1= W+(o; Ho(’; n), H(.; n)) by the
chain rule. By the first part of Theorem 3.1,

s-lim W+(tr; Ho(’; n), HI(’; t))-- W+(o’; Ho(’; oo), H,(’;
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since the subscripts 0, 1 are interchangeable in the hypotheses. Thus s-
lim,_ W_(o-; n)= W_(cr; ) and s-lim,_.oo W+(o-; n)*= W+(o-; )*, whence s-
lim,_ S,(o-)= So(o). [-I

An alternate proof of the above theorem can be based on Remark 2.8. Also, a
variant of Theorem 3.1 can be proved by basing the proof on Theorem 2.3 rather
than on Theorem 2.1.

We shall apply Theorem 3.1 to potential scattering with time-dependent
potentials. Let Y(=L2(’). Let Ho be the self-adjoint realization of A, the
Laplacian. Let @ denote the domain of Ho. (Thus @ is the Sobolev space
w,(’).)

(C1) Let p,,...,p,, satisfy 2_-<pj<m, pj>I/2 for j= 1,..., m and let
po m. For each , let q(t) =o qj(t) where qj(t) is real-valued and in LPJ(I),
and let the maps q" R LPJ(R) be piecewise (strongly) continuously differenti-
able.

(C2) (i) q(+m, x)= O(Ixl-) for some a > 1 as Ixl m;
(ii) q(+m, x) _-> o.

(c3) There is a r > 0 such that

I,llq(+t) q(+oo)l[o <,dt

where 11.11 is the L([’) norm.
THEOREM 3.2. Let (C1)-(C3) hold. Set Ho=A (independent of t),

H,(t) A-q(t) for . Then the wave operators W(r; H,, Ho) exist and are
complete, and the scattering operators S(r) are unitary on L2() for each r .

This is a refinement of results in [26], [9], and the proof is similar to proofs in
those papers. Briefly, (C1) together with a result of Kato [15] imply that (A1)
holds. Using (C2), a result of Agmon [2] and Lavine [24] implies that
Ygsc(H,(+/-))-{0}, and a result of Kato [18] implies H,(+/-) has no negative
eigenvalues. Since q(+/-) -> 0, H,(+/- ) has no nonnelgative eigenvalues. Hence
H,(+/-c) is spectrally absolutely continuous, and (A3’) holds with Po P, I;
hence (A3) holds. (C3) implies (A2), and (A3) holds by (C2) and a result of Kato
[22]. Theorem 3.2 now follows from Theorem 2.1.

That (C1) implies (A1) (ii) was stated in [9] without proof, so we give a proof
here. We must show that if J is an interval on which each q is continuously
ditterentiable, then q(.)f is strongly continuously differentiable on J for each
f @. By replacing 3 by in some elementary calculations with Fourier transforms
(cf. [19, p. 301], [6, p. 84]) and by using the Hausdorff-Young theorem [34, p.
251], we see that @ c Lr() when r-’ 2-’ _p-1 for each p > I/2. Hence (since
p >-_ 2, p > 1/2),

[h-’{q(t + h)-q(t)}-q;(t)]f
2

<= I[h-{qo( + h) qo( t)} q;(t)l[ll f[l

+ IIh-{q(t+ h)-q(t)}-q;(t)]]p;.
j=l

]l/[], 0 as h - 0 for t, + h e J, f @, where r-’ 2-’- p-’. The desired conclusion
follows.
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Condition (C2) can be weakened. Agmon [2] and Lavine [24] have given
general conditions on q for the Schr6dinger operator H-A-q on L2(Rt) to
satisfy sc(H)={0}. Agmon [1] has given general conditions for H to have no
negative eigenvalues. Weidmann [32] has given conditions for oa(H) {0} which
allow q to take negative values.

Again, let tNo {1, 2,..., oo}.
(D1) For n Io, tR, let q(t; n) be such that (C1)-(C3) hold.
(D2) Write q(t;.n)=j%oqj(t;n) as in (C1). Then for O<-j<=m,

sup {ll(d/dt)qj(t; n)ll , "ltl--< T, m 1o} < and sup {llq(t; n)llp, "It]--< T, 0_-< j _-< m,
n No} < for each T6 .

(D3) There is a r > 0 and a b L [r,. ) such that

ilq(+t; n)-q(+cx; n)llo q(t)

for all => r, n No. Here I[" II is the L(fft) norm.
(D4) q(+oo; n) 6 L (I’) f-’l L2(’) and

lim IIq(+; n)- q(+; )l]l 0.

(D5) lim [[q(t; n)-q(t; )llp, 0

for all t6 and j=0, 1, , m.
THEOREM 3.3. Let (D1)-(D5) hold, and suppose 1<-3. Let Ho=A,

Hi(t; n)=A-q(t; n) fort6R, n6o. Then

s-lim W(tr; H,(. ), Ho)= W(cr; H(" ;), Ho)

for all cr . Moreover, s-lim,_.oo S,(tr)= So(tr) for all tr , where S,(tr) is for
n No the scattering operator for the pair Hi(’; n), Ho with initial time

Proof. We must check that the hypotheses of Theorem 3.1 are satisfied. First
(D1) implies (B1) with (n)= @ (= IM2’2(N)) and = L2(N).

Note that
/-/(t; n)(iI-Ho)-l=(A-q(t; n))(iI-A)-

A(iI-A)-1- Z q(t; n)(iI-A)-.
=0

Let J be a compact interval in N, and let C be a bound for IIq(t; n)llp,, for 0 _-< j _-< m,
e J, n e No (by the first part of (D2)). Then

Ilq’o(t; n)(iI- A)-lfll= <_- CIl(iI- A)-II
Ilq;(t; n)(iI- A)-fll _-< cll(iI- A)-flloo_-< Cgllfll

for 1 -< ] -< m, f Y(, J, n No, where K is the norm of (iI- A)-1 as a mapping
from L(Rt) to L(I); K <o by the closed graph theorem since =< 3. It follows
that (B2) holds.

Clearly (D3) implies (B3). Assumption (D4) and the last part of (D2) imply
(B4) by a result of Kuroda [23, p. 452] since 1-<3. It remains to show that
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(B5) holds for /’= 1. For this we use (D5). Let ]’ , a e N\{0}, teN, and
set g=(iI-aHl(t; 0o))-lf. Recall that g fq{Lr(Nl) 2__-< r<-0o}.
Thus

II(iI-n(t; n))-If-(iI-aHl(t; (X3))-lf[[2
<-IIf-(iI-H(t; n))(iI-aH(t;

-I, 1 II(H (t; n)-H(t;  ))gll=

<--Ia[ .llqj(t; n)-qj(t;  o)ll ;llgll ; +llqo(t; n)-qo(t;  o)ll ollgll=

->0 as r/--->0o,

where r/l+ p; 2-1. Thus (B5) holds. Theorem 3.3 now follows from Theorem
3.1. F1

Theorem 3.3 can be modified so that it is valid with > 3. Rather than using
Kuroda’s result [23], one can use Stankevi,’s more general results [30].

4. A class ot second order evolution equations. The scattering theory
discussed thus far can be termed scattering theory for the pair of Schr6dinger
equations

u’(t) iHi(t)u(t), (’= d/dt), ] O, 1.

In this section we discuss scattering theory for second order evolution equations of
the form

(4.1) u"(t)+iBj(t)u’(t)+Au(t)=O, j=0, 1.

Here A, Bj(t) are self-adjoint operators on a complex Hilbert space 77{ with B(t)
bounded for It] sufficiently large. Writing

U(t)=
u’(t) J’ G(t)= -A -iBm(t)

the Cauchy problem for (4.1) becomes equivalent to the Cauchy problem for

U’(t) Gj(t) U(t), j 0, 1

in the Hilbert space Y(= Y{Y{. I-Ii(t)=-iGj(t) with domain @(H(t))= @(A)
@(A) will turn out to be a self-adjoint operator on Y(. The wave operators
W+/-(o-) W(r; H1, Ho) will be termed the wave operators for (4.1). The follow-
ing assumptions will be made.

(El) (i) For ]=0, 1, t, A and B(t) are self-adjoint on ?7{ with Aj
invertible and @(Ao) @(A); there is a z => 0 such that Bi(t) is bounded for It] _-> z
and B(. is piecewise strongly continuously differentiable on {t ’[t[ _-> z}. (ii)
For Itl<-_z, @(B(t))= @(A) and there are constants a(t)< 1, b(t)>-O such that

[IB,(t)f[] <- a(t)llA,fll+

for each f @(Ai), and Bi(" )(il-Ai)- is piecewise strongly continually differen-
tiable on [-r, z].

(E2) IlB (+t)- B (+/-oo)ll dt < 0o, j 0, 1.
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(E3) l+/-(H,(s), Ho(s)) exist and are complete for s +.
THEOREM 4.1. Let (E1)-(E3) hold. Then the wave operators W(r) for the

equations (4.1) exist and are complete, and the scattering operators are unitary on
for each o" R.

Proof. Assumptions (A1) and (A2) follow from (El) by a known result
(Goldstein [8, Cot. 5]). Assumption (E3) implies (A3), (E2) implies (A4), and
(E4) implies (AS). The result now follows from Theorem 2.1. 1-]

Remark 4.2. (i) In many cases of interest,
in which case one can take -= 0 in (E1)(i) and (El) (ii) can be omitted.

(ii) As noted previously (see Remark 2.4), it is important (and usually
nontrivial) to find criteria for (E3) to hold. The following condition is a variant of
(E3).

(E4) (i) to+/-(Hl(s), Ho(s)) exist and are complete for s-+oo. (ii)
sc(/-/(+/-oo)) {0}, j 0, 1. (iii)/-/(s) has no eigenvalues for s +/-do, j 0, 1.

Taken together, (E4) (ii) and (iii) say that c(/-/(+/-oo))- , j- 0, 1. Con-
cerning (E4) (ii), there are some known results concerning the absence of the
subspace of singular continuity. (Cf., e.g., Agmon [2], Lavine [24].) The following
two propositions give conditions for (E4) (ii)-(iii) and for (E4) (ii) to hold.

Two self-adjoint operators A oo A dE(A) and B _o A dF(A) will be said
to commute if F(A E(/x) E(/x)F(A for all A,

PROPOSITION 4.3. Suppose that for j- 0, 1, Bs(+/-oo) and A commute. Then
ac(/-/(s)) Y(for s {-oo, oo} if and only if Y{ac(C+(s; j))=rfor s {-oo, oo},
where

C+/-(s" j)= -Bs(s) + (Bs(s) Jl

PROPOSITION 4.4. Assumption (E4) (iii) holds if and only if A is not an
2-ABs(s) for alia 1, j=0, 1 seigenvalue of As

Proof of Proposition 4.3. Let

2-1N+/-(s; j)= A+4-1C+/-(s; j)2= 2A C(s; j)Bs(s);

the last equality holds since X 2-’ C(s; j) is easily seen to satisfy X2+ XB(s)
0. (We are using the commutativity hypothesis.) Let-A

iAsN+(s; j)-1/2 _iAsN_(s; j)-,/2 ]O(s)
2_lC_(s; ])N+(s; j)-,/2 -2-’C+(s; ])N_(s; ])-,/2

Note that by the operational calculus associated with the spectral theorem, each
entry in the matrix U(s) is a bounded operator, even if N=(s; ]) is not invertible.

Some straightforward but rather messy computations, which we omit, show
that for each s +oo and j O, 1, U(s) is unitary and

U(s),H(s)Ui(s)=_2_I[C+(s;]) 0 ]o C_(s; j)

Denote this last operator by Qs(s). Then since U(s) is unitary,

U(s)* Ygac (/-/(s)) a(Qs(s)) 7{.c(C+(s; j))Y{.(C_(s; j))

and the proposition follows.
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Proof of Proposition 4.4. By (El), /-/(s) acting on @(Aj)(flO(Aj) is self-
adjoint for j- 0, 1, s +oo./-/(s)f- Af means
(4.2) iAff2
where

-iAffl + B(s)h= -Af2,

For A 0, this is equivalent to (A]-AB(s))f2= A2f and fl =-iA-Af. Thus
A e \{0} is an eigenvalue for/-/ (s) implies A is an eigenvalue for A- ABj(s), and
conversely. For A 0,/-/(s)f 0 means iAf iAf + B(s)f by (4.2), which is
equivalent to f f2 0 since A is invertible. The proposition is thus proved.

Remark 4.5. In connection with Proposition 4.3, we note that temporally
inhomogeneous scattering theory is greatly simplified when one makes the
(physically unrealistic) assumption that the Hamiltonians/-/(t) and/-/(s) com-
mute for all real values of and s and j 0, 1. (Cf. Remark 2.6.) Note that the
commutativity hypothesis of Proposition 4.3 does not imply that/-/(+o) com-
mutes with/-/(-c).

We next establish an approximation theorem in the context of Theorem 4.1.
(F1) For j 0, 1, e [, n e o let Aj(n) and B(t; n) be self-adjoint operators

on 9’[. Suppose that (E1)-(E3) hold for each n o, with - independent of n.
(F2) The strong derivative of B(.; n)(iI-A(n))- satisfies

sup{[l(d/dt)B(t; n)(iI-Aj(n))-2l[ n o, Itl<= T}<
for each T [+, j 0, 1.

(F3) There is a q L [’, o) such that

II(t; n)-B(+;
for each -> ’, n o.

(F4) Same as (B4).
(F5) For all a \{0} and j 0, 1,

s-lim (iI- aAi(n))-1 (iI- aA(o))-,
s-lim B(t; n) B(t; ) for It[-> -,

s-lim Bj(t; n)(iI-A(n))- Bi(t; o3)(iI-A,(cx3))-1 for It[<-- ".

THEOREM 4.6. Let (F1)-(F5) hold. Then the conclusions of Theorem 3.1 hold.
This is proved by showing that (F1)-(FS) imply (B1)-(BS) and applying

Theorem 3.1. We omit the details.
Example 4.7. Consider the equation

(4.3) 02u/Ot+ir(t,x)Ou/Ot=Au-qj(x)u, j=0. 1.

Take Y{= L(3), Y(= Y{Y{, A -A + q(x), and (B(t)f)(x) r(t, x)[(x). With
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these identifications, (4.4) is seen to be a special case of (4.1). The following
hypotheses on the coefficients will be made.

(G1) For ] 0, 1, qj satisfies (C1)-(C3).
(G2) For ]=0, 1, rj satisfies (C1) and (C3) with r.k(t)=0 for all teN,

k=l,...,m.
(G3) r(+oo) 0 for/" 0, 1.
If (G1)-(G3) hold, then (El), then (E1)-(E3) hold, so the conclusions o[

Theorem 4.1 apply.
Proofi Assumptions (G1) and (G2) imply that (E 1) holds with " 0. Assump-

tion (E2) follows from (G2) and (G3). Assumption (E4) (ii) and (iii) follow from
Proposition 4.8 below and (G3). Assumption (E4) (i) holds by (G1) and a result of
Kato [20] (el. also Thoe [31]). ]

Note that B(+oe) and A will not commute if rj(+oo) 0. In this case, it is easy
to apply Proposition 4.4 and conclude that (E4)(iii) holds.

Whenever B(+oo)= 0, we have the following consequence of Proposition

COROLLARY 4.8. Let A on Y{ be a nonnegative sel[-adjoint operator. Then

M
-iA

on 2, with domain @(M) @(A)(R) @(A), is sel-ad]oint, and N,(M)
i and only
(H1) For ] 0, 1 and e N let A(t) be a self-adjoint operator on 2 satisfying

A(t) e(t)I where
and t; and A(. )A(0)- is piecewise strongly continuously differentiable.

(H2) There is a > 0 such thator > , A(r, A(t) A() is bounded
and j7 ]]Ai(t)- Ai()]l dt <, j O, 1.

(H3) The wave operators (A,(s),Ao(s)) exist and are complete for

THEOREM 4.9. Let (H1)-(H3) hold. Then the wave operators governing the
equations

(4.4) u"(t)-A;(t)a(t)-lu’(t)+A(t)u(t)=O, j=0, 1,

exist and are complete, and the associated scattering operators are unitary on

Proof. Write

u(t) ]w(t)=
A(t)_lu,(t)

Then u is a solution of (4.4) in Y{ if and only if w is a solution of

[ 0 At)]w(t), /" 0,1(4.51 w’(t)
-Aj(t)

n N= Y{(R) YL
0 Ai(t)]/-/(t)=-i Aj(t) 0
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with domain @(/-/(t))= @@ (cf. (H1)), is self-adjoint on Y(, and by the wave
operators W(o-) governing (4.4) we mean the wave operators W(o-; H, Ho) in
the sense of 2. Assumption (A1) holds by (HI). Assumption (H2) implies (A2).
Finally, (H3) together with a computation involving the Birman-Kato invariance
principle show that (A5) holds; cf. Kato [20]. Theorem 4.9 now follows from
Theorem 2.1.

Example 4.10. Let us specialize (4.4). If Aj(. is piecewise constant (so that
A(t) 0 wherever it exists), then (4.4) becomes

(4.6) u"(t) + Aj(t)u(t) O, j O, 1.

More specifically, let {Jk:K No} be a collection of pairwise disjoint intervals
whose union is , and with the property that each compact interval meets only
finitely many of the Jk. Suppose A(t) B for J, and suppose that (H1)-(H4)
hold. Then Theorem 4.9 applies to (4.6).

In particular, the wave operators exist and are complete for the pair of wave
equations

OZu/Ot Au q(t, x)u,

02u/Ot Au,

where teN, x N3, q(t, x)= q(x) for J, and where (C1)-(C3) hold. In other
words, the conditions which imply the existence and completeness of the wave
operators for the Schr6dinger equation with a time-dependent potential also
imply the existence and completeness of the wave operators for the wave equation
with the same time-dependent potential, if we assume that.as a function of time
the potential is piecewise constant.

Remark 4.11. (i) It is easy to formulate approximation theorems in the
context of Examples 4.7 and 4.9 and Corollary 4.8. We omit the details.

(ii) After a draft of this paper was completed, we received the interesting
preprints of A. Inoue [12], [13], [14]. Inoue’s results are in the same spirit as the
present paper and our earlier work [9], [26], but his results and methods are
different. J. Howland [11] also (independently) considered temporally
inhomogeneous scattering theory, but using a stationary approach as opposed to a
time-dependent approach.

Acknowledgment. It is a pleasure to thank Peter D. Lax and Richard B.
Lavine for their helpful comments.
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QUADRATIC TRANSFORMATIONS OF APPELL FUNCTIONS*

B. C. CARLSON"

Abstract. A double integral average of x with two rows and two columns has eight quadratic
transformations into itself, each with two free parameters and two independent variables. Three of the

transformations change double hypergeometric series of order two into series of order three, and one of

these (mgdified by a linear transformation applicable to polynomial cases) permits a very direct proof
of the addition theorem and related results for Gegenbauer polynomials. Two others transform Appell’s
F into F or F1, and two transform F1 into F. One of the latter contains Landen’s transformation
of the first and second incomplete elliptic integrals, and the other contains Bartky’s transformation of
the third complete elliptic integral.

1. Introduction. Let v and v’ be complex numbers with positive real parts,
and define a complex measure rn/v,v,) on the interval 0 _<_ u <_ by

r(v -+- V’)u 1( u)V’-(1.1) dmt,,)(u) (v)(’ du.

Let C0 { e C’ : 0, arg l < t} denote the complex plane cut along the
negative real axis. The R-function [2] is defined for any complex as an average of
t over a line segment in Co with endpoints x and y,

(1.2) R,(v, v’ x, y) [ux + (1 u)y]’ dmtv,,,,)(u).

The H-function [4] is similarly defined as a double average over a quadrilateral in

Co with vertices x, y, z, w,

(1.3)
,(/,/; Z; v, v’) (u. Z. v)’ dmtu,u,)(u) dmt,,,,,,)(v),

Ywl, U.Z.v-uxv+uy(1-v)+(1-u)zv+(1-u)w(1-v).

If the rows (or columns) of Z are identical, reduces to R. Also, by (1.2),

(1.4) ,(, l’ Z; v, v’) R,[l, l’ vx + (1 v)y, vz + (1 v)w] dmtv.v,)(v).

The R-function is known [2] to have a holomorphic continuation to all
v, v’ such that v + v’ 4: 0, 1, -2, and to all x, y Co (even if the line segment
with endpoints x and y intersects the cut). The Q-function has a holomorphic
continuation in the parameters provided neither/ +/’ nor v + v’ is zero or a
negative integer. Despite an assertion in [4, p. 421], it has not been established that
x, y, z, w can have arbitrary positions with respect to the cut. Hence the formulas
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in this paper will be understood to apply when all entries of Z lie in the right half-
plane or in any larger domain to which continuation is possible. The parameters
will be understood to satisfy the restrictions stated above.

The R-function in two variables is equivalent to the Gauss hypergeometric
function,

Rt(v, v’;x, y) y’ 2Fl( f, v; v + v’; x/y).

Both sides are homogeneous of degree and are unchanged by simultaneously
interchanging x with y and v with v’. The N?-function also is homogeneous and is
unchanged by permutation of rows or columns together with their associated
parameters, t and/’ being associated respectively with the first and second rows
and v and v’ with the columns. It is unchanged also by interchanging (/, #’) with
(v, v’) and replacing Z by its transpose. We shall be concerned with four special
cases of:

,(l.t, ’ Ya v, v’) w-tR,(lu, la’ y, w)Rt(v, v’ z, w),

Y1 (Y1 singular);

(1.7)

,(l ’ Yz,v,v’) w’F2( t,l v + ’ v’ Y ),v+ ;1 --,1-
W

Y2 Iy + z w

z

Y lw (parallelogram condition);

,(,, ’ v , ’) z’ !_-. t2+__.(y__)m +.(,,),.(,, ).
,,=0,= (/ .--x-,+ )m+,,(V + V ),,,+,,m!n!

(.8)

Y3 Izx 1 (triangle condition),
x

--<1,
Z

Y <1;
Z

(1.9)
/u /’ Y,, v v’ z w F /a v v zu + zu’

x
Z

Y’=I Yw] (condition on parameters).

Equations (1.6) and (1.7) follow respectively from [4, (6.5)] and [4, (3.3)]. The entries
of Y2 are the vertices of a parallelogram in the complex plane, and F2 is an Appell
function. To prove (1.8), we may assume z (by homogeneity), expand
in series [4, (6.2)], and use [7, (2.6), (2.1)]. In Horn’s classification of double hyper-
geometric series, the right side of (1.8) is a series of order three. It reduces to Appell’s

F if/ v + v’. Equation (1.9) follows from [4, 4 and (5.7)].
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The many quadratic transformations of2F into itself [8, 2.11] can be
deduced from two independent transformations, which we write using (1.5) as

(1.10) R(v,v;x,y)= R v + t,1/2- t;
2

,xy

(1.11) Rt(v y;x2 y2)= Rt 2v + 1/2- v t"
2

xy

All members are symmetric and homogeneous of degree 2t in x and y, and the
arguments on the right sides are squares of arithmetic and geometric means.
In the case of double hypergeometric series, there are many quadratic transforma-
tions connecting different series of order two I8, 5.111, I9]. The only ones pre-
viously known [1] which transform a double series into another series of the same
type (Appell’s F1) have a single free parameter. One ofthese 1, (5.10) is a generaliza-
tion of Landen’s transformation of incomplete elliptic integrals.

2. Quadratic transformations of . In the following list of eight quadratic
transformations of into itself, the’ first connects a series of order three with a
product of 2F-series, as one sees from (1.6) and (1.8). The next five connect F2
with various series (in order, a product of 2F-series, a series of order three, a
series of order three, another F2, and F1). The seventh and eighth connect F
with itself. There are essentially only two independent variables (because of homo-
geneity) and two free parameters in each case. (Four similar transformations with
.three free parameters have only one independent variable.) Erdlyi [9, (11.4),
(11.5)3 found the second transformation in 1948. The first transformation is modi-
fied for polynomials in (3.5) and subsequently applied to Gegenbauer polynomials.
The fifth and sixth are restated in Appell’s notation later in this section, and the
seventh and eighth in 4.

(2.1)

Z1 7.2 w2
XW yz, W1 2 2

xw yz

(2.2)

(1/2)_la_V(, ; Z2 v, v) (1/2)__v(], fl W2 "F F),

Ix2 Y2 1Z2 XW yz or x2 _31_ w2__ y2 + z2

2
2 W2

[(2--x)2 (2--Y)21 22__ x + y + z + wW2=
(_z)2 (_ w)2

(W2 satisfies the parallelogram condition if Z2 is singular, and vice versa);
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(2.3)

,(2v + t, 1/2 v t; Z3 ;V, )"-- ,(2v + t, 1/2 v t; W3;v, v),

i X
2 y2 1 I X+y)2 xy)2 )1Z3

x2 22 y2 .72 W3 2

(x + z)(y z) (x z)(y + z

(the entries of Z3 and W3 become squares of arithmetic and geometric means on
puttingp=x+z,q=x-z,r=y+z,s=y-z);

(2.4)

xw yz

2t(]./, 1./; Z ]A t,

(2.5)
X2 _]_. WZs

Z2 W2

- -t)= ,( + t,-- t; w;-,{-

2 y2 -F z2 W5 2xz + yw
xyzw

2

2

(2.6)
X2 ..1_ Z2 y2 Ar W2

xy

2 +
2

X2 "[- Z2

X2 .nt_ Z2 y2 +

2
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,(,, ; zs;-t,-t) ,(, + t,1/2 t; ws; ,,1/2- t),

(2.8)

Z8 x2 _it_ w2__ y2 + z2 W8
Z2 W xw + yz12

2
xyzw

Most of these transformations contain a quadratic transformation of 2F1
as a special case. In particular, (1.10) is obtained by putting z x and w y
in (2.4), or y x and w z in (2.5) or (2.8). Similarly, (1.11) is obtained by putting
z x and w y in (2.1), or z 0 in (2.3).

Equations (2.5) and (2.6) transform F2 into F2 or F1. (Transformations of F
into itself will be discussed in {} 4.) In (2.5) we put -0 and

(2.9)

0+ox+=cos x-w=sin0+q
2 2

O--q9 O--q9y+z=cos
2

y-z=sin
2

to get the only nonlinear transformation of F2 into itself,

(2.10)

F2(, z + 1/2,z + 1/2;p + 1/2,- p + 1/2;sin 2 0, sin2 q)

[1 + sin (0 + )]-2FzF20 p, 0- p; 2p, 2z 2p;

2 sin 0 cos p 2__cos _0_ sin_ ]
+ sin(0 + p)’l + sin(0 + o)]"

In (2.6) we put - and

(2.11) x cos(0 + q), y=cos(0-qg), z=sin(0+o), w=sin(0-q)

to get

(2.12)
F2(2,p,p; z + 1/2,z + 1/2;sin 2 0, sin 2 q)

Fl[P,z,z;z + 1/2; sin2 (0 + q), sin2 (0 (p)].

All eight transformations are proved in essentially the same way by comparing
two reduction formulas for F4. (One can of course bypass the -function notation
to get (2.10) and (2.12).) We shall give details for (2.1) and bare essentials for the
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other seven. From [7, (4.1), (3.6)3 we find

F4[-t,2v+t’v+1/2,,v+1/2", sin0+sinqg)2

(2.13)

In the last two steps we have used (1.11) and [4, (6.5)]. From [7, (4.6)] we find

(2.14)

2v + t’v + 1/2 v + 1/2"/sin0 + sinq9

,(2v + t,1/2- v t; W;v, v),

Eliminating F4 between (2.13) and (2.14) gives

(2.15) ,(v, v; Z; v, v) ,(2v + t, 1/2 v t; W v, v).

Multiplying (2.15) by 22t, we use the homogeneity of ,/and put

(2.16) x 2 ei, y 2 ei, z 2 e-i, w 2 e-i

to obtain (2.1).
Transformation (2.2) can be proved either by eliminating F4(e,/3; 2/,

+ 1) between [7, (4.1)] and [7, (4.5)] or by eliminating F(e, e + 1/2;7, 2e
between [7, (4.1)] and (7, (4.4)]. We eliminate F4(e, + e- 7;7, 7) between
[7, (4.5)] and [7, (4.6)] to get (2.3), F(z, e + 1/2; 7, 7) between [7, (4.4)] and [7, (4.6)]
to get (2.4), F4(e, e + 1/2;7, + e 7) between [7, (4.3)] and [7, (4.4)] to get (2.5),
F4(27 1,/;7, 7) between [7, (4.3)] and [7, (4.6)] to get (2.6), F4(26- 1,
between [7, (4.2)] and [7, (4.5)] to get (2.7), and F4(e, e + 1/2;7, e + 1/2) between
[7, (4.2)] and [7, (4.4)] to get (2.8). Other similar eliminations lead to trivialities or
to (1.10) (or (1.11 ).

An alternative proof of (2.4) begins by multiplying both members by
[(x + w)/2]-2t, using homogeneity, and expanding both sides in series by [4, (6.3)].
On the left side we then use [5, (5.6), (5.7)] and (3.2) below, and on the right side
[7, (2.6)]. Both sides then have the same form, and all steps are reversible.

3. Applications to Gegenbauer polynomials. The transformation of a
polynomial from argument z to z is equivalent to

(3.1) (l.t + v),R,(la, v;x, y)= (/),,R,,(1 ! v n, v;x, x y),
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where n is a nonnegative integer. Applied to the right side of (1.11) with replaced
by n, this leads to

(3.2) (2p),,R,,(p, p x2, y2) (p),,R,,[2x__ p n,-} p n; (x + y)2, (x y)2].

Among all the transformations of R, into itself (3.2) is the only one with equal
parameters on both sides. It relates the Gegenbauer polynomials [defined by the
generating function (1 2t cos 0 + t2)-v] to the Jacobi polynomials with equal
indices [3, (2.8)]"

(3.3)

Q(cos 0)
R,,(v, v;ei, e-io)

2"(V),R,(1/2_v_n,1/2_ v-n;cos0+ cos0- 1).
(2v),

The normalizing constant is C,(1) (2v),/n!.
Equations (3.1), (3.2), (3.3) have generalizations in terms of . From (3.1)

and (1.4) we find the linear transformation

(3.4)

Applying this to the right side of (2.1) with replaced by n, we get the quadratic
transformation

(3.5)

If y x and w z, (3.4) and (3.5) reduce respectively to (3.1) and (3.2). In general,
the left side of (3.5) can be written as a product of two Gegenbauer polynomials
by (1.6). Thus we find an important generalization of (3.3),

(3.6)

Q(cos 0)C,(cos rp)
t.(v, v; X’v, v)

C,(1)C,(1)

2"(v),
(2v),

’(1/2 v n, 1/2 v n, Y v, v),

X
io+i e-iO-ij’

Y
_cos(0+)- cos(0-)-

Gegenbauer’s product formula [8, 3.15(20)] follows from (3.6) by (3.3) and
t.4).

We shall now use (3.6) to deduce the addition theorem for Gegenbauer
polynomials in a very direct way without assuming prior knowledge of the details
of the theorem. We expand a Gegenbauer polynomial with argument A + BX,
where A and B are constants, in a series of Jacobi polynomials with argument X.
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The coefficients can be factored by (3.6) for a particular choice of the indices of
the Jacobi polynomials. For other proofs see [3] and the references therein.

The Jacobi series of an entire functionf is

(3.7)
f(X)= .v(m)(1 +0+ m,1 + fl+ m;--1,1)

m=0

Rm(-0c-m,-fl-m;X + 1,X- 1),

where F(m) is the Dirichlet average of the derivativef(m) and a and fl are the indices
of the Jacobi polynomial Rm [3], 6]. If we choose

f(X) C(A + BX)

(3.8) _-2"(V)"R,(1/2_v-n,1/2_v_n,.A + BX + A + BX- 1),n!

then by 2, (2.6)],

fo")(X)
(3.9)

(n m)!

Rn_m(1/2- v-n,1/2- v-n;A + BX + 1,A + BX- 1).

Since this is zero ifm > n, the series (3.7) terminates as expected. Putting X v( 1)
+ (1 v)(+ 1) and using (1.4), we find

F(m)(1 + cz + m, + fl + m;-1,1) 2n(v)n B
(n m)!

(3.10) ’n-m(1/2- " n, 1/2- v n; W; + o + m, 1 + fl + m),

W= IA-B+I A+B+I]A-B-1 A+B-1

In order to apply (3.6), we choose fl v 1, A cos 0cos p, B sin 0
sin p. Then for 0 __< m =< n,

F(")(v + m, v + m;-1,1)

2"(v),
sinm0sinmrp

(n m)!
(3.11)

"n-m(1/2-- V- n,1/2- v- n; Y;v + m,v + m)

2m(V)m +m (COS 0) C+_.mre(COS (/9)C,_+ ram(l)
sin" 0 sin q9 C,_,,,

Substituting in (3.7), we have the addition theorem,

C,(cos 0 cos q9 + X sin 0 sin qg)

(3.12) (V)m
sin 0 sin q9 C, +’’ (cos 0)

9c.0 (V v+m

v+m (COS (/9) Cn-(1/2)(X).Ctl_
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Another use of (3.6) is in passing from a series of Gegenbauer polynomials
to a series of products of Gegenbauer polynomials. Let f be analytic on the inner
region fl of an ellipse with foci and 1. Then f can be expanded in a series of
Gegenbauer polynomials which converges uniformly on compact subsets of ft.
By (3.3),

f(cos ) a,
C, (cos if)

,:0 C,(1)
(3.13)

2"(v),
(2v),R"(1/2-v-n’1/2-v-n;csff + 1,cos- 1),

where cos ff tO. By [6], v may be any complex number provided 2v # -1,
-2, -3,.... By (3.7), the coefficients are

2"(v),
(3.14) a,

(2v), n!F(")(1/2+ v+n 1/2+ v+n -1 1)

Putting cos v cos (0 + q) + (1 v) cos (0 q), where cos (0 +_ q) f), we
integrate term by term with respect to drntv,v)(v). As in (1.1) this requires Re v > 0,
but this condition can later be removed by analytic continuation. Using (1.4) we
find

F(v, v; cos (0 + qg), cos (0 qg)]

(3.15) 2"(v),
=Y0= a,(2v), "(1/2-v-n’1/2-v-n;Y;v’v)’

where F is the integral average [2] offand Yis defined in (3.6). Hence

(3.16) F[v, v; cos (0 + tp), cos (0 q)] a,
n=0

(cos 0) C7, (cos
C7,()C,()

A case of particular interest is f(x) (1 2tx + t2) -’, for which (3.14) and
(3.16) yield

R_ [v, v 2t cos (0 + q) + 2, 2t cos (0 q) + z]

(3.17)

().--,E t"R-z-,[1/2 + v + n, 1/2 + v + n ;(1 + t)2, (1 t)2]

C (cos 0) C (cos q)
C(1)

Itl < exp(-IImOI Im

This formula was given in different notation by Henrici [10, (65)]. The R-function
on the right side reduces by (1.11) and [2, (3.21)] to if 2 v and to (1 t2) if
2 v + 1, leading respectively to Ossicini’s formula [3, (3.2)] and the well-known
Poisson kernel for Gegenbauer series. The latter case provides an integral rep-
resentation of the solution of certain boundary value problems, for the first of the
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(3.18)

following equations implies the second [as one sees by substituting (3.17) in the
integrand and using the orthogonality of Gegenbauer polynomials]"

a,C,(cos 0) f(cos 0),
n=0

.r"C(cos 0)
n=0

;o(1 r) f(cos q)R__ [v, v; 2r cos (0 + q) + r,
dp(0) (sin q)2v dq

-1

2r cos (0 99) + r2] dp(q),

0=<r<l, 0 <_ 0 < rt,

A second important case isf(x) ei’x, for which (3.16) becomes

exp (it cos 0 cos q)S(v, v; it sin 0 sin q, it sin 0 sin q)

S[v, v; it cos (0 + qg), it cos (0 99)]
(3.19)

S(1/2 + v + n, 1/2 + v + n; it, -it)C,(cos 0)C(cos qg).

The symmetric S-function [2] is a Bessel function with the branch point at 0
removed to make it entire. It is normalized to at x 0"

(3.20) S(1/2 + v, 1/2 + v; ix,-ix) F(1 + v)(x/2)-vJ(x).

Substitution in (3.19) gives a formula due to Gegenbauer [12, 11.5, (9)] which
has many uses in relating Bessel functions of integral order to those of half-odd-
integral order. For example, we put .t cos q kr and sin q9 r to expand
exp (ikr cos O)J,,(or sin 0), m 0, 1, 2, ..., in a series of spherical Bessel functions.
Solutions of the wave equation in cylindrical coordinates are thereby related to
solutions in spherical coordinates.

4. Generalized Landen transformations. Equations (2.7) and (2.8) respectively
imply

(4.1)

(4.2)

F1(2, fl, fl; +/3 + 1/2; sin2 0, sin2

Fl[fl,,;o + 13 + 1/2; sin2 (0 + p), sin2 (0

Fx(, fl, fl; 2; sin2 0, sin2

4- cos 0 cos q9 -Eft F sin2 0 sin2 q
2 COS 0 COS (19)2’F fl,,fl - + 1/2, + 1/2’(1 +

0cos:/ 1+ cos 0 cos
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These appear to be the only nonlinear transformations of F1 into itself with two
free parameters. As indicated below, the Landen transformations of the first and
second incomplete elliptic integrals are contained in (4.1). The Bartky transforma-
tion of the third complete elliptic integral is contained in (4.2).

In deducing these formulas, we shall avoid some linear transformations of
F1 by using its symmetric variant,

(4.3)
Rt(flx f12, f13 z, z2, 23)

z*3F,(-t, fl, f12 1 -- 2 q- 3 Z1/Z3, Z2/Z3).

The R-function is unchanged by permuting 1, 2, 3. It is a single Dirichlet average
of x over a triangle in Co with vertices z, z2, z3. From (1.8), (4.3), and the row
symmetry of , we find

(4.4) t(/t, v + v’; Y; v, v’) Rt(l, v, v’ x, y, z), Y
Y

From (1.9),

(4.5)

_
(,,, u, v, xyv’ Y4" v, v’) z-Vw-V’R v’-u v, ,+ -v- -,-,1

Z W

Applying (4.5) to the left side of (2.7) and (4.4) to the right side, we find

R_u_,(-t, -t, 1/2 + la + 2t; X2/Z2, y2/w2, 1)

(4.6) Rz’II + t’l + t’1/2-1a 2t;(A x)(A ’(2 z)(A ’11
X2 .ft. W2 y2 + Z2 22=x+y+z+w.

The substitutions

(4.7)
x A sin (0 qg)cos (0 + q), y A sin (0 + p)cos (0 p),

z A sin(0- p), w A sin (0 +

satisfy the parallelogram condition Z2 X2 W2 yZ and imply

(2 x)(2 y) A2 sin (0 + qg)sin (0 q)cos2 q,
(4.8)

(2 Z)(A W)-- A2 sin (0 + qg)sin (0 qg)cosz 0.

With - and/t z + fl, (4.6) becomes

R_,(, ,/3 + 1/2; cosz (0 + p), cos2 (0 qg), 1)

(4.9) R_ z,(fl, fl, fl + 1/2; cosZ 0, cos2 p, 1)

(COS 0 COS q))l- 2aRa_//_(1/2)(fl, fl, X fl + 1/2; COS2 0, COS2
q),

COS2 0 COS2 q)).
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In the last step we have used Euler’s transformation [2, (4.23)] and homogeneity.
The equality of the first and second members of (4.9) implies (4.1) by way of (4.3).
The equality of the first and third members includes Landen’s transformation of
the first elliptic integral as the case fl 1/2 and of the second integral as the
case -fl 1/2. The case in which 1/2 but fl remains free is the one-parameter
generalization of Landen’s transformation first given in [1]. To see this we put

(4.10)
cos2 (0 + q)= z/z, cos2 (0- q)= z2/z,

cos 0 w2/z, cos2 q w/z,

and compare with [1, (5.10), (5.11)].
Applying (4.5) to the left side of (2.8) and (4.4) to the right side, we find

(4.11)

R_ u( t, t, 2 + 2t x2/z2 y2/w2, 1)
xy + zw

Rt It + t,lu,1/2 -/ t;
2zw

xw + yzl
-2- I’’J
X2 _[_ W2 y2 + Z2

Since the transformation now depends only on the ratios x/z and y/w, we replace
y by yw/z. Then the condition x2 + w2 (yw/z)2 + z2 has no effect except to
determine w, which no longer occurs in the transformation. Putting t and
t= -fl, weget

R_ ,(fl, fl, 2e 2fl; x: y2, z2)

(4.12) |z R t o fl + {- o fl
L

xy,
2z

With x z cos 0 and y z cos q, this becomes (4.2) by way of (4.3). The cases

fl {- and a fl - imply Landen’s transformations of the first and second
complete elliptic integrals, but these transformations are already contained in (1.11).
If and fl 1/2, both sides of (4.12) are complete elliptic integrals of the third
kind and can be reduced to standard integrals. As the three standard complete
integrals we choose the homogeneous functions

R(x, y) R- x/(1/2, 1/2 x, y), Re(x, y) R,/2(, ; x, y),
(4.13)

R(x, y, z) R_/2(, , x, y, z),

all three being symmetric in x and y [13]. With the help of relations between asso-
ciated R-functions, (4.12) gives

2
,xy

Re(x2 y2)= 2R[ x + Y 2

"2 xy xyR(x2, y2),
(4.14)

2 z + w 2
xy + R(x2 y2)

Z+W

xy zw.
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The first two equations, which are Landen’s transformations [1, 5], will be useful
in discussing the third, which is Bartky’s transformation of the third complete
elliptic integral.

Any complete elliptic integral,

(4.15) bR(x

is transformed by (4.14) into

(4.16) b Rr(x2, y) + c Re(x2, y2) + d RL(X, y, z),

where cl is proportional to c and dl to d but both are independent of b. A case
with c 0 is Bartky’s elliptic integral,

(4.17)

2 t/2 ax2 cos2 0 + bz2 sin2 0 dO
x2, 0 cos2 0 --1- z 2 sin2 9 (x2 cos2 0 + y2 sin2 0)1/2

bRr(x2, y2) +
a b

RL(X2 y2 22).
2

The values of b 1, al b 1, x 1, Yl, zl are found by inspection of (4.14). A program
for automatic computation of this integral by iterating the transformation is given
by R. Bulirsch and J. Stoer in 11, Teil III, p. 416]. The program can be used also to
calculate cases of (4.15) with d--0, since the second complete integral can be
expressed in terms of the first and third:

x y
RL(X y,x).(4.18) Re(x, y) yRr(x, y) + 2

The Bartky transformation of this restricted RL reduces to the Landen transforma-
tion of Re, as one finds by putting z x in the third equation of (4.14).
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NONLINEAR DIFFERENTIAL EQUATIONS
EQUIVALENT TO SOLVABLE NONLINEAR EQUATIONS*

MURRAY S. KLAMKIN AND JAMES L. REID:

Abstract. This paper shows in a simple and direct way the equivalence of the nonlinear
differential equation y"+r(x)y’+q(x)Z(y)=A(y)y’Z+g(x)z(y)[u(y)], Z(y)=z(y)u(y), to the
linear equation Lu=g(x), a=0, or to the nonlinear equation Lu=g(x)u a, a#O, where L=
d2/dx + r(x) d/dx + q(x). The two differential equations in which A (y) is equal to y- or to (1 -/)y-t
serve as particular examples. Some nonlinear equations in u are solvable for certain values of the
exponent a. An analogous class of nonlinear partial differential equations is presented. These results
generalize the earlier work of Herbst.

1. Introduction. If one can establish an equivalence between a given non-
linear differential equation and a linear one, then one can utilize the considerable
known theory for linear equations. A number of such equivalences are listed by
Kamke in his compendium [15]. There is also a small literature [3], [6]’--[8],
[19]-[24] on equivalent differential equations based on a note by Pinney [19]
(Be:kovirz and Rozov [4] note that Pinney’s equation was solved by V. P. Ermakov
in 1880). Technical applications of the equivalence idea are found in 1], [5], [7],
[10], [13], [16]-[17].

Here we develop additional nonlinear differential equations which are
equivalent to linear or solvable nonlinear ones. We start with two nonlinear
equations which are extensions of forms obtained by Herbst 14, eqs. III, IV] and
show directly how these two equations transform into linear forms. Next, we
define two linearizing transformations T and T2 and apply them to certain
nonlinear equations of the second order. We also give a transformation T which
linearizes a more general equation of Herbst [14, eq. II]. Finally, we show that
these transformations can also be applied to a class of nonlinear partial differential
equations.

2. Transformations T and T2. The extended versions of the two equations
of Herbst mentioned above have the forms

(2.1)
-1 t2y"+r(x)y’+ kq(x)y- (1- fly y

+ y’-[kq(x)+ g(x)], (’) ddx,

(2.2)

--1 t2y"+r(x)y’+kq(x)y =(1-1)y y

+ y’-’[/3q(x) + kg(x)],

where/3 and are arbitrary parameters and kl 1. We can obtain an integral

* Received by the editors May 28, 1974, and in revised form September 25, 1975.
t Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L

3G1.
: Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631.
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combination by dividing both equations by y 1- and grouping as follows"

(2.3)
[y"- (1 -l)y-ly’2]/y l-t + r(x)y’/y’-’

kq(x)(1 y/) + g(x),

(2.4)
[y"- (1 -/)y-y,Z]/y- + r(x)y,/y,-i + kq(x)y

=q(x)+kg(x).
It follows easily that (2.3) and (2.4) transform into the linear equations

(2.5) u" + r(x)u’ + q(x)u g(x),

where u (y- 1)/1 and u y- 1/3 for (2.3) and (2.4), respectively. If in (2.1) we
let 0, we obtain

(2.1’) y"+ r(x)y’ + q(x)y log y y-ly,2 + g(x)y

which transforms into (2.5) on letting u log y. (Equations (2.1’) and (2.2) are the
same as Herbst’s eqs. III and IV except for the additional terms g(x)y and
kg(x)y -l, respectively.) We shall refer to the removal of the term y-ly,2 from
(2.1’) and related equations as transformation T1 and to the removal of the term
(1- l)y-y,2 from (2.2) and related equations as transformation T2.

For second order equations, the general form of the nonlinear differential
equation equivalent to a linear nonhomogeneous equation has been obtained by
deSpautz and Lerman [9]. Thus (2.1’) and (2.2) are explicit examples of their
result.

3. Nonlinear equations equivalent to specific nonlinear equations. The
transformations T and T2 reduce the nonlinear equations

(3.1) y"+ r(x)y’ + q(x)y log y y-y,2 + g(x)y(log y)a,

(3.2) Ly=(1-1)y-’y’2+kg(x)y ’-+, /3=0,

to the simpler nonlinear equations

(3.3) Y" + r(x) Y’ + q(x) Y= g(x) Ya,

where a is constant and the linear operator Lk is defined as

(3.4) Lk D2 + r(x)D + kq(x).

For T, we have Y= log y, while for T2 we have Y= y. Equation (3.3) can be
solved explicitly for some values of the constant a. For example, if

(3.5) a =-3, g(x)=c,

then (3.3) becomes a Pinney-type equation, and if

(3.6) a 1 2m, g(x) C[1A(X)V(X)]m-2,

(3.3) reduces for r(x)= 0 to a solvable form [20] in terms of a particular solution
with one arbitrary constant of integration. In these equations, c and m are
constants; in (3.6), u and v are linearly independent solutions of the equation
Y" + q(x) Y 0. The case when r(x) 0 is considered in [21 ].
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One should note that the equation

(3.7) L,y (1 l)y-ly’2-(1/4)k exp -2 r(t) dt yl-41,
0

developed by Thomas [24] and also recorded by Herbst 14, eq. I], transforms by
means of T2 into the Pinney-type equation

(3.8) Y"+r(x)Y’+q(x)Y=-(1/4) exp -2 r(t) dt y-3.
xo

This transformation explicitly demonstrates the equivalence of (3.7) and (3.8)
mentioned by Thomas. In a similar manner, all equations of the type

(3.9) Lky (1 --/)y-, y,2 + kO(x)y,-Zm,
transform into

(3.10) L1 Y= O(x) yl-2m y= yl
In addition to (3.5) and (3.6), other forms of the function O(x) are noted in
[21]-[22].

A physically interesting application can be made on the equation

(3.11) 4yy"-5y’2-cy 3,
which is the condition [17] that eigenvalues An of an inhomogeneous string be
given by the formula

(3.12) An nTr/ [y(t)] /2 dt +c0, co=const.

T2 transforms (3.11) into the equation Y"=-c/(16 y3), the getaeral solution of
which follows immediately from [19] and is equivalent to that found by Makai
[17]. We note that all equations of the form

(3.13) y"+ q(x)y ay-y’2 + cy4a-3

reduce to the Pinney type 19]. The value of the exponent a and the coefficients
r(x), q(x) and g(x) can be adjusted to match a number of physically important
equaions.

4. Transformation T. The two specific transformations T and T2, defined
previously, suggest that there exists a linearizing transformation of the more
general equation of Herbst [14, eq. II], which equation has the form

(4.1) y"+r(x)y’+q(x)Z(y)=A(y)y ’2.
If it is assumed that if A(y) is given, then Z is found from the linear equation
dZ/dy- A (y)Z 1. Expressing Z in the form

(4.2) Z(y)=z(y)u(y),

where

(4.3)
Y

z(y) exp A (u) du
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and

(4.4) u(y)=/3+ exp A(t) dt du,

we find that (4.1) becomes

(4.5) {y"- A (y)y’]/z(y)+ r(x)y’/z(y) + q(x)u(y) O.

Since u’= y’/z and u"= [y"-A (y)y’2]/z, (4.5) is a homogeneous linear equation
for u{y(x)}. We denote the removal of the term A(y)y’ from (4.1) and related
equations as transformation T.

The solution of (4.1) was expressed by Herbst as y F(u), where F is the
solution of

(4.6) if" A(F)P2 (’)--d/du, L1/. 0

Operator L1 corr.esponds to (3.4) with k 1. The solution of (4.6) follows easily
from letting p F, p dp/dF =/#; we find

(4.7) oz du exp A (F) d dF,

where c is an arbitrary constant. Integration and inversion of this equation
provides the solution F(u). Equation (4.7) is clearly equivalent to (4.4).

Generalizations of (4.1) follow readily. The nonlinear equation

(4.8) y"+ r(x)y’ + q(x)Z(y) A (y)y’ + g(x)z(y)

is transformed by T into the nonhomogeneous linear equation in u

(4.9) L, u g(x).

Thus if we can determine u(y) from (4.9), then we can solve the implicit equation
(4.4) for y(x). The nonlinear equation

(4.10) y"+ r(x)y’ + q(x)Z(y)= A (y)y,2 + g(x)z(yl[u(y)],

in y is equivalent, through T, to the following nonlinear equation in u:

(4.11) Lu=g(x)u ’, a0.

It should be noted that each of the equations discussed here is a special case of
the more general form

(4.12) y" A(x, y)y’2+ B(x, y)y’+ C(x, y).

Equation (4.12) was studied at the beginning of this century by Painlev6 [18] and
Gambier 11 for conditions under which the critical points of the equation would
be fixed points. The coefficient A (x, y) played a dominant role in their analyses.
The linearizing transformations T and T2, for the special case of (4.12) rep-
resented by (4.1), correspond to the Painlev6 coefficients y-1 and (1--/)y -1,
respectively. These two coefficients represent twenty-six out of fifty canonical
types of equations discovered by Painlev6 and Gambler. Aside from the case
A 0, the transformation T represented by (4.4) leads to elliptic integrals for the
remaining Painlev6 coefficients.
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5. Transformation of nonlinear partial differential equations. We conclude
this note by observing that the transformation T applies to nonlinear partial
differential equations of the form

fi(x)DDiy + Y’, ri(x)Diy + q(x)Z(y)
i,]:1 i:1

(5.)

A(y) f,(x)DiyDy + g(xlz(y), D, O/Oxi,
i,j=

where x denotes a set of n independent variables. Since (4.3) and (4.4) still define
Z(y), it is not difficult to write the n-dimensional version of (4.5). Hence (5.1) is
equivalent to the linear equation

(5.2) fi(x)DiDu + r(x)Du + q(x)u g(x).
i,j= i=

The solution u(x) of this equation provides a solution of the nonlinear equation
(5.1) through inversion of the form (4.4).

-1As an example, consider the special case of (5.1) for which A(y)= (1-/)y
and Z(y)= k(y-y-l). The partial differential equation that results from these
choices of A(y) and Z(y) generalizes (2.2). The conditions under which initial
value problems can be posed for this equation are discussed in [23]. Some physical
applications are also noted in [23]. Babikov [2] considers a boundary value
problem in three dimensions for the equations

(5.3) vy y by-’(Vy) y,
where a > 0, -< b <. Babikov essentially makes use of a transformation of
type T2 to bring (5.3) into the form

(5.4) vZY(1-b)Y=(1-b)Y-)/- y=yl-

We note that (5.4)is an explicit example of (4.1) in three independent variables.
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SERIES EXPANSIONS AND LINEAR DIFFERENTIAL OPERATORS*

J. K. SHAWt

Abstract. Let L denote the linear differential operator Ly aoy(") +
aly("-l)/ /a,_i / a,y, where each aj is a complex-valued function of class C’*-J on the closed
interval [a, b], and ao(X) # 0 for x e[a, b]. Let B1, B2, , B,, be linearly independent boundary
forms, and suppose that the eigenvalue problem Ly Ay, By B2y B,y 0 is self-adioint.
With each such eigenvalue problem there is associated a series expansion whose ,coefficients are
boundary values. For the case in which 0 is not an eigenvalue of the problem, the expansion has the
form/(x) =Ek=oEj=l (BLL f)p,k+i(x), which is valid for suitably restricted functions f defined on
[a, b]. The functions {pk}= are developed from solutions of the homogeneous equation Ly 0 and
the Green’s function. If the problem has the eigenvalue 0, the representation takes the similar form
f(x)=qo(x)+Y,,=oEi=l (UL’f)q,k+j(x), where qo is an eigenfunction corresponding to A =0 and
where the boundary forms U1, U2," ", U, are linear combinations of B1, B2,’" ’, Bn. For each
expansion, necessary and sufficient conditions for convergence are given in terms of the magnitude of
an eigenvalue nearest the origin.

1. Introduction. Let n be a positive integer, and let L be the nth order linear
differential operator given by

Ly aoy() + aly
("--1) + + a_y() + ay,

where each a is a complex-valued function of class C"- on the closed interval
a _-< x _-< b, and ao(X) # 0 for x in [a, b]. Let/V/ and N, 1 _-< j, & _-< n, be complex
constants, and define the boundary forms B by

(1.1) Bjy= Miky(k-l)(a)-l-Njky(k-l)(b), i<-j<-n.
k=l

We shall suppose that these forms are linearly independent. Denoting the
relationships Bjy 0, 1-< j-< n, by By 0, we shall suppose throughout that the
eigenvalue problem

(1.2) Ly Ay, By=0

is self-adjoint; i.e., (Lu, v)= (u, Lv) for all u and v in C"[a, b] satisfying Bu
Bv 0, where

b

(f, g) J. f(t)g( t) dt.

Then the eigenvalues of (1.2) are real and comprise a countably infinite set with no
finite limit point.

Suppose first that 0 is not an eigenvalue of (1.2). Let L k denote the kth
interate of the operator L, and define the sequence of linear functionals {/.} by

(1.3) l,.,+(f) BiLkf, l<-j <- n, 0 <- k < 0o.

* Received by the editors November 6, 1974, and in final revised form April 12, 1975.
t Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,

Virginia 24061.
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With each boundary value problem (1.2) having nonzero eigenvalues, we shall
associate in a canonical manner a series expansion of the form

(1.4) f(x)= Y l,.(f)p,,(x)- Z (BiL’f)P,,k+i(x),
=0 k =0 j=

where the functions {,Om(X)}m=l are biorthogonal to the functionals {lm}=l"

(1.5) lipk 6i,, l <-- j, k < oo.

Here, 6ik is the Kronecker delta. In 2 and 3 below, we shall derive the
expansion (1.4), investigate its mode of convergence and establish necessary and
sufficient conditions under which a function f on [a, b] admits a representation of
the form (1.4).

The series in (1.4), which we term on LB-series, generalizes a number of
well-known series expansions. For example, if Ly -y" and By y(0), B2y
y(1), then (1.4) is the Lidstone series. In [7], D. V. Widder employed properties of
the Green’s function for the system y"+Ay =0, y(0)= y(1)=0, to obtain the
classical representation of completely convex functions by Lidstone series. Using
the same methods, Pethe and Sharma [6] obtained similar convergence and
representation results on the series associated with the boundary value problem
y"+Ay 0, y’(0) y(1) 0. Recently, this author and J. D. Buckholtz [2]
extended most of Widder’s results, and those of [6], to the case of any Sturm-
Liouville system

(Py’)’ + Oy Ay, cy(a) + c’y’(a) =/3y(b) +/3’y’(b) 0

with positive eigenvalues.
In the present paper we obtain, under considerably weaker hypotheses, a

substantial portion of the results of [2], [6] and [7] as special cases. In addition to
unrestricted order of the operator, we make no assumptions concerning positivity
of the eigenvalues, and the boundary conditions Biy 0 may be either mixed or
separated.

For systems (1.2) having 0 as an eigenvalue, we introduce a modified version
of the series (1.4). The endpoint conditions are replaced by linear combinations of
same, and we denote these UI, U2," , U,. The corresponding series expansion
takes the form

(1.6) f(x)-qo(x)+ , E (UL’f)q,k+j(x),
k--O j=l

where qo is an eigenfunction belonging to the eigenvalue 0, and where the
functions {q,}; are biorthogonal to the sequence of linear functionals {6m}=
defined by O,k+j(f)=(U.L’f), 1 <--j<--n, O<-_k <oo.

The most familiar example of the series (1.6) is the biorthogonal expansion in
terms of Bernoulli polynomials [1]. Here, we take n 1, Ly iy’ and By
gly y(1)- y(0). The eigenvalues of this system are 0, =t: 2vr, + 4r, ". For each
m, q,, is a constant multiple of the ruth Bernoulli polynomial, and (1.6) reduces to
the Bernoulli expansion.

The series (1.6), together with characterizations of its convergence, is
developed in 5.
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2. The Green’s function for a system. We shall assume throughout this
section, and the next, that 0 is not an eigenvalue of (1.2). The only hypothesis we
require pertains to eigenfunctions corresponding to an eigenvalue of smallest
magnitude. Let p,p,-..,p be the uniquely determined solutions of the
homogeneous equation Ly 0 which satisfy

(2.1) Bp ($k, 1 <= j, k <= n.

We shall suppose that
(H) For each j, 1 =< j =< n, there exists at least one eigenfunction y, belonging

to an eigenvalue of smallest absolute value, such that (pi, y) 0.
While the hypothesis (H) holds in each of the examples mentioned in 1, it is
not true in general. For the problem Ly =-y"-r2y, By y(1)-y(0), B2y-
y’(1)-y(0), the solutions of (2.1) are p(x)=-cosrx and p2(x)-

2-1/(2r) sin rx. The eigenvalue nearest the origin is A =-r and the corres-
ponding eigenfunctions are all constants. Thus the condition (H) fails for j 1.

Let G(x, t) be the Green’s function for the problem (1.2), and define the
operator c by

(3b)(x)- G(x, t)dp(t) dr, a <-_ x <-_ b,

for b e C[a, b]. Recall that, as a function of x, G(x, t) satisfies

(2.2) LG 0, x

(2.3) BG=O.

Furthermore, acts as a right inverse for L in the sense that

(2.4) L4, dp, 4, C[a, b].

We now define the sequence {pm}m= appearing in (1.4) by (2.1) and

(2.5) Pnk +j (kpj, 1 <--_ j

where 3k is the kth iterate of 3. By (2.4), one has Lp,k+ P,(k-)+, k --> 1, and the
biorthogonality relations (1.5) follow from (2.1) and (2.3). Note that the functions
p, can be calculated from the recursion formula

Lp,k+ P(k-+, Bpk+ O, k >- 1.

Finally, let us denote by the collection of all complex-valued functions f on
[a, b] such that (Lf)(x) exists for a_-<x_-<b and for k =0, 1, 3,....

If f e 5f, then (2.4) implies

L(f Lf) =O.

We therefore have

f- Lf ClPl + cp + + cp,

for suitable constant Cl, cz,..-, c,. Applying (2.1) and (2.3), we find

l<=j<-n,
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and therefore,

(2.6) f= (BI[)p + (B2f)pz + + (B,f)p, + CgLf.

This identity (see, e.g., [4, p. 257]) simply reflects that the unique solution to the
boundary value problem

Lf 6, Blf A1, B,,f A

is given by

f=Apl+

If we apply (2.6) to the function Lf, we obtain

El-- (Bjnf)pj + c2c2f.
j=l

Substituting this expression into (2.6) yields

f
, (BiLkf)p,,,+j + (.2L2f.
k=O j=l

Continuing this procedure, we arrive at the identity

(2.7) f Y, Y, (BjL kf)p,,k+ + ("L’f,
k=O

which is valid for all f and for each positive integer m.
It is well known that the operator norm of coincides with its spectral radius.

In our case, if pl is the distance from 0 to the nearest eigenvalue of (1.2), then
[1]1 O]-. Also, if [[. [[2 denotes the root mean square norm, then [[(mLmf[[2
p-l]L’f][2, m =0, 1, 2,.... From this and (2.7)it follows that the condition
lim,,_o O-;"[]L’f][2 0 insures at least mean square convergence of (1.4). We
have therefore proved the following preliminary result.

THEOREM 2.1. Suppose that f 5 and that lim,,_oo p -’I]L mf][2 0. Then

m--1

lim Ill- E (BiL ’f)p,,k +j]12 0.
moo k =0 j=

From this result it is clear that the minimum modulus of the eigenvalues of
(1.2) is of fundamental importance in LB-series expansions. There are at most
two eigenvalues of smallest absolute value, and there are numerous examples in
which there are exactly two. To distinguish eigenvalues of opposite sign and equal
magnitude, we adopt the following "symmetric notation."

Let us denote by {Pk}k=, 0<pl <p2 <’’" the increasing sequence of
absolute values of eigenvalues of (1.2). For each k, k 1, 2, 3,. ., let Ak be an
eigenvalue of (1.2) with ]Ak] =pk, let nk be the dimension of the eigenspace
Sk {y: Ly Ay, By 0}, and let {yk 1, Yz, , Ynk } be an orthonormal basis for
S. Thus we have

Lyki hyi, Byj 0, (Ykj, Ykm)"--" jm
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for 1 _-< L m _-< tlk. If -/k is also an eigenvalue of (1.2), let mk be the dimension of
the space g ={y" Ly Aky, By 0} and let {g l, k2," ", k,k} be an orthonor-
mal basis for Sg. If -Ag is not an eigenvalue of (1.2), take mk 1 and kl - 0.

Now let 7"/"k and "kk be the projection mappings defined by

7rkb (th, Ykl)Ykl + +(, Yknk)Yk,,

(2.8) "kk6 (4, kl)kl-Jl- -1-((), kmk)kmk

for k 1, 2, 3,. and d C[a, b]. The eigenfunction expansion [3] for 4’ then
takes the form

(2.9) (b= Y. A{l[(Trkb)--(’kkb)].
k=l

This expansion converges uniformly in [a, b] and is valid for all b C[a, b]. Since
-1q3(zrkb) A zrkb and qS(-kktk) --Ak "kkth, then there follows

(2.10) ’6 Y’. h{’[(Trgb)+(- 1)" (’kkb)], m 1, 2, 3,- ..,
k=l

with uniform convergence in [a, b].
LEMMA 2.1. For each b C[a, b] and each positive integer k, we have

1(4’, Yk)l <= IlCklle, 1 <= j <= nk,

(2.11) 1(6, kj)l --< 11611z, l<--J<----mg

Moreover, there exists a positive constant K such that for k 1, 2, 3,.-.
O, 1, 2, , n and a <- x <= b, we have

ly ’(x)l--< KIA I, _-< _-< n,

(2.12) ly(x)l -< KlAn, l, 1 =< j =< m,

r--

where the superscript (r) denotes ordinary differentiation.
Proof. The estimates (2.11) follow from Schwarz’ inequality. To prove

(2.12), we note that, for each ] and k, the equation

-1 (x)= G(x,t) (t) dt

may be differentiated up to n times [5], and this results in

(2.13)

-1 Ib O()G(x, t)
Ag y/= Ox() ygi(t) dt, 0 <- r <- n 1,

0(n)-1 (n)(x)= G(x, t) 1
hg ygj OX(, ygi(t) dt+ao(x)Yki(X ).

The partials of G up to order n are bounded in the square a -<_ x, t-<_ b and so the
first inequality in (2.12) follows from (2.13) and Schwarz’ inequality. The proof for
the functions ki is similar.
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THEOREM 2.2. Suppose that f6o and that the sequence {A-k(Lkf)(x)}k=O
converges uniformly to 0 in [a, b]. Then

(2.14) f(x)= Y (BLf)p,+,(x), a<=x<=b,
k=0j=i

with uniform convergence in [a, b].
Proof. Because of the identity (2.7), it is enough to show that

lira ("L"f)(x)=O

uniformly in [a, b]. Now by virtue of (2.10), we have

(2.15) (’L’f _, Am[(rkL"f)+(- 1)m(#L"f)]
k=l

for m 1, 2, 3,.... The sequence of functions {(x)}=o defined by e(x)
A-(k(Lf)(x), k 0, 1, 2, , satisfies lim_oo [[e[]2 0 and

](L "f, yj)[-< [Z llmllem]]2, 1 _-< ] =< nk,

](g mf, )9j)] _-< [A [m][eml]2, 1 -< j =< m,
for 0 =< rn < 0o, 1 -< k < oo. Inserting these estimates into (2.15) and using Lemma
2.1., we find that

a<-_x<-b, m=>3,

where K’> 0 is a constant. Letting m- 0o, we obtain the desired result.
The functions Yli, l<=j<=nl, satisfy ATLylj=ylj and do not admit the

expansion (2.14). Therefore, the hypothesis in Theorem 2.2 cannot be weakened
to boundedness of the sequence {ALf}. We shall prove later (Theorem 3.3)
that a function f for which {A]-kLkf} is uniformly bounded in [a, b] possesses an
expansion which includes the series in (2.14) as a term.

We now seek asymptotic bounds on the sequence {P,,}=l. Note first that
(2.5) and (2.10)imply

(2.16) Z
m=l

for l <=j<=n, O<=k <0o.
LEMMA 2.2. There exists a positive constant M such that

(2.17) (r)[p,, +j(X) ,k -([(’rr,pj)(r)(x) + (-- 1) (,pj)r)(x)][ <= M[A2[
fora<-x<=b, O<-_r<-n, O_-<k<0o and <-j<=n.

Proof. By square-summability of the eigenvalue reciprocals and Lemma
2.1, each of the differentiated series

-nk[(’l’l’tnPj)(r)(x)-ql-( 1)k(mPj)(r)(x)],
O<--r<=n, l<=j<=n,
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converges uniformly and absolutely in [a, b]for k -> 3. In view of (2.16), we have

k x(r)/v(2.18) /)nk+l--(r) (x)= Z A, [(r,p ,.)+(- 1 (m&)(r)(x)]
m=l

for a xb, 1 jn, Orn and 3k<. From this, and (2.12), one sees
that

121-+ sup
](WmPj)(r)(x)[ +](mpi)(r)(x)[

and the desired result follows from the convergence of E=2 ]X2/1m[- for k 3.
Since ]l < 121, (2.17)yields immediately the following lemma.
LEMMA 2.3. For 1 j n and 0 r n, we have

(2 19) lira {X p.+jx)-[(,p,)((x)+( 1)(,P)(r)(x)]}= 0
k

uniformly in [a, b]. In particular, there exists a positive constant M’ for which

(2.20) [X k (r)p,+(x)]NM
foraNxNb, ONrNn, ONk<, lNjNn.

3. Absolutely convergent series expansions. Concerning the representation
(2.14), the question arises as to when the series in (2.1.4) can be "ungrouped" and
written as

(3.1) f(x)= E l(f)p(x),
k=l

where the functionals {1} are defined by (1.3). In fact, a function f satisfying

(3.2) lim &[(Lf)(x)-O
k-

has the representation (3.1) if and only if

(3.3) lim (BiLf)p,+i(x)=O, lNjNn, aNxNb.
k

Noting that

(3.4) (BiLf)p,k+i(x)=(X]-BiLf)(Xp,+i(x))
we see that the bound (2.20) shows that (3.3) is guaranteed by

(3.5) lim (& BiL f O, l N j N n.

In some cases (3.5) is a consequence of (3.2), and if
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then absolute convergence of (2.14), thus insuring (3.1), follows from (3.4) and
(2.20).

The same type of reasoning leads to the following characterization of
absolutely convergent LB-series. Recalling the definitions (2.8), we now define

,./r+)(X) ,[.[. p X -- ,l" P X

r-(x) (,p)(x)-(irp)(x), l<__j<--_n, a<-x<-_b.

THEOREM 3.1. Let {hk}-i be a complex sequence. Then the following are
equivalent:

(i) ,k=O j= h,k+jP,k+j(X) converges absolutely at each of n points
xl, x2," , x, for which r+)(xj) # 0 and r(-)(xj) # 0, 1 =< j -<_ n;

(ii) Y,=o Y4"=l IA-gh.k+[ <;
(iii) =0jl h,k+iP,k+j(X) converges absolutely and uniformly in [a, b].
Proof. The proof that (iii)=(i) amounts to showing that the points

x l, x2, ....,x, exist. Let j be fixed, 1 <-_j<-n. By hypothesis (H) we know
+) there must exist a subinterval I of [a, b] onr+)(x) 0. From continuity of ri

-(+) then -) does not vanishwhich r-+) does not vanish. Since Lr-)=A r
identically on L Thus xj may be chosen as a point in I such that r-)(xj)# 0.

We now show that (i)= (ii)z (iii). If (i) holds, then (2,19) implies that there
exists a constant 3’ > 0 and an integer ko > 0 such that

[Apnk+i(x)l > y, l<]<n, k>ko.
Then

k =ko k =ko

and we see that (ii) holds.
To show that (ii) (iii), we use (2.20). In fact,

E Ih.+p.+j(x)l E E I, gh.+j(Ap.+j(x))
k=O j=l k=O j=l

k=Oi=

and this completes the proof.
The following theorem shows that the coefficients {hk} in the expansion (iii)

are uniquely determined.
THEOREM 3.2. Suppose that

f(x)= Y h,k+iP,k+j(X), a<-x<--b,
k=Oj=l

with absolute convergence in [a, b]. Then f and

(r)_(3.6) (L mf)(r)(x) h.k +jPn(k-m)+j(X), 0 = tn < CX3,
k=mj=l
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with absolute and uniform convergence in [a, b]. Furthermore,

(3.7) BjLkf-h,k+j, l<=j<--n, 0--<k< oo.

Proof. Note that conditions (i)-(iii) of Theorem 3.1 hold. Concerning (3.6), a
consequence of (2.20) is that

k=mj=l k=mj=l

(3.8) <--I I,I raM’ 2 I1,kh,k+l-
for 0 =< r _--< n, 0_<-- m < oo. Therefore, each of the series

(3.9)
k=mj=l

converges absolutely and uniformly in [a, b]. Applying the operator " to the
series in (3.9) with r 0 yields

cm h,k +iPn(k-m)+j hnk +jPnk +j
k=mj=l k=mj=l

=0

Therefore,

{ } { m--1 }L"m hnk+jPn(k-m)+j =gm f__ E h,k+jp,,k+j L’f,
k=mj=l k=0

and, by (2.4), one sees that

(3. lO1 Lmf
k=mi=l

0_<m <oo.

Since (3.9) converges uniformly for r 1, then (3.10) implies that (3.6) holds for
r 1. Since (3.6) holds for r and (3.9) converges uniformly for r- 2, we see
that (3.6) holds for r=2. We continue this, procedure for r=3, 4,..., n to
complete the proof of (3.6).

The identities (3.6) show that we can apply the boundary operator Bi
termwise to the equation

Lmf hn
k=mj=l

and this results in

k=mt=l

which completes the proof.
Observe now that the estimate (3.8) implies

I(Lmf)(x)l<=lA,l"tx.,, a <-_x <-b, 0-< m <oo,
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where lim.,_+ ., 0. This, combined with Theorem 2.2, Theorem 3.2 and our
remarks preceding Theorem 3.1, leads to the following corollary.

COROLLARY 3.1. Let f be a complex-valued function on [a, b]. Then for f to
have an absolutely and uniformly convergent series representation

/(x)- E (BiLkf)p,k+i(X),
k=O j=l

a<=x<-b,

it is necessary and sufficient that

(3.11) lim A ]-k(Lkf)(x) 0 uniformly in [a, b]
k

and

(3.12) 2 A;BLfl < oo.
k=() j=l

As pointed out earlier, condition (3.11) in Corollary 3.1 cannot be weakened
to boundedness of the sequence {, -kL kf}. There arises the possibility, however,
that the series converges, but does not represent the function f.

THEOREM 3.3. Letfbe defined on [a, b] and letNbe a positive integer. Suppose
that (3.12) holds, and suppose there exist constants T, ]hll<= T<-I,NI, and C>0
such that

(3.13) I(L’f)(x)I<-CT", <-m<oo, a<=x<-_b.

Then there exist constants ckj and 8i such that

N

(3.14) f(x)- E 2 GiYki(X)+ Gik(X)+ E (BjLkf)pk+(X)
k-l j=l j=l k--t)/=

with uniform and absolute convergence in [a, b ]. Conversely, iff has the representa-
tion (3.14), then (3.12) and (3.13) hold.

Proof. The converse statement of the theorem is an easy consequence of
Corollary 3.1.

Suppose that (3.12) and (3.13) hold. By Theorem 3.1, the series

S(x) (B;rkf)p,k+,(X)
=0 ---converges absolutely and uniformly in [a, b]. Let

R (x) [(x) 8(x), a x b.

Now by Corollary 3.1 there exists a constant C > 0 such that

(LS)(x) C,I ,I, m <,
and therefore,

I(LR)(x)l CT + C,]l GT, O m ,
for a suitable constant C > 0. By uniqueness of coefficients, we have BiLS
BiLf, so that BiLR 0 for all j and m.
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Now fix j and k, k > N and 1 <= j <= rig. By self-adjointness, we have

--<]Akl I(gmR)(X)ykj(X)l dx

where C is a positive constant. Letting m cc in this estimate and noting IAk[> T,
we find that

(R, yj) 0, k > N, 1 _-< j _-< n.
Similarly, (R, .) 0 for k > N and 1 _-< j _-< m. By completeness of the system of
eigenfunctions, then, we have

R- Y’, , (R, Yk)Yk+ (R, k)kj
k=l j=l j--1

and the proof is complete.
Using (3.14) and (2.8), we are led immediately to the following analogy to I. J.

Schoenberg’s classical result on Lidstone series [1, p. 16].
COROLLARY 3.2. Iff , BiL kf 0 for all ] and k and

I(L"f)(x)[ <_- CT’, a <-_ x <- b, 0 <- m <

for constants C> 0 and T> O, then

/(x)= Y {(rd)(x)+()(x)}.

4. Generalized Green’s functions. In this section and the next, we shall
suppose that 0 is an eigenvalue of (1.2). For simplicity, we shall suppose that 0 is a
simple eigenvlaue; i.e., the eigenspace corresponding to 0 is one-dimensional. Let
Yo be a normalized eigenfunction corresponding to 0:

(4.1) Lyo 0, By,, 0, Ily,,ll: 1.

The notation for nonzero eigenvalues and corresponding eigenfunctions will be
the same as before. Thus A1 is a nonzero eigenvalue nearest the origin and
0 < IA < IA21 < ". The complete system of eigenfunctions of (1.2) then consists
of yo, all of the functions Yk and all nonzero functions ki.

For each complex parameter A, not an eigenvalue of (1..2), let Gx (x, t) be the
green’s Function for the problem

(L-A)y =0, By =0,

and define the integral operator by

(b)(x) G(x, t)ch(t) dt

for 4 C[a, b], Then we have

(4.2) (L-A)b 4, b 6 C[a, b].



322 J.K. SHAW

The function Gx is sometimes termed a generalized Green’s ]’unction for (1.2). we
recall [3] that it is meromorphic as a function of A, with simple poles at the
eigenvalues of (1.2). As a function of x, Gx (x, t) satisfies

(4.3) LG AG, x t,

(4.4) BG =0.

Furthermore, Gx has the representation

(4.5) G(x, t)=
y(x)y(t) I }-t- ykj(X)yk(t)__ k k](X)ki(t)

k=l tj=l /k --/ /=1 2-and we see that the residue of Gx at A 0 is -yo(x)yo(t). Let us define

A(x, t) G. (x, t) 4
yo(x)yo(t)

and observe that, for fixed x and t, A (x, t) is analytic as function of A in a certain
deleted neighborhood O< I1 < 6 of A O, and has a removable singularity at
I -O. Thus we can set

Go(x, t) lim A (x, t), a _-< x, =< b.
A -0

Finally, define the operators o and s by

(Coth)(x) Go(x, t)&(t) dt,

(g, (x)= A. (x, t)ch(t) at, che C[a, b].

We now establish some basic properties of these operators.
LEMMA 4.1. /f t C[a, b], then

(4.6) L’4 4) (4, Yo) Yo, l__<m<oo.

Proof. The Cauchy integral formula implies that, for 0 < O < 6,

1 I A(x, t)
dA.(4.7) Go(X, t)=

I=o A

Therefore, for any b e C[a, bl, one has

I Ax (x, t)
dp(t) dA dt

11 IabAa(x,t)2ri 1=o A
oh(t) dt dA.
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Applying the operator L to this equation, we find

{ 11 IabG;(X,t)+A-lyo(X)yo(t)(Lock)(x) L i ,1=o A
oh(t) dt dA}

(4.8)

1 I A-’(L(g;,)(x) dA.
2 rri

It follows from (4.2) that

(Lodp)(x)
,l=p

dA

1 f (4)(x) aa(4.9) 6(x)+w/
i=o

y.{1 I Gx(x, t) dA}q)(t) dt.6(x)+
1=o

By the theorem on residues, this last expression equals
b

so that (4.6) holds for m 1. Now for any m -> 1, we have

L""ck L {LCo(o b)}
m--1 m--1L {ego (D ((’n--l(, Yo)Yo}

and therefore (4.6) holds for all m.
LEMMA 4.2. For each ck C[a, b],

(4.10) B((gob)=0.

Proof. Differentiation of (4.7) gives

o(r)Go(x, t)_ IOX (r) 2rri
o(r)Ax (X, t) da

cOX (r) A
O<=r<=n-1.



324 J.K. SHAW

Since BjA O, 1 <= j <= n, this shows that

(4.11) BGo= 0;

in particular, (4.10) holds.
LEMMA 4.3. %yo 0.
Proof. Since the unique solution to the problem (L A)y 4, By 0, is given

by y %b, then (L-A)yo -Ayo implies

1
(4.12) qdxy,,= y,,.

Therefore,
b

(/yo)(X)- Ax (x, t)yo(t) dt

Finally,

Gx (x, t) + yo(x)yo(t)
yo(t) dt

1
%yo(x)/- yo(x)[lyoll o.

b

(oyo)(x) Go(x, t)yo(t) dt

lim Ax(x, t)yo(t) dt
A0

lim (s/yo)(X) 0,
A -0

which is the desired result.
Since (1.2) is self-adjoint, one has, for real

G(x,t)=Gx(t,x),

and on the basis of this, it is easy to show that

(4.13) (%,u, v)=(u,

for all u and v in C[a, b]. In particular,

(4.14) (%6, yo) (6, %yo) (4,, o) o, 49 C[a, b].

Arguing as in the preceeding lemma, one can show that

for all k and j. Since the eigenfunctions are orthogonal, we also have

1 -1
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From these equations, it follows easily that

1 -1
(4.15) 3oYk A---’ Ok kk

for all k and j.
For any 4 C[a, b], the function o4 belongs to C"[a, b] and satisfies

B(ob) 0. Therefore, o4 may be developed into a series expansion in terms of
the eigenfunctions of (1.2). We have

k=l

with uniform convergence in [a, b]. By virtue of (4.13) and (4.15), there follows

(4.16) %’4) Z Ak"[(rk4))+(-- 1)’(rkb)], 1 --< m <.
k=l

$. More series expansions. In this section, we develop the expansion (1.6)
and show that its properties closely parallel those of the expansion (1.4).

Given a fundamental system of solutions 41, 42, ", 4, of the homogeneous
equation Ly 0, the rank of the matrix

BICkl Bch"

is n- 1. Since the rank is independent of the choice of the functions 4k, we may
take 4 Yo and suppose that Yo, 42, 43,""", 4, are mutually orthogonal and
have norm 1. We may also suppose that, after possibly reordering the forms
B1, B2," B., the last n- 1 rows of the matrix are linearly independent.

If n> 1, we denote by q, q3,"’, q, the uniquely determined linearly
independent solutions of Ly 0 which satisfy

Bq 6, (q, Yo) O, 2 =< j, k =< n.

Let u be any particular solution to the nonhomogeneous equation Ly Yo,
and set

U= u + cjchj,
j=2

where the constants c2," , c, are determined by

cj(B,daj) Bku, 2 <= k <-_ n.
/=2

Then BU 0, 2 =< k _-< n, but B U 0, as otherwise self-adjointness would imply

1 (Yo, Yo) (Yo, LU) (Lyo, U) (0, U) O.

Thus, let B U c # 0, and define

ql a-1U-(0-1 U, Yo)Yo-
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We then have

(5.1) Lql=a-lyo, Bkql=6kl, (ql, yo)=O, l<-k<=n.

It is easy to see that these conditions uniquely determine ql. Taking into account
the definition of q2," ", q,, we now have

(5.2) Bjqk=6jk’ 2<=J<----n’ l<=k<-n’
Bql 1.

and observe that, by (5.2),

(5.3) Uqk

We also have

(5.4) (q, Yo) O,

Let {q,,}= be the sequence defined by

(5.5) q,,+ q,, 1 <--j --< n,

Now define the boundary forms {U},"__ by

U1 B1-[(B,q2)B2 +(Blq)B3 + +(Blqn)B.],

2<_k<_n,

Then from (4.6) and (5.4) there follows

l<=j,k<=n.

l<_k<_n.

0__<k <oo.

(5.7) g- CgoLg a(Lg, Yo)ql + ClYo-t- c,q
k=2

for certain constants ca,’" ", c,. Multiplying this equation by yo(t), integrating
from a to b and using (4.14) and (5.4) results in

c (g, yo).

If we apply the functionals U1, U2," ", Un to (5.7) and use (5.3) and (4.10), we
obtain

U,g c,, 2 <-_ k <- n,

U g a(Lg, Yo).

(Lg, Yo)Yo.

Since L[a(Lg, Yo)ql] (Lg, Yo)Yo, then we have

L[g- q3oLg] Lg-[Lg-(Lg, Yo)Yo]

and this, together with (5.3), provides an algorithm for computing the functions
{q,}.
We now derive the expansion (1.6). If g , then (4.6) implies

(5.6) Lq,,,+, qn(.t,-1)+j, 1 <- k < oo,
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Therefore,

(5.8) g (g, Yo)Yo + (Ug)q + oLg,
j=l

and this is valid on all of[a, b] for all g . Replacing g by Lg in (5.8) we find that

Lg=(Lg, yo)Yo+ Z (ULg)qi + qdoL2g.

It follows from (5.5) and Lemma 4.3 that

oLg E (UiLg)q.+i + (L2g
j-=l

Substituting this into (5.8), we have the identity

g=(g, yo)Yo+ , (UiLkg)q,k+j+L2g.
k=Oj=l

Continuing as in (2.7), we are led to the identity
m--I

(5.9) g=(g, y,,)yo+ Z Z (UiLkg)q,k+j+c’L’g,
k--o/=1

which holds in [a, b] for every g 6 and every positive integer m.
THEOREM 5.1. Suppose that f5 and that the sequence {A-(Lf)(x)}=o

converges uniformly to 0 in [a, b]. Then

(5.10) f(x)=(f, yo)Yo(X)+ E (ULkf)q,k+i(X), a<=x<=b,
k=Oj=l

with uniform convergence in [a, hi.
Proof. The proof proceeds along the lines of Theorem 2.2. First we observe

that (2.1 l) and (2.12) hold in the present setting. Equation (2.11) is trivial and
(2.12) follows, as in Lemma 2.1, from differentiating the equation

y (Ik-I) G(x, t)y(t) dr, I fixed,

n times and using Schwarz’ inequality. The remainder of the proof follows from
(5.9) and from substituting (2.11) and (2.12) into (4.16). The details are left to the
reader.

By (4.16), (5.5) and (2.8), we have

q,+i y A,[(r,,qj)+( 1)(-.q)]

for 1 j =< n and 1 _<- k <. Using this and following the proof of Lemma 2.2, we
find Lemma 5.1.

LEMMA 5.1. There exists a constantM > 0 such that

(r) )(r) \(r)/,(5.12) Iq,+i(x)-Z-[(-,q (x)+(-1)(rr,q.) ,)]1 M,I2]-
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for a<-x-<-b, O<-r<-n, O<-k <oe, l <=j<__n.
Consequently, we have

(5 13) lim {Aq (r) )(r)(x)]} 0,nk+j(X)--[(Trlqj)(r)(x)q-( 1)(’,q

uniformly in [a, b]. Thus there exists a positive constant M’I such that

(5.14) i--k (r)

fora<-x<-b, O<-r<=n, l<=j<-_n, 0=<k <oo.
Our last hypothesis corresponds to hypothesis (H), 2. We suppose that
(H’) for each j, 1 <- j -< n, there exists at least one eigenfunction y, belonging

to an eigenvalue of smallest absolute value, such that (% y)-0.
Thus, if we define

Fl+)(x) (Tr,qj)(x) + (rqi)(x),

F-)(x)=(Trqi)(x)-(Trqi)(x), a<=x<-_b, l<-_]<-_n,

then the following is a direct extension of Theorem 3.1.
THFOREM 5.2. Let {hk}_l be a complex sequence. Then the [ollowing are

equivalent"
(i) =oi"-- hnk+jq,+i(x) converges absolutely at each of n points

Xl, X2, x, for which F+)(xi) 0 and F-)(xi) - 0, IN]<-_n;
(ii) k=,, i= IA-k hnk+j] < 0(3;

(iii) k--Oi--I h,+iq,k+i(X) converges absolutely and uniformly in [a, b].
THEOREM 5.3. Suppose that

(5.15) f(x)=hoyo(x)+ h,g+iq,g+j(x),
k=O j-1

with absolute convergence in [a, b ]. Then f 6 5f’,

(5.16)

(5.17)

f(r(x)= h,,Yl’(x) + 2 h.k _(r)
+q+(x),

=o

a<=x<=b,

O<=r<-n-1,

(Lmf)()(x) a h,,(m_l)+,yl;)(X)+ E h.+iq_.)+j(x)
k=mj--1

for 0 <= r <-- n 1 and 1 <= rn < o Furthermore,

ho (f, yo)

and

h.+ ULf, 1 <= ] <- n,

Proof. The estimates (5.14) imply

(5.18)

0_< k <oo.

k=mj=l

k=mj=l
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It follows from Theorem 5.2 that the series

(5.19) c h,,,_)+yo(x)+ Y h,,k+iqk-,,)+i(X)

converges absolutely and uniformly in [a, b]. Applying the integral operator ’termwise to (5.19) and taking into account (5.5) and Lemma 4.3, we obtain

o cr h(m-)+yo(x)+ h,,k+jq,(k-m)+y(X)

k=mj=l

=Oj=l

By (5.6) and the definition of q, q,-.., q, we now have

LT{a-’ h,_,+,yo(x)+ Z
k=mj--1

-’ yo(X).- (4.6) yieldsSince the inner product of the series (5.19) with

-1Z h,+iq,_)+i(x)=(Lf)(x)- h,._,)+, yo(x),
k-mj=l

and this is (5.17) with r 0.
Following (5.18), it is easy to show that the right side of each of (5.16) and

(5.17) converges uniformly and absolutely in [a, b] for r 0, 1, 2, , n. Since the
"derived" series converge uniformly, we see that (5.16) and (5.17) hold.

If we set r 0 in (5.16), take the inner product of the resulting equation with

Yo and use (5.4), there follows

(f, Yo)= ho.

Finally, applying the boundary functionals U to (5.16) and (5.17) results in

h,+; U,.L f,
and this completes the proof.

THEOREM 5.4. Let f be a complex-valued function on [a, b]. Then for f to
have an absolutely and uniformly convergent series representation

(5.20) f(x)=(f, yo)yo(x)+ Y (ULkf)q,k+j(x),
k=O j=l

it is necessary and sufficient that

(5.21)
lim A-k(Lkf)(x) 0 uniformly in [a, b]
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and

(5.22)
k=0 j=l

Proof. If f satisfies (5.22), then Theorem 5.2 shows that the series in (5.20)
converges absolutely and uniformly in [a, b]. If (5.21) holds, then it follows from
Theorem 5.1 that has the representation (5.20).

Suppose that (5.20) holds. Condition (5.22) is a consequence of (ii), Theorem
5.2. To prove (5.21), first note that (5.17) and (5.18) imply

I(L m[)(X <--__ la -1 h.(,,,_, )/ yo(x)[ + II
where limx_.o/x,.(x) 0 and h.(._)/l UL’-f. Writing this in the form

I(L"f)(x)l -< IZ, [’{m (x) + Iz ;’ c-’ y,,(x)[ Iz -(m-1)hn(m-1)+ll},
-1)h. 0, we obtain (5.21).and noting that A1 ’’ ,_)+

Example. Consider the first order self-adjoint problem

Ly iy’ O, B,y y(1)- y(0) 0.

The nonzero eigenvalues of this problem are +/- 2nr, for n 1, 2, 3,’", with
corresponding eigenfunctions exp q:2nrix]. We choose Yo to correspond to
the eigenvalue 0. A direct calculation yields

.k
qk+ Ok+l, k =0, 1, 2,- ,

where Ok is the k th Bernoulli polynomial. Furthermore, we have

(Lkf)(x)= ikf(k)(X),
so that

U1Lkf B1Lkf ik[f(k)(1)--f(k)(O)], l__<k <oo.

Hence

U,Lkf)qk +1 If(k)( 1 f(k)(o)]Qk+1"

Since (f, Yo)Yo ,1 f(x) dx, then series (5.20) becomes

(5.23) f(x) I f(t) dt+ Z [fk)(1)--fk)(o)]Qk+l(X),
k 0

which is the Bernoulli polynomial expansion [1, p. 29]. In particular, if f is an
entire function of exponential type less than 2r, then (5.21) and (5.22) certainly
hold. Thus the representation (5.23) converges absolutely and uniformly in [0.1 ].
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ON q-ANALOGUES OF THE WATSON AND
WHIPPLE SUMMATIONS*

GEORGE E. ANDREWSI

Abstract. In this paper, q-analogues of the terminating cases of the Watson and Whipple
summations are presented and proved.

1. Introduction. As basic hypergeometric functions (or q-hypergeometric
functions) become increasingly important in pure and applied mathematics (see
[3]), the question of obtaining q-analogues for the important hypergeometric
series summations becomes significant. If we examine Appendices III and IV in
Slater’s book [4], we find that among the 2F summations (III.3-III.7) the first two
have q-analogues given by Slater (IV.l, IV.2), Kummer’s theorem (IIIo5) has a
q-analogue due to Bailey and Daum (see [2] for references) and the remaining two
results (Gauss’s second theorem and Bailey’s theorem) have q-analogues given in
[2].

There are many more known summations for 3F2 functions. Most important
are Saalschutz’s theorem [4, (III.2), p. 243]

(1.1) 3F2[a, b,-n; 1] _(c-a),,(c-b),,
c, d

provided a + b n + c + d and n is a nonnegative integer; Dixon’s theorem [4,
(III.8), p. 243]

(1.2) F(1 +)I’(1-+ a b)F(1 + a- c)F(1 +a-b2 -c)[ a,b,c;, ]=_sF2
l+a b,l+a c

F(I+a)F 1+ b F 1+ c F(l+a-b-c)

Watson’s theorem [4, (III.23), p. 245]

(1.3) a,b,-" 1
V(--)r((1 / a / b))F(1/2(1 / c))l-’(1/2(1 a b / c))

sF: (a+b+l), =F(1/2(+a))F((+b))F(1/2(-a+c))F(1/2(-b+c))’

Whipple’s theorem [4. (III.24), p. 245]

(1.4) 3F
a, b, ’F(d)F(e)

d, e 2"--’ F(}(a + e))F(-(a + d))F1/2(d + e))F(1/2(b + d))

provided a +b- 1 and d+e +c.
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In formulas (1.1)-(1.4) we have used the standard hypergeometric series
notation

(l 5) pFq[a, ap; t]= ,. (a), (ap),t
bl, ., bq =o n!(b,)n’"(bq),’

where (a), a(a + 1)... (a +n- 1).
There are known q-analogues for (1.1) and (1.2), namely, Jackson’s q-

analogue of Saalschutz’s theorem [4, (IV.4), p. 247]

(1.6) 3b2[a, b, q-n; q, q] (d/a; q),(d/b; q),
d, e -i -q-) 7 (-d/ ab q),

provided abq-+= de and n is a nonnegative integer; and the q-analogue of
Dixon’s theorem [4, (IV.5), p. 247]

(1.7)
,-q,ffaa, b,c;q,ca]

a, aq_
b’

(aq; q)oo(a’/2q/b; q)oo(a’/2q/c; q)oo(aq/bc; q)oo
(aq/b; q)oo(aq/c; q)oo(a’/2q; q)oo(al/2q/bc; q)oo"

Here

ar; q, t] (a; q),, (G; q)nt
r4’ b,’’’, b _-)o (q; qi(i i,,""" (b; q),,’

and (a; q),, =(1-a)(1-aq)... (1-aq"-’), (a; q)oo lim,+oo (a; q),.

Identities (1.3) and (1.4), have no known q-analogues. In 2 we shall prove
the following theorems which provide such analogues.

THF.ORF.M 1 (q-analogue of Watson’s theorem (1.3)).

[ a, b, c /2, --cl/2; q, q ] =an/2(aq; q2)(bq; q2)oo(cq/a; q2)oo(cq/b; q2)m
4dAL(abq)l/2, -(abq) ’/2, c (q; qZ)oo(abq; qZ)oo(cq; qZ)oo(cq/ab; q2)o

where b q-n and n is a nonnegative integer.
THEOREM 2 (q-analogue of Whipple’s theorem (1.4)).

4b3[ a, q/a, cl/2, --C 1/2", q, q]-q, e, cq/e

q,,{,,+’)/2(ea; q2)oo(eq/a q2)oo(caq/e; q2)oo(cq2/ae; q2Lo
(e;q)oo(cq/e;q)oo

provided a q-" and n is a nonnegative integer.
We remark that while the functions in Theorem 1 and 2 are not 3b2 functions,

they are nonetheless q-analogues of the corresponding 3F2 functions; this is
because

lim 4(D3
q q -q q q’ a, b,-n;

q- q e, -q*, qg 3F2 e, g
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2. The main theorems. Interestingly, each of the theorems we have stated
relies on Watson’s q-analogue of Whipple’s theorem [4, (3.4.1.5), p. 100].

Proof of Theorem 1. We observe that the 43 in Theorem 1 is a terminating
Saalschutzian series (i.e., the product of the three lower parameters divided by the
product of the four upper parameters is q). Hence by Watson’s q-analogue of
Whipple’s theorem (with a--b, c(bqa-1) 1/2 d-(bqa-1)/2 ec1/2

f-’--C 1/2, g b q-’)

I- a, c 1/2, -c 1/2, b; q, q]43[C (abq) 1/2, -(abq)/2J

(bqc-,; q2)(_q; q)oo(q/c; q)o
(-bq; q)oo(q/c; q2)oo(bq/c; q)oo

q--,-qx/,-(bqa-1) 1/2, (bqa-1) 1/2, 171/2, --171’2, b; q, 71."8dp7
x-b,-,f--b, (bqa) 1/2, -(bqa) /2, bqc -1/2, -bqc -1/2, -q

(b2q2c -’’, q2)oo(-q; q)oo(q/c’, q)oo
(-bq; q)o(q2/c; q2)o(bq/c; q)

b -bq2, bqa -1, c; q2, 71-b, abq, bZqZc -1

(b2qZc-’; qZ)oo (-q; q)oo(q/c; q)oo(bZq2; qZ)oo(aq; qZ)oo(bq2c-1; qZ)oo(abq/c; q2)oo
(-bq; q)oo(qZ/c; q2)oo(bqc-t’, q)oo(abq; qZ)oo(bZqZc-", qZ)oo(bq2", qZ)oo(aq/c’, q2)oo

(by (1.7))

(q;q2)(abq;q2)(1 C /(1-qc)’"(1

if n is odd,

if n is even,

0

a’/2(aq; q2)o(bq; q2)oo(cq/a; q2)n/2
(q; q2)oo(abq; q2)oo(cq; q2),,/z

a"/2(aq; qZ)oo(bq; q2)oo(cq/a; q2)oo(cq/b; q2)oo
(q; q2)oo(abq; q2)oo(cq; q2)oo(cq/ab; q2)oo

if n is odd,

if n is even,

We now proceed to the q-analogue of Whipple’s theorem.
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Proof of Theorem 2. As before, we again have a terminating Saalschutzian
4(3 Hence by Watson’s q-analogue of Whipple’s theorem (with a -aeq-1,
c aeq -1, d -a, e c /2, f -c /2, g a q-")

4(3 [q/a, c /2, -c/2 a q, q]cq/e,-q, e

(a2e)/c; qaLo(-e; q)oo(e/c; q)oo
(-ae; q)(e/c; qa)o(ae/c; q)oo

ae / ae / ae ae 1/2---, q --@-q a, c ,-c
"8q7

q q

ae / ae,q, ---- -q, e,-aec-/, aec

(a2e2/c; q2)oo(-e; q)oo(e/c; q)oo
(-ae q)o(e2/c q2)oo(ae/c q)o

a2e2 2 CC’q2""",-aeq, a 2, ; q
"4(D3

ae 2 a 2e2
-, e,

q c

(a2e2/c q2)o(-e; q)o(e/c
(-ae q)oo(e/c q2)oo(ae/c

/2 eq
,a,q,

a

-1/2 -e

(a2ea; q2)oo(eq/a; q)oo(aeq/c; q)o(e:/c; q2)oo
(e2; qE)oo(a2ea/c; q2)oo(aeq; q2)oo(eq/ac; q2)o

(eq; q2Lo(eq/a; q)oo(e/c; q)oo(aeq/c; q2)oo
(e; q)(ae/c; q)(eq/ac; q2)oo

(ea; q2)oo(eq/a; q2)oo(1-eq-"/c)(1-eq3-"/c) (1-eq"-I/c)

(by(1.7))

(e; q)oo(1-eq-"/c)(1-eql-"/c) (1-eq-/c)

q,,,,+)/Z(ea; qZ)o(eq/a; qZ)oo(cql-,,/e; q2),,
(e;q)oo(cq/e;.q),

q"("+)/2 (eu; qZ)oo(eq/a; qZ)oo(caq/e; q2)oo(cq/ae; q)oo
(e; q)(cq/ae qZ)oo(cq/e q)o

qn(n+l)/2 (ea; qZ)oo(eq/a; qZ)oo(Caq/e; qZ)oo(cq2/ae; q2)oo
[..]

(e;q)oo(cq/e;q)oo

In closing this section, we remark that both Theorems 1 and 2 have the defect
that they are terminating series while 1.3) and (1.4) are not. The above proofs fail
if we remove the termination restriction since we must then look at Bailey’s
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extension of Watson’s theorem to the nonterminating case [4, (3.4.2.5), p. 102]. In
the case of Theorem 1 an extra term arises which involves the following Saalschut-
zian series"

qc-1/2,-qc-/2, bqc,aqc; q,q
4t)3 q2, --c-lq 3/2a1/2b 1/2, c-1q3/2a1/2b 1/

c

which is of the same form as our original series in Theorem 1, Similar problems
arise for the nonterminating case of Theorem 2.

3. Conclusion. We remark that the inelegant formulation of Theorems 1 and
2 is due to the fact that these are really theorems about basic hypergeometric
series in which some of the finite products are of the form (A; q)n and some
(B; q2)n. The following modification of the notation of R. P. Agarwal and A.
Verma [1] reflects much better the true character of these, theorems.

A+BtC+DIal, aA b, bB q, 01, x]C, Cc dl, dD
(al ;q), (aA ;q)n(bl ;ql)n (bB ;q),x

,,o (c;q), (cc;q),(d;ql),’"(do;q),

The series in Theorem 1 becomes

3P3[a,b’c; q, 02, q]q, C abq

and the series in Theorem 2 becomes

3t3[a, q/a c; q, q2, q]e, cq/a q2
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ON THE NONEXISTENCE OF ENTIRE SOLUTIONS TO
NONLINEAR SECOND ORDER ELLIPTIC EQUATIONS*

HOWARD A. LEVINEt AND LAWRENCE E. PAYNE$

Abstract. In this paper, it is shown that there are no global solutions (in all of R") to nonlinear
elliptic equations of the form

i,= xi ai(X)ox--- =f(x, u, gradu)

-1/2isif f(x, u, p) g(u), where g is a convex, nonnegative function (nondecreasing if n > 2) such that g
integrable near infinity unless g(u(x))O.

Introduction. It is the purpose of this paper to extend the nonexistence results
of Walter [2] for global solutions (in all of R n) of Au f(u), to general second
order uniformly elliptic operators or equations of the form

(I) u =- ai(x) f(x, u, grad u),
i,j

where the ai(x) are continuously ditterentiable in R and f is a point function of
2n + 1 arguments. The operator is assumed to be uniformly elliptic in all of R n.
That is, for all x, R" and some/x > 0.

(II) a,(x),,>__tz 2, a,,=a,,
i,j=l i-----1

Our nonexistence arguments are modeled after those of Walter, rather than
those of Keller 1 ], which do not seem to extend to (I). Our sufficient conditions on

f to insure nonexistence of global solutions to (I) are thus similar to those of
Walter.

Throughout the remainder of this paper we employ both the summation
convention and the notation

0/,/ C]2U
bl, il H,ji"(III) u.i

Oxi OxiOx
For x, yR, we let h(x, y) denote a fundamental solution to u =0,

namely,

(IVa) ,,h(x, y) -6(x y)

in the sense of distributions. Of course,

(IVb) lim h(x, y)- +oo.
x--y

* Received by the editors October 17, 1974, and in revised form March 21, 1975.
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In agreement with what obtains for the Laplace operator, we assume that

Oh O--h-h (x, y) _-< 4,(h(x, y)),(Va) a,i(x)-ff-x(x, y)

where, for some positive constant k k (n),

2o2(n-1)(n-2)-’ n > 2, 0 < a < oo,
(Vb) 4(a) k2 e4ra n 2, --c < a <

Of course, when=A one takes h(x, y) (27r)-l In (Ix- y[-) for n 2 and
h(x, y)= [to,(n- 2)]-llx y[-" for n > 2, where to, is the surface area of the unit
sphere in R,. Equality holds in (Va) in these cases by appropriate choices of k.

Insofar as the nonlinearity, [, is concerned, we assume

(VI) f(x, u, p) >- g(u), p e R",
where g has the following properties:

G-1. g is nonnegative and convex on R 1.
G-2. If qd(s) is any integral of g(q3’= g), then for every pair of numbers e, 8,

ioo [3(s)- 3() + 2]--1/2 ds <

If n > 2, we suppose in addition that"
G-3. g is nondecreasing.

1. The nonexistence theorem. Here we prove our basic nonexistence
theorem. We are motivated by the fact that for A, the level surfaces of the
fundamental solution at a fixed point (say y 0) are spheres and the spherical
means of the solutions to (I) are precisely integrals of these solutions over these
level surfaces. Here we shall obtain similar nonexistence results by using analog-
ous means of the solutions to (I), provided the fundamental solution has the
behavior and regularity indicated by (Va) and (Vb), and provided the level
surfaces are closed, bounded, continuously differentiable (n-1)-dimensional
surfaces in R" with finite nonzero (n-1)-dimensional Lebesque measure, with
h(x, y) -o as Ix Yl o(n 2) and h(x, y)- 0 as Ix Yl (n => 3). It is clear
that for n => 3, h(x, y) is just the Green’s function for all of space.

THEOREM. If thefundamental solution h(x, y), the nonlinearityfand the lower
bound g satisfy the preceding hypotheses, then no classical solution to (I) exists in all
of R" except possibly for solutions which satisfy

(1.1) u(x) {slg(s) 0}

for all x R".
In particular, if g > 0 on R no global (entire) solution to (I) is possible.
Proof. Fix y =0 as the origin such that g(u(O))>0, and let h(x)= h(x, O)

denote the fundamental solution. Let

D,={xeR"lh(x)>aI,
where

S, OD {x R"lh(x) }.
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The sets S, D denote, respectively, the level surfaces of h and the regions
interior thereto of the fundamental solution with singularity at the origin. Because
of the singular nature of the fundamental solution, the range of a is (-c, oz) if
n 2 and (0, ) if n > 2. We also have, in view of the maximum principle,

and

U D,,=R", n>2,

Let

U D,=R2, n=2.
real

(1.1.1) F(a) =s (ajh,,h.iu/Igrad hi) ds

(1.1.2) -s aoh.nu dS,

where n -h,/Igrad hi denotes the ith component of the outward normal to D.
From Green’s theorem and (IVa) we have

(1.2.1)

or

(1.2.2)

since

F(o) u(O) fD aiih,iu, dx

F(a) u(O)- (aih.u./lgrad hi) ds,) drl

Therefore,

(1.3.1)

dx dS dn -dh dS/lgrad

F’() =s (ah,,u,fllgrad hi) dS,

(1.3.2) -s aiu,ni dS

(1.3.3) =--Io udx

(1.3.4) --<--ID g(u)dx.
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Thus since g(u(O)) > 0, F’(a) is negative near a +oo(Doo {0}). Moreover,

(1.4) f’(a)=- (u/Igrad h I) dS, dl

so that

(1.5.1) F"(a) s (ou/lgrad hi)dS

(1.5.2) >-(}s (g(u)/lgrad hi) dS

(1.5.3) [((ff)]-ls g(u)(%h,,h,fflgrad hi)dS.

Since g is convex, since

(1.6) fs (aqh’ih’fflgrad h I) dS Is aqh,inj dS fD h dx 1,

and since aqh,ih,fflgrad hi>O, we may apply Jensen’s inequality to (1.5.3) to
obtain

(1.7) F"(a) -->-- (1 (I)]-- g(F(ff)).

Inequality (1.7) is the basic inequality in the proof of our theorem. We
consider the cases n 2 and n > 2 separately.

Case 1. n 2. We have for a-<

F"(a) >---_ k -2 e-4=g(F(a))

(1.8.2) >=k-2e-4Og(F(a)),

where.ao is chosen so large that F’(ao)<0. But by assumption G-1 on g(u) it
follows from (1.3.4) that F’(a)<=O for all a. In particular then F’(a)<-O for
a (a l, ao], where a is either negative infinity or the limit of the existence
interval. For a < ao, we may, therefore, multiply (1.8.2) by F’(a) and integrate to
obtain

1/2[F’(ao)]2-1/2[F’(a)]2 < (k e2=’)-2[(F(ao)) C(F(a))]..

We assume that F(a) remains bounded on (-oo, ao] and integrate again to obtain

F(ao)
{i02[F’(00)]2 q- C(s) (F(Oo))}-’/2 ds >= fi-(ao-a),
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where fl k e2’/x. By assumption, it follows then that

(1.9.1) oo> {[F’(ao)]Z+ (s)- (F(oo))}-’/2 ds >- I(a)>=(oo-a).
(ao)

Letting a - -oo on the extreme right of (1.9), we see that we have a contradiction
if u exists on R 2. In fact, for some a >-oo,

(1.9.2) lim F(a)= +oo.

Case 2. n > 2. Here the preceding arguments must be modified somewhat.
Our arguments here closely follow those of Walter [2].

We have from (1.7)

(I.10) F"(o)k-20-2"-)/"-2)g(F(o)).
Now let

(1.11) =-(n-2)-1 In c.

We see from (1.4) that lim_+oo F’(a) 0 so that

(1.12.1) -F’(a) F"(rl) dl

(1 12.2) > k-2 --2(n--1)/(n--2)
rt

Introducing (1.11) into (1.12.2), we find that

dF>= k_2( --2)t f;(1.13)
dt

n-2)2 e-n
a_

e"g(F(o-)) do,

where we have set Fl(O-)= F(exp [(2-n)o-]). Now define

(1.14) N’(t) k-2(n-2)2 e -("-2) eng(F(o’)) do"

for t_-> to. Since F’l(t)_->0 and g is nondecreasing, we observe from (1.14) that
g(F(r)) <-_ g(Fl(t)) for o" =< and hence that

(1.14.1)

for -> to. Now let

Clearly, for _>- to,

and

N’(t) <- n -1 k-2(n 2)2

N(t) F,(to)+ N’(cr) do.

F;(t)>-N’(t)>=O

F, (t,,) N(to)
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so that

F(t)>-_N(t),

Since g is nondecreasing, for >= to, we have

N"(t) k-2(n-2)2 e2’g(F(t))-k -2

(1.5.)
(n-2) e-(-’ e’g(F(o’)) do"

(1.15.2) -2n-k-(n-2) e’g(F,(t))
(1.15.3) >-_2n-k-(n-2) eg(N(t)).

t>to.=

Since, as -c, F(t) u(O) so that g(F(t)) g(u(O)) >0, it follows from (1.14)
that N’(to) >0 for to, sufficiently negative, so that N’(t) >0 for all t. Multiplying by
N’(t), integrating from to to t. and rearranging terms, we obtain, after a second
quadrature,

oo > {,[N’(ta)]a + (s)- (N(to))}-/ ds >- ,-(t- to),

where nke-’/2(n-2). Letting t- +oo, we see that u cannot exist on all of
R".-In fact, there exists T< eo such that

and since N =< F on [to, o),

lim N(t)=+

(1.16.1) lira F(t)= +o,

or letting a exp {-(n 2) T},

(1.16.2) lira F(a)= +,

and the proof of the theorem is complete.
Remark. Our proof shows that u becomes unbounded in some ball. Indeed

from H/51der’s inequality

(1.17) F(a)<= (aoh.ni)q ds lu dS

where p, q _---1 and (1/p)+(1/q)= 1. Thus from (1.9.2), (1.16.2) and (1.17) we
see, since the measures of the S, are finite,

as a tends to a 1. from above. Consequently, u becomes unbounded in some ball.
This is true in case n 2 or n > 2.
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Abstract. In this paper, we show that certain sequences of polynomials {p,(z)}=o, generated
from three-term recurrence relations, have no zeros in parabolic regions in the complex plane of the

form y2 -<4a(x +a), x >-a. As a special case of this, no partial sum s,(z) Ya,=o z’/k! of e has a
zero in yz =< 4(x + 1), x >- 1, for any n >- 1. Such zero-free parabolic regions are obtained for Pad6
approximants of certain meromorphic functions, as well as for the partial sums of certain
hypergeometric functions.

1. Introduction. In his thesis [11] and in [12], the second author obtained
results concerning the existence of unbounded zero-free regions in the complex
plane C for the partial sums of special entire functions f(z)= k=o akz

, with
a =>0 for all k. In particular, it was shown in [12] that the partial sums s,(z) of the
exponential function f(z)= e z, i.e.,

(1.1) s,,(z):=
k =0

have no zeros in the infinite half-strip IIm zl--< /-, Re z _-> 0, for any n 1, 2, .
More recently, Newman and Rivlin [8] stated that the parabolic-like domain

(1.2) ]yl-< --+r x + x =>0, r-+- 1.637 017,

is free of zeros of the s,(z) in (1.1) for all n sufficiently large. However, in [9] this
result of (1.2) was retracted, and, using different methods, Newman and Rivlin
proved that the smaller region

(1.3) y2_< dx, x >-_ O, d . 0.745 407,

is zero-free for every s, (z).
The purpose of the present paper is to establish the existence of zero-free

parabolic regions for certain general sequences of polynomials. As a special case
of our main result, we deduce that the parabolic region

(1.4) yZ_-<4(x + 1), x>-l,

is zero-free for all the partial sums of the exponential function. As the unbounded
set of (1.4) contains the region of (1.3) (and in fact the region of (1.2) as well), we
thereby improve upon Newman and Rivlin’s results. Furthermore, we obtain
zero-free parabolic regions for Pad6 approximants of certain meromorphic
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functions, as well as for the partial sums of certain 1F1 hypergeometric functions.
Also, we improve upon the result of Dofzev [3J, concerning the location of the
zeros of generalized Bessel polynomials.

The essential technique of proof utilizes continued fraction expansions, in the
spirit of Wall 13].

2. A parabola theorem. Our main result is the following theorem.
THEOREM 2.1. Let {pk(Z)}=o be a sequence of polynomials of respective

degrees k which satisfy the three-term recurrence relation

+ 1 pk-l(Z)----pk-2(z), k 1, 2,..., n,
Ck

where the bk’S and Ck’S are positive real numbers for all 1 <-_ k <-n, and where
p_l(Z):=O, po(z):=po O. Set

(2.2) a:=min{bk(1--bk_lC-l)" k= 1,2,"" ,n}, bo:=O.
Then, if c > O, the parabolic region

(2.3) :={z x + iy C: y2 =< 4c(x + c), x > -c}

contains no zeros o pl(Z), p2(Z), pn(z).
Proof. Let z be any fixed point which is not a zero of any Pk (Z), 1 <--- k <--_ n,

and define

(2.4) /Xk Ixg(Z) "-zpk-(z) for k 1, 2,’’’, n.
bkPk(Z)

We shall show inductively that

(2.5) Re/Xk--<_l fork=l,2,...,n.

This is certainly true for k 1; indeed, from (2.4), (2.1) and the fact that
po(z):= po 0, we have that

zpo(z) zpo(z) z
x- blPl(Z) b,(z/bl + 1)po(z) z +bl

from which it follows that Re/xl _<- 1 if and only if Re z _-> -bl. But as z 6 and
bl ->_ c from (2.2), this last condition holds; i.e., Re z >-c

Now, assume inductively that Re/X_l -<_ 1 for some k satisfying 2 <_- k <_- n. We
can express/Xk from (2.4) and (2.1) as

zpk-I(Z) zpI-I(Z)
tXk bkpk(z) (Z +bk)Pk_l(z)--bkC-ZPk_2(Z)

z
--1

Z + bk bkC g bk-
In other words,

(2.6)
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where T,(w) is the bilinear transformation defined by

z
(2.7) T(w):=

z + b, b,c- b,_ w"
Hence, since Re/z_ <- 1 by hypothesis, then/x lies in the image of the half-plane
Re w 1 under the transformation T. Now, T has its pole at

Z +bk
Wk bc{bk_l

and since Re z >-a-(bk-bkc{b_) from (2.2), it follows that Re Wk > 1.
Therefore, T maps Re w 1 onto a closed disk Dk in the -plane. The center k
of this disk is the image, under Tk, of the point in the w-plane symmetric to the
pole Wk with respect to the line Re w 1, i.e.,

T(2-#)= T 2
bc b_ 2 Re z+2b(1-b_c)"

Furthermore, since T(m) 0 lies on the boundary of D, the radius r of this disk
is given by

2 Re z +2b(1-b_c

Consequently, the real part of any point in D does not exceed the sum

Re z +
R.e + r 2Rez+2b(1-b_c-)"

Again from (2.2), an upper bound for this last quantity is

Re z
2 Re z +2’

which one can directly verify is at most unity because z e . In particular, since
D, we have Re N 1. This completes the induction for establishing (2.5).
Next, we observe that p (0) 0 for all k 0, 1, , n; indeed, from (2.1) we

have
0 po(O p,(0 p(0.

Furthermore, if p (Zo) p (zo) 0 for some k 1, then evidently zo 0, so that
from (2.1), we deduce that p_(zo)= 0 for all ON]Nk. In particular, this would
imply that po(zo)=0, which is a contradiction. Hence, p(z) and p_(z) have no
zerog in common for each k, 1 N k N n.

Finally, suppose on the contrary that p (Zo) 0 for some Zo e, and some k
with 1N k N n.Clearly, since p(z)= (po/b)(z + b) from (2.1), then Pl has its sole
zero at -b. But as -b N- from (2.2), this zero by definition (cf. (2.3)) is not in. Thus, 2 N k N n. Next, p(zo)= 0 implies from (2.1) that (zo/b + 1)p_l(zo)
(zo/c)p_(zo), and as p(z) and p_(z) have no common zeros, then on dividing,

c zop-(zo)
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Now, Zoe implies from (2.5) and continuity considerations that Re t/,k-l(Zo)
1. Thus, taking real parts in (2.8), we obtain

Re Zo<=--bk(1 bk_C-) <=--a,

the last inequality following from (2.2). On the other hand, zo e ,, implies from
(2.3) that Re zo>-a, which contradicts the above inequality. Thus, pk(Z) has no
zeros in for each k, 1-< k-< n. 71

Note, using (2.6), that

Ik T(I-,)= Tk(Tk-l(P.k-2)) TTk_,’’" T2(/x,), 2 =< k =< n.

Hence, the above technique of proof of Theorem 2.1 essentially depends on the
finiteness of a continued fraction expansion of k, namely, from (2.7),

z
(z)

bc- b_ z
z + bk [’2ic’-_,bk_2z

Z +bk-1-- z + b-2-’..
There is in fact a well-known "parabola theorem." due to Wall [13, p. 57] for
continued fractions, but it does not appear to the authors that the finiteness of the
above continued fraction expansion for/z(z) with z e , follows from Wall’s
parabola theorem.

We remark that, in a certain sense, the result of Theorem 2.1 is sharp. For,
consider any three-term recurrence relation (2.1) for which

ct bl.
Then, as p(z) (po/b)(z + b), it has its sole zero at -b -a. Therefore, since
the parabola y 2 4a(x + a) has its vertex at x -a, the parabolic region of (2.3)
cannot be enlarged to include the boundary point z =-a of and still exclude
the zeros of p(z),.’., p,(z).

We remark further that Theorem 2.1 has an obvious extension to an infinite
sequence of polynomials {p(z)}o which satisfy (2.1). In such a case, we define

ot:=inf{bk(1--bk_lC-1): k 1, 2,’’ ’}.

Then, the conclusion that the region ,, of (2.3) is zero-free for every pk(Z), k
1, 2,’", remains valid provided that a >0. If, in addition, such an infinite
sequence pk (Z) converges uniformly on all compact subsets of to an analytic
function f(z) which is not identically zero, then by the theorem of Hurwitz, f(z)
must also be zero-free in the interior of ,.

Some concrete applications of the parabola theorem will be given in the next
sections. For the remainder of the present section, we consider sufficient condi-
tions under which the hypotheses of Theorem 2.1 are fulfilled. We deal first with
the partial sums of a power series expansion.

COROLLARY 2.2. Let Sk(Z):=jk__o ajz, k 0, 1,. , n, and assume that a >
0 for all] =0, 1,..., n, and that

(2.9) a:=min{(ak-I akz2") k=l,2,’’’,n}>O,
ak ak
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where a_l/ao:=O. Then, the polynomials Sk (Z), k 1, 2, , n, have no zeros in
the parabolic region defined in (2.3).

Proof. One easily verifies that the partial sums Sk(Z) satisfy the three-term
recurrence relation

+ 1 Sk_I(Z ;k sk-2(z), k 1, 2,’" ", n,

where s_ := 0, and where

(2.11) bk := a_/a, k =0, 1,..-, n.

Consequently, (2.1) holds with c b, and (2.2) becomes

a min {(bk b_)" k 1,. n},

which from (2.11) is the same as (2.9). Applying Theorem 2.1 then establishes the
corollary.

The partial sums of a formal power series

(2.12) f(z) Y’. ajz j, ao # O,
=o

can be regarded as special cases of the so-called Pad6 approximants to f(z) (see
Perron 10], or Baker [2]). More precisely, given any pair of nonnegative integers
(n, ,), the Pad6 approximant of type (n, ,) is that rational function R..(z) of the
form

(2.13) R..(z) P..(z)/O..(z)
for which the following conditions are satisfied"

(i) P..(z) is a polynomial of degree =< n;
(ii) O.,(z) is a polynomial of degree_<- v with Q...(z)e 0;
(iii) The power series development of f(z)O,...(z)-P/...,(z) about z =0

begins with the (n + , + 1)st power of z.
In particular, for v 0, these conditions are satisfied by

iP..o(z) ajz’, O,,,o(z) 1, n O, 1,. .
=o

Corresponding to the power series (2.12), we define the Hankel determinants

an an an +
(2.14)

a,.+ a. an-,,+2
A(A():= 1 n>0,... :=det n>0 u >1

an+,_l an+u-2 an
with the convention that

a_j:=0 for/’=l,2,-...

These determinants play an important role in the study of Pad6 approximants.
Indeed, if

(2.15) A)# 0,



ZERO-FREE PARABOLIC REGIONS 349

then the conditions (i), (ii) and (iii) above are satisfied by the polynomials

(2.16) Pn,(z) :+ det
=o

(2.17) O,,(z) +det

an+l

an +2

gn+v

1

an+l

an +2

aj_ aj_

an an-u+

an+ an_+2

an + an
2

22 22

an an-

an+l an

_an+ an+v-1 an+..-2

Z 1,

22

an-.+l

an-+2

an

In such a case, we refer to the polynomial Pn.,(z) in (2.16) as the Padd numerator
of type (n, v), and to On,,(z) in (2.17) as the Padd denominator of type (n, v).

We now prove a generalization of Corollary 2.2 for the Pad6 numerators.
COROLLARY 2.3. Let f(z) Yq=o ajz be a formal power series, and assume

that, for a fixed v >= 0, the corresponding Hankel determinants defined in (2.14)
satisfy

(2.18)
(v+l)

k >0, Ak >0, fork=O, 1,.",n,

Ak+-)>0 for k =O, 1, n--1.

Then, defining the positive constant a by

(2.19)
zt(V)A(V+2 }"k "C-k-1

c := min -?-;ig-?;-;i)" k 1, 2," ", n
fk-I k

we find that the Padd numerators PI,, (z), P2,, (z)," ., Pn, (z) for f(z) have no
zeros in the parabolic region defined in (2.3).

Proof. A classical identity of Frobenius [5] asserts that

(2.20) Pk (Z)= ( Z-+ I)Pk_I,,(Z)----Z Pk_2,,,(Z),

where

(2.21)

()A(,+l)Ak:= (+l), k ->_ 1,

ck, A k-z k

:=
()A(+), k>--2

(For notational convenience we set Cl, := 1.) By assumption (2.18), the bk,’s and
Ck,’S are positive real numbers for k 1, 2,. , n. Consequently, the recurrence
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relation (2.1) holds with bk bk,v, Ck Ck, and (2.2) of Theorem 2.1 becomes

{ zi (’)a(’+)(-’-kk- Ak-2(’+1)A ("+1))g }(2.22) a min k-lkX]-’f 1 [Afll)]2 k 1, ., n

However, using the known identity

(2.23) [A("+I)]2k-1 --Ak-2(+l)a(+)k A(+z)a()

in (2.22), we obtain

k k-I k-I k-1a=min ---")a,+,)[a,5)]2_ .k=l,2,...,n

which is the same as the defining formula (2.19).
In a similar manner, we deduce the following result for the Pad6

denominators.
COROLLARY 2.4. Suppose that, for fixed n 0, the Hankel determinants

corresponding to the formal power series f(z) Zi=o aiz satisfy

A)>0 A),+>0, fork=l,2,...,
(2.24)

,+2.>0 fork= 1,2,...,-1.

Then, defining the positive constant a by

(2.25) a:=min X-.k=l,2,...,u,
n+l n+l

the Padd denominators O,,(z), Q,,z(Z), O,,(z) for f(z) have no zeros in the
parabolic region

(2.26) := {z x + iy C" y2 4a(a -x), a > x}.

The proof of Corollary 2.4 follows in an analogous fashion from the
Frobenius identity

(2.27)

where

z--)O.._,(-z)-Zo..-(-z),O,,k (--z 1 +
b,,k c,,k

A (k)A (k-l) A(k-)A (k-)n+l n+l(2.28) bn,k A(k)lA(k-1 ), nk :-"
n+ A(k)n+l A(k-2)"n

In concluding this section we remark that the hypotheses (2.18) and (2.24) of
the preceding corollaries will be satisfied for all n and , if f(z) is a meromorphic
function of the form

vz Hi =, (1 + Ajz)(2.29) f(z) ao e H__, (1 -/3z)’
where ao>0, 3,_->0, hj =>0,/3i >-0 and Y’.j (,i +/3j)< o. The convergence proper-
ties of the Pad6 approximants of such functions were studied by Arms and Edrei in
[1].
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3. Partial sums and Pad6 approximants of e. As a concrete application of
the results in 2, we now obtain zero-free regions for the Pad6 numerators P,,(z)
and denominators O,,,(z) for e z. Explicitly, these polynomials are given by (cf.
Perron [10, p. 433])

(3.1) e,,(z)
(n / i,-j)!n!z_!.

=o(n+u)!j!(n-j)!’

(3.2) Q, ,(z)=
(n + u-j)!u! )j.

j=o (n + u)!j!(u-j)!
(-z

COROLLARY 3.1. For any v>=O, each element of the sequence of Padd
numerators {P,,,(z)}= for e has no zeros in the region

(3.3) +={z=x+iyeC" y2<-4(,+l)(x+,+l),x>-(u+l)}.

Furthermore, for any n >-O, each element of the sequence of Padd denominators
{Q,,(z)}=l has no zeros in the region

(3.4) ,+,={z=x+iyC" yZ<=4(n+l)(n+l-x),x<(n+l)}.

Proof. The Hankel determinants A) for s _>- 1 for e are given (el. 1 ]) by

(3.5) A): fi 1

j=l j(j+l)...(j+m-1)"

Thus, for any n _>-0, the constant ct defined in (2.19) is easily verified to be

(3.6) c =min{(v+l)" k 1, 2,..., n}= v+l,

and so, by Corollary 2.3, the region + is zero-free for every P,,,(z), n
1,2,....

Similarly, for any t, >= 0, the constant a defined in (2.25) equals n + 1, so that
by Corollary 2.4, theregion,+iszero-freeforeveryO/1,(z), ,= 1,2,.... l-1

In particular, for u 0, we obtain Corollary 3.2.
COROLLARY 3.2. No partial sum P,,o(z) Y,j=o zJ/] ore for any n >- 1, has a

zero in the parabolic region

={z=x+iy6C: y2=<4(x + 1), x >-1}.

This result is sharp at x =-1, and, as discussed in the introduction, it
improves upon an analogous.result due to Newman and Rivlin [9].

In Figs. 1 and 2 we plot, respectively, the zeros (shown as asterisks) in the
upper half-plane of the Pad6 polynomials {P/1,o(Z)}4.=l and of {P.,6(Z)}4.= foreZ,
together with the corresponding bounding parabolas for i and 7. The compu-
tations and the ones mentioned below were carried out by A. Price and P.
Comadoll on an IBM 360/65 using a modified version of SUBROUTINE
POLRT from the IBM Scientific Subroutine Package. The plots were done on a
Calcomp Model 563 plotter.

We remark that the largest parabolic region of the form y2 < A (x + 1) which
omits the zeros of the Pad6 polynomials {P.,o(Z)}4.0= for e is approximately given
by

y2 < 7.1940(x + 1), x>-l.
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FIG. 1. Zeros of the polynomials P,,o(Z), n 1, 2,..., 40
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FIG. 2. Zeros of the polynomials Vn,6(Z), n 1, 2, , 40

On the other hand, Newman and Rivlin [8] have (correctly) established that

converges uniformly to

exp (n +n w)

1
e dt := erfc(w),
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on any compact set in Im w =>0. If tl denotes the zero of erfc (w), having realpart
negative and smallest (positive) imaginary part, then tl is given approximately (cf.
Fettis et al. [4]) by

-+--1.354 810+ i(1.991 467).

Becase of the uniform convergence above, it then follows from Hurwitz’s theorem
that, for all n sufficiently large, Pn,o has a zero of the form

n+vnwn:=x,+iy, withlim w,=ti.

From this, we easily deduce that for each fixed/3,
2

lim Y
,,- (x,, + t)

2(Im tl)2 =." 7.931 880.

In other words, any parabola of the form

2y < K(x + ), x >-fi,

which is devoid of zeros of Pn,O(Z) of e z, for all n sufficiently large, must evidently
satisfy

K =< 2(Im/1)2 @ 7.931 880.

4. 1El hypergeometric functions. Using the notation

(4.1) (a)j := a(a+l)... (a+j-1), j-> 1, (a)0 := 1,

for any complex number a, the hypergeometric function lF(c; d; z) is defined by

(4.2) 1Fl(c; d; z):= 2 (c). z
i=0(d)i j!’

and is an entire function of z, for any choice of c and d with d 0,- 1,-2,
For example,

(4.3) e 1Fi(c; c; z), c 0,-1,-2,’.’,

and

n--1

k/ zn
(4.4) e- z k= Fl(l’n+l’z) n=l 2,...

k =0

Concerning zero-free regions for certain F’s and their partial sums, we
prove the next corollary.

COIOLLAP,V 4.1. With the notation (2.3) for the parabolic region , all the
partial sums

(4.5) s,(z)= (c)i z
i=o (d)---. j!’

n => 1,
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of F(c; d; z) have no zeros in the region
(i) a/c, if O < d <= c,
(ii) ,, if l <- c <= d,
(iii) ,,, a (2c d + cd)/(c 2 + c), if 0 < c < 1 and c <-_ d < 2c/(1 c).
Consequently, the entire function F(c d; z) has no zeros in the corresponding

interior region.
Proof. Putting

(c)(4.6) aj (d)fi!’
a_ := 0,

we apply Corollary 2.2 with the constant a being defined by

(4,7) c =inf
\ a ak-1

On substituting (4.6) in (4.7), we obtain

a =inf {-, g(k)" k =2, 3,...},(4.8)

where

(4.9)
2 + (2C 3)t + (C 1)(d 2)

g(t) :--
t2+(2c_3)t+(c_l)(c_2

Next, we observe that

for all > 2.

and

2c-d +cd
g(2) 2 lim g(t)= 1

C + C t--,.+o

(2t + 2c 3)(c 1)(c d)
g’(t)

[t2 + (2c 3)t + (c 1)(c 2)]2.

From these facts, it follows that the constant a of (4.8) is positive, and is given by
d/c, 1, and (2c d + cd)/(c 2 + c), in the respective cases (i), (ii) and (iii). Applying
Corollary 2.2 then proves that all the partial sums have no zeros in the corre-
sponding region , and consequently, the limit function 1F has no zeros in the
interior of (see the remarks following the proof of Theorem 2.1). 1-1

We remark that when c is not a nonpositive integer and c-d is not a
nonnegative integer, then it is known [6] that F(c; d; z) has infinitely many zeros
in the complex plane.

In Fig. 3, we plot the zeros in the upper half-plane of the partial sums
{Sn( ,140

z)1, in (4.5) of the hypergeometric function F(1; 4; z), i.e., when c

1, d 4. The corresponding zero-free parabolic region l from (ii) of Corollary
4.1 is also sketched. Two accumulation points of zeros are evident in the figure,
and these are necessarily zeros of 1G(1; 4; z).

COIOLLAR 4.2. For all n >- 1, the remainder

(4.10) e Y zk/k!
k =0
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FIG. 3. Zeros of the partial sums s, (z), n 1, 2,..., 40, for 1Fl(l" 4" z)

has no zeros in the region

(4.11) U’:={z=x+iyC: y2<4(x+l)}{z=x+iyC: ye<4(1-x)},
except at z O.

Proof. Applying Corollary 4.1 in the case when c 1, d n + 1, we deduce
from conclusion (ii) that the function F(1; n+ 1; z) is zero-free in o, the
interior of . Furthermore, the identity (cf. [6])

tF(1; n + 1;-z)= e-ZlF(n; n + 1, z),
0together with Corollary 4.1, imply that F(1; n + 1;z) is zero-free in , the

interior of t, defined in (2.26). Hence, by virtue of the representation (4.4), the
remainder (4.10) is zero-free in o o

5, Generalize Bessel polynomials. In this section, we consider the
generalized Bessel polynomials

(5.1) >(z) := (n + + 1)
=o j

where (n + + 1)i is defined as in (4.1). These polynomials were first introduced by
Krall and Frink [7], and in their notation,

(z) y,(-z, 8 +2, 2).

Several authors have investigated the location of the zeros of the polynomials
(5.1); among them, Do6ev [3] appears to have obtained the strongest result. We
state his theorem for real 6 as follows.

THEOREM 5.1. If n + + 1 > O, --2, --3, --4, , then all the zeros of
f)(z) lie in the closed disk

(5.2) D,++l := {z C" ]z 2
n++l

Using Theorem 2.1, we now improve upon Doev’s result.
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THEOREM 5.2. If n + 6 + 1 > 0, then all the zeros of Y)(z) lie in the cardioidal
region

(5.3) C//:= z=reeC:O<r< -Tr<0<r U
n++l’ n++l

Notice that Cn+5+1 D,,++I, and this containment is proper, except for z
2/(n+6+1).

Proof of Theorem 5.2. It is convenient to introduce the polynomials

F(m+’+ 1)
(5.4) P(z) :=

F(2m +-+ 1)

r(m+r+ 1) (m)(m+.r + 1)z,,_ m+-+ 1>0.
F(2m+r+l).=o ]

As can be directly verified, for fixed n and 6, the polynomials {P"+-(z)}___o
satisfy the recurrence relation

(5.5) P(n+-k)(z)= (-- ) D(n+6-k+l Z l(n+6-k+2)(Z) k>l-" 1
Ck

where P(_++l)(z):= 0, and

(n+6+k)(n+6+k-1)
(5.6) bk=n+6+k, k->l; c= (k-l)

k->2;, c:= 1.

Since, by hypothesis, n + 6 + 1 > 0, the constants b and c in (5.6) are positive for
all k _-> 1. Furthermore, a simple computation shows that

--1b(1-b_c )=n+6+l for allk-l,2,...,n, bo:-0.
Hence, the constant c defined in (2.2) is given by

c=n+6+l,

and so from Theorem 2.1, we deduce that all the polynomials {P(n+-t’)(z)}= are
zero-free in the region

++1 ={z =x +iy 6C" y2__<4(n +6+ 1)(x +n+6+ 1), x >-(n+6+ 1)}

={z eC: Izl-<_ Re (z) + 2(n +6+ 1), Re z >-(n +6+ 1)}.

In particular, taking k n, we have that P)(z) is zero-free in ,++1.
Finally, from (5.4) (with m n, -= 6) it follows that no zero of Y()(w) is of

the form w -2/z with z 6 ++. In other words, all the zeros of Y()(w) must
lie in the region

>Re +2(n+6+1) U
w n+6+l

which is the same as the region Cn+6+ in (5.3).
We remark that the Pad6 polynomials in (3.1) are related to the polynomials

in (5.4) by the formula

P,.,(z)=P"-")(z).
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PRESERVATION OF GEOMETRIC PROPERTIES UNDER
AN INTEGRAL TRANSFORMATION*

M. ABDEL-HAMEED AND F. PROSCHAN$

Abstract. We consider the transformation g(h)=(h, x)f(x)dtx(x), where f and b are non-
negative Borel-measurable functions of nonnegative arguments and/x denotes the Lebesgue measure
on [0, c) or the counting measure on {0, 1, }. We show that under appropriate assumptions on b,
various geometric properties of f (such as star-shapedness and superadditivity) are inherited by g.

1. Introduction. Consider the transformation

(1.1) g(;) j b(A, x)f(x) die(x),

where f and 4 are nonnegative Borel-measurable functions of nonnegative
arguments,/.t denotes the Lebesgue measure on [0, co) or the counting measure
on {0, 1,... }, and the integral is assumed to exist. We show that various
geometric properties possessed by f are inherited by g under appropriate assump-
tions on b.

Preservations results of a similar kind have been obtained by Schoenberg
(1950) for polynomials of a fixed degree, by Karlin and Proschan (1960) and
Karlin (1968, p. 130) for totally positive functions, by Karlin (1968, p. 285) for
monotonic, convex and generalized convex functions and by Proschan and
Sethuraman (1974) for Schur-convex functions.

2. Preliminaries. We shall consider four geometric properties.
DEFINITION 2.1. Let f be a nonnegative function of a nonnegative argument.

We say that
(a) f is star-shaped if f(ax)<-af(x) for each x -> 0 and 0 =< a -< 1,
(b) f is superadditive if f(x + y)>-f(x)+f(y) for each x =>0, y =>0,
(c) f is root-increasing if fl/X(x) is nondecreasing in x >0,
(d) f is supermultiplicative if f(x + y) >- f(x)f(y) for each x => 0, y => 0.
Property 2.2. Relationships among geometric properties. The following

elementary relationships among the geometric properties are readily verified:

f star-shapedc:>e<x) root increasing
=), f superadditive <:> et<x) supermultiplicative.
The two equivalences follow directly from the definitions, while the implica-

tion is shown in Bruckner and Ostrow (1962). That the reverse implication does
not hold is seen by choosing f(x)=Ix], a superadditive function which is not
star-shaped.

* Received by the editors November 12, 1974. This work was supported in part by the Air Force
Office of Scientific Research, AFSC, USAF, under Grant AFOSR-74-2581.

Department of Mathematics, University of North Carolina at Charlotte, Charlotte, North
Carolina 28213. The work of this author was supported in part by a grant from the University of North
Carolina at Charlotte.- Department of Statistics and Statistical Consulting Center, Florida State University, Tallahas-
see, Florida 32306.
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DEFINITION 2.1’. Dual geometric properties may be defined by reversing the
direction of the inequality in 2.1 (a), (b) and (d), and by replacing "nondecreasing"
by "nonincreasing" in (c). The dual geometric properties are called, respectively:
(a’) antistar-shaped, (b’) subadditive, (c’), root-decreasing and (d’) submultiplica-
tive. The relationships among (a’), (b’), (c’) and (d’) are analogous to those among
(a), (b), (c) and (d)in Property 2.2.

Properties of star-shaped, superadditive functions and their duals are discus-
sed in Bruckner and Ostrow (1962), Bruckner (1962), Rosenbaum (1960), Hille
and Phillips (1957) and Johnson (1972). Applications in probability and reliability
theory of functions with properties defined in 2.1 and 2.1’ may be found in Esary,
Marshall and Proschan (1970), (1973), Marshall and Proschan (1972) and
A.-Hameed and Proschan (1973), and applications in statistics may be found in
Barlow and Proschan (1966a), (1966b), (1967). Inequalities for star-shaped
functions are given in Barlow, Marshall and Proschan (1969).

We next define completely monotonic functions.
DEFINITION 2.3. A nonnegative function f of a nonnegative argument is

completely monotonic if it has derivatives of all orders and (--1)kfk)(X)=0, X -->0
and k 1, 2,. .

A comprehensive treatment of completely monotonic functions is given in
Chap. 5 of Widder (1946). Their applications in statistics and probability theory
can be found in Feller (1971, pp. 439-442). It is easily seen that completely
monotonic functions are antistar-shaped.

We shall need to define two more notions in order to state and prove our main
results.

DEFINITION 2.4. Let 4(A, x) be defined on AX, where A and X are
ordered sets. Then 4(A, x) is said to be totally positive oforder 2 (TP2) if 4)(A, x) _-> 0
for A A, x X, and

4,(i, x,) 4,(;,, x)
,(, x,) 4,(,

->0

for A <A2, Xl (X2, with A, A2 in A and Xl, X2 in X.
Totally positive functions of order 2 and of higher orders play an important

role in analysis, statistics, inventory theory, reliability theory and many other
theoretical and applied fields. A comprehensive treatment of the subject is given
in Karlin (1968).

DEFINITION 2.5. A function 4(A, x) is said to obey the semigroup property if

(D(/ "{"/2, X) I ()(/ 1, X Y)()(/2, Y) d/.(y),

where denotes the Lebesgue measure on [0, oo) or the counting measure on {0,
1, 2, }, A e [0, oo) or alternatively, A e {0, 1, 2,. } and x e [0, oo).

3. Preservation of geometric properties. We present the main theorem
concerning preservation of the geometric properties of Definition 2.1 under the
integral transformation (1.1); preliminary assumptions concerning f, g, 4’ and/
are as stated in the first paragraph of 1.
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THEOREM 3.1. (a) Let cb(,, x) be TP2, and for some a > O,

(3.1) I xq)(A, x) dix(x) aA ]:or all A >0.

Then f is star-shaped implies that g is star-shaped.
(b) Let oh(A, x) satisfythe semigroup property, and oh(A, x) dix(x) 1. Then f

is superadditive implies that g is superadditive.
(c) Let d(,, x) satisfy the semigroup property. Then f is supermultiplicative

implies that g is supermultiplicative.
(d) d(X, x) satisfies the semigroup property ifand only iff is exponential implies

that g is exponential.
(e) Let ck(,, x) be TP2 and satisfy the semigroup property. Then
(e-l) f is root-increasing and ix is the Lebesgue measure imply that g is

root-increasing.
(e-2) f is root-increasing, ix is the counting measure and for all > O,

lim f 4(,, x) dix(x) 0 for some o e [-oo, oo)
d

imply that g is root-increasing.
(f) ok(A, x) satisfy the semigroup property. Then f is completely monotonic

implies that g is completely monotonic.
Remark 3.2. Examples of kernels 4(,, x) satisfying (e-2) are:
(i) the Poisson kernel 4(, x)= e- (,X/x !), >= 0 and x 0, 1,. ., and

(ii) the binomial coefficients (;),,,/=0, 1,....

Proof of Theorem 3.1. (a) For each c > 0,

g(,) ca I4,(,,x)[j:(x)c ]x dix(x).
a

Since f is star-shaped, then f(x)-(c/a)x changes sign at most once in x ->0, and if
once, from to +. By the variation diminishing property of the TP2 function
4(,, x) (Kar|in (1968, p. 21)), it follows that g(&)-c, changes sign at most once,
and if once, from to +. Hence g must be star-shaped.

(b) Write

[by the semigroup property]

f f (1, 2)6(2, Y)f(Y + Z) d(y) d(z)

JJ y)[f(y)+f(z)] d.(y)

[since f is superadditive]
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[since I 49(A, z) d(z)= 1].

Thus g is superadditive.
(c) Using (1.1), the semigroup property and the supermultiplicativity of f, we

obtain

g(A1--A2) I I (A 1, Z)I(A2, y)f(z)f(y) dlx(z) dla.(y)

(;,)g().

Thus g is supermultiplicative.
(d) Let 4)(A, x) satisfy the semigroup property and f be exponential. Then, by

the same kind of argument as in (c), we obtain g(A + A2) g(A 1)g(A2) for all A --> 0
and A2 => 0. Since 4 and f are measurable, it follows from Tonelli’s theorem that g
is measurable (Royden (1968, p. 270)), and thus g(A) must be exponential, as
pointed out by Breiman (1968, p. 305).

Suppose now that (1.1) maps exponential functions into exponential func-
tions. Take f(x) e -x, s >= O. For each fi.xed A consider the measure u defined for
every Borel set A explicitly by the relation

(A) Ja b(A, x) dlx(x).

Define the Laplace transform of u by

gx (s) f e dua (x).

Then, by the well-known property of the Laplace transform, for every/1 0 and
2_->0, we have that gx,(s) g,(s) is the Laplace transform of the convolution

* "i.e.measure u, u,

Since g is exponential in A by assumption, then ga,(s)g,(s)= gx,+x(s); i.e.,

(3.3) g,:,,(s)g,:,(s) I 4,(A + X, x) e dta,(x).

By the uniqueness of the Laplace transform (see Thm. la. of Feller (1971, p. 432))
it follows that

(/-1 "l-A2, X) j 6(’-1, X--Y)6(A2, Y) d/x(y);

i.e., 4 satisfies the semigroup property.
(e-l) We can assume that for each A, 4(, x) is strictly positive on a set of

positive Lebesgue measure; otherwise g(A) would be zero and we would have
nothing to prove. Since f is root increasing, it follows that for each fixed a,
0 <= a < oo, f(x) a changes sign at most once in x -> 0, and if once, from to +.
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Also, by result (d) above, (A, x)a dtx(x)= b for some b depending on a.
Moreover, as a increases from 0 to oo, b increases continuously from 0 to eo.. By
the variation diminishing property, it follows that for each nonnegative b,

g(A)- bx j 4(A, x)[f(x)-a x] dtx(x)

changes sign at most once in A -> 0, and if once, from to +. We conclude that
g(A) is root increasing.

(e-2) The proof of (e-2) is similar to that of (e- 1), with obvious modifications.
(f) Result (f) follows from Theorem 12a of Widder (1946, p. 160) and (d)

above.
Remark 3.3. A dual theorem exists in which each geometric property is

replaced by its dual property. Thus the geometric properties of 2.1’ are also
preserved under the integral transformation (1.1).

4. Applications.
Moment properties. Karlin, Proschan and Barlow (1961) show that total

positivity properties possessed by a probability density f(x) on [0, oo).are inherited
by the sth normalized moment,

I xS
(4.1) s f(x)F(+ 1) dx,

wherever finite. We show that, in a similar fashion, certain of the geometric
properties described in Definition 2.1 are inherited by the normalized moment ,..

THEOREM 4.1. Letf(x), the density of a nonnegative random variable, possess
one of the following properties: (i) submultiplicativity or (ii) root-decreasing. Then
defined in (4. l) possesses the same property.

Proof. Note that b(s, x)= x’/F(s+ 1) is TP2 and satisfies the semigroup
property. See Karlin (1968, p. 140). It follows by Theorem 3.1(c), (e-l) and
Remark 3.3. that inherits the property possessed by the density fix).

An example of a root-decreasing density is the truncated normal

2 _x2/2cr2f(x) e for x --> O.

Remark 4.2. Alternatively, we may choose l(n, x) (nx) or cb2(x, n)= ();
both bl and 2 are TP2 and obey the semigroup property. See Karlin (1968, p.
142). A discrete version of Theorem 4.1 then follows.

THEOREM 4.3. Let f(x), the frequency function of a nonnegative discrete
random variable, possess one o[ the following properties: (i) submultiplicativity, (ii)
root-decreasing. Then the binomial-type moments

(4.2a) ()= f(x)
=0 X

(4.2b) B(= f(n)
i-----0

also possess the same property.
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Shock models. In Esary, Marshall and Proschan (1973), shock models and
wear processes are studied. Under the basic model, Pk represents the probability
that a device survives k shocks. The shocks occur randomly in time according to a
Poisson process with shock rate A. Then the probability that the device survives
until time without failure is given by

(4.3) /(t) 2 e-t
(At)k

k:o k!

Some of the results of the Esary, Marshall and Proschan (1973) paper may be
obtained as special cases of Theorem 3.1 and Remark 3.3; (b) and (c) of Corollary
4.4 below are contained in Theorems 3.1 and 3.2 of Esary, Marshall and Proschan
(1973).

COROLLARY 4.4. (A) If Pk is antistar-shaped in k O, 1, 2,..., then H(t) is
antistar-shaped in >=0. (b) If Pk is root-increasing (root-decreasing) in k =0,
1, , then H(t) is root-increasing (root-decreasing) in >= O. (c) IfPk is supermul-
tiplicative (submultiplicative) in k =0, 1,..., then H(t) is supermultiplicative
(submultiplicative) in >- O.

Proof. It is easily verified that for fixed A >0, 4)(t, k) e -t (At)k/k! is TP2 in
_-_ 0, k -0, 1, , and satisfies the semigroup property. The conclusions follow

from Theorem 3.1 and Remark 3.3.
Bernstein polynomial approximations. Let

x (l-x)
k =0

represent the n th Bernstein polynomial approximation to a continuous function f
defined on the unit interval. Karlin (1968, p. 287) shows that for fixed n 1,
2,..., Bn(x) is convex whenever f is convex. Using Theorem 3.1 and Remark
3.3, we may show the following corollary.

COROLLARY 4.5. Let f be star-shaped (antistar-shaped) on [0, 1]. Then for
fixed n 1, 2,..., b,(x) is star-shaped (antistar-shaped) on [0, 1].
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POLYGAMMA FUNCTIONS OF ARBITRARY ORDER*

NATHANIEL GROSSMANI

Abstract. Functions 0(V)(x) are defined for every complex u. They are entire functions of v and
generalize the well-known polygamma functions. Some of their properties are derived and their
relation to another possible generalization is described.

1. Introduction. The polygamma functions 0=q,(), 0(1), (2),... are
defined by 4,n)(x)- (d/dx)"+l log F(x). They can be represented by the infinite
series [1, Chap. 6]

and

6(x) -3, + Z
x 1

,:1 k(k +x-l)

q(n)(x)- (-1)n+ln Z
1

--o (k + X)n+l

for n 1, 2, 3, and x # 0, -1, -2, . The polygamma functions have various
applications. For example [1, Chap. 6], the sum k=o R(k) can be expressed in
terms of values of polygamma functions when R is a rational function defined at
the nonnegative integers and of degree _-<-2.

Professor Bertram Ross [3] suggested that sums with functions more general
than rational functions might be summed by a similar technique if a
suitable generalization of the polygamma function to nonintegfal index could be
found. The generalization he proposed was quite natural, especially since he was
familiar with the properties of fractional integration and differentiation. He
suggested the definition O((x) (d/dx)+l log F(x), where (d/dx)+l is fractional
differentiation, the operation inverse to Liouville’s fractional integration operator
[4], and he proposed (in essence) the study of these functions in a problem
presented in the American Mathematical Monthly [2].

As we will show here, the functions O(V)(x) for arbitrary v are not the obvious
extension and generalization of the series representation obtained simply by
replacing n with v, n! with F(u+ 1) and (-1)n+l by cos 7r(u+ 1) or e i(’+) or the
like. The series so obtained are well-known in classical analysis. They are
expressible in terms of the Hurwitz zeta function

’(s, a)- E
1

,:o (k + a)"

which is represented by this series for Re s > 1 and a 0, -l, -2,. , and is
analytically continuable to the whole s-plane as a meromorphic function. Neglect-
ing the sign factor, we have

=o (k + x)+
=F(v+l)((v+l,x).

* Received by editors March 5, 1975.
t Department of Mathematics, University of California, Los Angeles, California 90024. This
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It was Professor Ross’ hope that easily calculable representations could be found
for the sums of these series. That is a very difficult problem. For example, the case
v 2 and x 1 would require a convenient expression for st(3), the Riemann zeta
function; this old and tantalizing problem is still unsolved.

2. Development. We turn our attention back to the polygamma functions.
As O(n)(x) is defined only for nonnegative integers n, we are free to extend the
definition to functions of arbitrary order in any way we please; but there is a
certain structural feature of the whole family of polygammas of integral order that
is clearly worth preserving: (d/dx)’qn)(x)= "+)(x) for all nonnegative inte-
gers m and n. We will insist that our generalization must satisfy (d/dx)"q)(x)=
q"+)(x) for all complex numbers and v.

We start off with the Liouville fractional integral

1
(x- t)’-’ log F(t) dt.

For a fixed x > 0, this integral converges and defines an analytic function of p for
Re p > 0. It enjoys the property IPIq log F(x) Ip+q log F(x) for Re p > 0 and Re
q > 0. In a formal sense, we are done if we define

q/)(x) I-- log F(x).

Because of convergence restrictions, this definition is rigorous only if Re v < 1. It
is necessary to obtain an extension of Ip log F(x) to all p. This is the result:

(1)

x p

( 1 r’(p + 1)
log F(x)

F(p + 1---- log-+ 3’+-x F(p+ 1) p+l

x" [+x F(s)’(s) r ds,
2 7ri x_ F(p + 1 + s) sin 7rs

where 1 < A < 2 and integration is along a vertical line. It is easy to verify that the
function p Ip log F(x) given by this formula is an entire function in the p-plane
for each x in the plane cut along the negative real axis (so that log 1 0 and
x eL log x). We will show that this entire function coincides with the integral
expression defining Ip log F(x) for Re p > 0. It will then follow by the principle of
permanence of analytic relations that lplq log F(x) Ip+q log F(x) for all complex
p and q. (We use that principle in the context of operator-valued analytic
functions.)

At first glance, the integral o(x-t)p- logF(t) dt looks like an L
convolution, which suggests use of the one-sided Laplace transform; but that
leads to asymptotic relationships instead of equalities. It turns out best to use the
Mellin transform. The following gives an outline of the calculation.

We use the notation

///[f](s) t-lf(t) dt
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for the Mellin transform. There is a convolution product

(f*g)(t) f(v)g
dv

and an isomorphism

We also sometimes write

M[f**g] M[/]. M[g].

F’(t+ 1)
F(/+ 1)

Writing log F(t) log F(t + 1)- log t, we can integrate by parts to get

but

(x t)p-’ log F(t) dt= (x t)Pq(t) dt

t’- xP{ F’(p + 1)}x F(p+ 1)

Ix) l[ 1 ( -)’H(v-(x-- t)Pqg(l) dt- xp+ -\l-
where H is the Heaviside unit step function. Since

J//[ 1 (1-)pH(v--v 1)] (s) B(1-s,p+ 1)

for Re s < 1 and [](s)=-rr(1-s)/sin rrs for-1 <Re s <0, we find that

[;x,/ X
-p-l (x-t)Pqg(t) dt (s)= _F(P+ l)r(1-s) rr

sr(l_s)
F(p + 2- s) sin rrs

for -1 < Re s < 0. After division by p, we find that application of the Mellin
inversion formula gives

x--P--1 x F(p) (,+ioo F(1-- S)sr(1-- S) rr
dx,(x_ t)pqg(t) dt-- x

p 2 rri .,_ioo F(p + 2 s) sin rrs

where -1. < o-< 0. The formula (1) follows when s is replaced by 1-s in this
integral.

Two interesting expansions result from (1) when the contour is deformed in
one direction or the other to lie along the real axis. In the first case, suppose
0 < x < 1. Deform the line contour into one which comes from +oo on the real axis,
loops around +2 in the positive sense and returns to +oo. The deformation is
justified by Stirling’s formula and the hypothesis 0 < x < 1. There is a sign change
because of the change in orientation in the contour integration. Evaluation of the
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residues at the simple poles at s 2, 3, 4,.. is straightforward, and we get the
expansion

+T+-- --+ ’, (-1) xIVlgF(x) F(p+l)_lgx F(p+l) p+l k=2 k+p

where the summation in the braces converges for Ix] < 1 and x 1.
Now let x > 1. The contour is deformed in the other direction so that it comes

from -oo on the real axis, loops around + 1 in the positive sense and returns to -o.
Justification can be supplied by using the functional equation of the Riemann zeta
function followed by estimation on a sequence of semicircles whose radii tend to
o in a suitable way. The contour encloses simple poles at s 0, -2, -4,.. and
double poles at s 1, -1, -3," , that at s 1 being anomalous. Since calcula-
tion of the residues is not quite so straightforward as in the first case, we give some
details.

At s -2k (k 0, 1, 2, ). Using the functional equation of the Riemann
zeta function, we get

lim F(s)’(s)- (2r)-2k B.__ 4k"

The residue at s --2k is (after use of the reflection formula for the F-function)

B F(2k-p)(sin -rrp)(2"n’x) -zt’-I
2k

Ats- 1-2k (k 1, 2, 3,... Near s =-r, there is a Laurent expansion

(--1)
F(s)=----+cr+O(s+r).

r! s+r

We will show subsequently that

(--1)r( 1 ) O(r+l)
C (--1)r.

rt. k=l - T F(r + 1)

By the reflection formula,
7r

F(s)- F(1-s)F(s)2,
sin rs

so that the residue at s- 1- 2k is

(-1)Bc2-
(sin rp)F(2k-p- 1)x-2

2rk

At s 1. Since st(s) (s 1)-’ + y + O(s 1) near s 1, the residue is -3’.
The result is an asymptotic expansion, valid in sectors arg x} -6 as

xP { 1 F’(p + 1)}Ip log F(x)
F(p + 1) log-+x 7+F(p+ 1)

+xp sin wp (-1) Bc2-I F(2k-p-1) B F(2k-p)
k 2k X

2k +
k=O )
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We insert here the evaluation of Cr. Recall that

(--1)r 1
F(s)= +c+O(s+r)r! s+r

near the pole at s =-r. From the reflection formula,

r(s)
F(1 s) sin rs

There are expansions r/sin rs (-1)(s + r)-1 + 0(1) and

1 1 [ r’(r+ 1)(s+r)+O(s+r)2]r(1-s)= +
r(r+ 1----

near s =-r. Thus,
(-1)rF’(r + 1)

cr= r! F(r+l)"

To calculate F’(r + 1)/F(r + 1), differentiate the functional equation to get F’(t +
1)= tF’(t)+F(t). Set F’(n + 1) (n!)(b,- y) with bo=0. Then bn bn_l + 1/n, so
that b, Y,k =o (1 / k). Therefore,

F’(r+ 1)_ 1
F(r+ 1)

and the formula for c follows.
Now we are going to compare our extended polygamma functions to the

extensions obtained by using the Hurwitz zeta functions. For reference, we write
the full formula

O()(x) r(-v log-+ y +

x xsF(S)(s) ds.
2i .-i F(s- ) sin s

An asymptotic expansion for 0() as Ix[ and a power series when Ixl < a can be
obtained from the corresponding formulas for Ip log F(x). For convenience, set

+, 1 { 1 r’(-v) / yxq/(V)(x) x O(V)(x)
r(-v)

log-+ 3’+ F(-v) +x F(1 v)

1 ( ’+ F(s)’(s)
ds.

2ri ,-ioo F(s v) sin rs

Instead of ’(u + 1, x), it is more convenient to treat

Z(v+ 1, x)= F(v+ 1)x+((v + 1, x).

We take the Mellin transform of Z (with a modification of the transform variable)
and integrate term by term, getting

--s--1x Z(u + 1 x) dx F(s)s(s) r

F(s- v) sin r(s- u)’
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which is valid in the strip 1 < Re s < 1 + Re v, provided of course that Re v > 0. In
that strip the transform function is analytic. By the Mellin inversion formula,

I"/ I’(s)(s) "r,"
x

F(s u) sin r(s u)
Z(u + I x)

,-
ds,

where 1 < A < 1 + Re u. Because the integrand is entire analytic in u, we can fix A
(say, 1 < A < 2) and then use the integral to continue Z(u + 1, x) for all u and all x
not on the negative real axis.

It is now clear how intimate is the relation between (V)(x) and Z(u + 1, x),
although they are clearly not interchangeable. Since 1/F(s) has a zero at s =-n
and sin r(s- n)= (-1)n sin rs, it follows that

Z(n + 1, x) (- 1)"+q")(x).

Therefore,

for n 1, 2, 3,. .
Two of the most important identities satisfied by the polygamma functions of

integral order are

O(")(x + 1)=q")(x)+(-1)"n!x-’-

and

q")(1-x):(-1)"qt")(x)+(-1) r x cot rx.

(These are the functional equation and the reflection formula.) We have not found
direct generalizations of these formulas to polygamma functions of arbitrary
order, although we do have a formula by means of which q(V)(x / 1) and q((1 x)
can be expressed in terms of polygamma functions whose argument is x. For
convenience, let O")(x) x-"-")(x). Suppose that [Yl < Ix]. Using the binomial
theorem and term by term integration,

x 1 + dsO()(x + Y)=
2ri A--ioo F(S- u) sin rs

y
E o+(x..k =0

We note in closing that series and asymptotic developments for Z(u + 1, x)
and ’(u + 1, x) can be obtained from the contour integral representation for Z in
the same way as was done for <). When v is a nonnegative integer, these
expansions are well known [1] as properties of the polygamma functions of
integral order. The following series are worth giving explicitly. If

ky
sr(v + 1, x + y)- Z (-1)’sr( v + 1 + k, x)..k =o
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In particular, if ]y[ < 1,
k

r(p+ 1, 1 + y)= Z (-1)’( + 1 + k)-.
k =0
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A SECOND ORDER NONLINEAR DEGENERATE PARABOLIC
EQUATION WITH NONLINEAR BOUNDARY CONDITIONS*

MARGARET C. WAID

Abstract. Consider the nonlinear degenerate parabolic operator

Lu ’ aiJ(x, t, u, VxU)Ux,x, + y’ hi(x, t, u, Vxu)u,
i,j:l i=1

c(x, t, u, Vxu)u, + d(x, t, u, Vxu)U

where u, aij, b c, d are bounded real-valued functions defined on a domain D
L is degenerate in the sense that c(x, t, u, V,u) => 0 on D. Sufficient conditions are given for the existence

of a classical solution to a first initial-boundary value problem with nonlinear boundary conditions:
Lu f(x, t, u, V.u), u (x, t, u, V.u) on the normal boundary of D. The proof of existence is an

application of a fixed-point theorem due to Schauder.

1. Introduction. We consider the first initial-boundary value problem for the
second order nonuniformly parabolic operator

(1.1)

LIA k aiJ(x, t, u, Vxu)Uxixj + hi(x, t, u, Vxu)Ux,
i,j=l i=1

c(x, t, u, Vxu)U, + d(x, t, u, Vxu)U,

where u and all coefficients of L are real-valued functions defined for (x, t) (x l,

x2,’", x,,t) in an (n + 1)-dimensional, bounded domain D. Subscripts will
be used to denote differentiation; Vxu represents the spatial gradient of u.

The operator L is assumed to be parabolic; that is,

(1.2) aiJij > Till 2 > 0
i,j=

for some positive constant 7 and for each real vector { :/: 0. In general, L will be
assumed to be nonuniformly parabolic or, more specifically, time degenerate.
That is, c(x, t, u, V,,u) => 0 but is not necessarily bounded away from zero on D.

Relying on existence of a unique solution to the first initial-boundary value
problem for the linear equation

Mu aiJ(x, t)u,,x + bi(x, t)Ux,
(1.3)

i,j= i=

c(x, t)u, + d(x, t)u f(x, t)

satisfying a "linear" boundary condition on the normal boundary of D, we use a
priori estimates of the Schauder type together with a fixed-point theorem to prove
existence of a solution to the nonlinear first initial-boundary value problem with
nonlinear boundary conditions.
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2. Preliminaries. The notation is similar to that used by A. Friedman in [1].
D is bounded, (n + 1)-dimensional domain in R"/ 1. The boundary of D, 8D B
+ Br + S, where B is a domain in R" {0}, Br (T > 0) is a domain in R" T},
and S is a manifold, not necessarily connected, in R" (0, T]. B 4- S denotes the
parabolic, or normal, boundary of D.

Let Dr D f-I (R" x (0, T)), B D f-I (R x {r}), and S S f"l (R" (0,r]).
Assume B is a domain for each fixed r e (0, T). For every (x, r) in D, 0 < r < T,
if S(x, r)= D + B, then S(x, r) S(x, r) B + St. Assume there is a simple
continuous curve e in D connecting B to Br along which the t-coordinate is
nondecreasing.

H61der continuity of a function f is defined with respect to the metric d
where d(P, Q)is given by

d(P, Q) [Ix 12 4-It [1]1/2 for P (x, t), Q (if, ),
and

For e e (0, 1), we define I1, As in [1], let

Ulo sup
D

lu(P)- u(Q)l
H(u) sup

P,QeO d(P, Q) I1 lu o +

(u) is the H61der coefficient of u. Now C,(D)= {ulu’b--, R, I1 < oo} is a
Banach space with norm I-7[.

Denote by D any partial derivative of order m with respect to the variables
xl, "", x, and let D__t_= cg/ct. If Dxu, Dxu, Dtu exist in D, then we define Ifil+, by
I1+- I1 4- IDxul 4- ID2ul + IDtul, where the sums are taken over all
partial derivatives of the indicated order. Let

l2+a(D {UlU’ R, l12+ <

a +(D) is a Banach space with norm [. 12+. The bars which appear in the symbols
for the above Banach spaces and their corresponding norms, as used in [1],
indicate that the estimates are boundary rather than interior estimates. Since we
are concerned with boundary estimates only, we shall drop the bar. When it is
clear that the domain is D, we shall omit/9 also.

DEFINITION 2.1. D is said to have property (E) if for each point Q of S, there
exists an (n + 1)-dimensional neighborhood V such that V f’l S can be represented,
for some i(1 =< __< n), in the form

Xi h(x1, Xi- 1, Xi+ 1, Xn,

where h, Dxh, 2Dxh, D,h are H61der continuous of exponent 0. If D has property (E)
and if the functions DxD,h, D2, h of the local representations of 8 exist and are con-
tinuous functions, then we say that D has property (E’).

DFIbaTON 2.2. A function defined on B + S is said to belong to C2+(D)
if there exist functions in C2+=(D) such that 0 on B + S. Then Iq12+= is
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defined by

where the infimum is taken over all q C2 +,(D) which coincide with on B + S.
We introduce the following notation for convenience. If u is a bounded real-

valued function on a subset A of R"+ define

M(u; A) sup {ux, t)l(x,t)A}
and

m(u A) inf u(x, t)l(x, t) A }.

We shall need to use existence of a unique solution to the linear first initial-
boundary value problem

Nu aiJ(x, t)Uxx + bi(x, t)Ux c(x, t)u + d(x, t)u
i,j=l i=1

(2.1) =f(x,t) onD+ BT,
u O(x, t) on B + S

to obtain existence of a solution to the analogous nonlinear one.
We shall consider two cases. For the degenerate case in which c(x, t) is

assumed to be nonnegative only, we use the existence-uniqueness theorem which
is proved by the author in [2]. For this case, we must assume that aij is constant.

If c(x, t) is bounded away from zero, then we can use the existence-uniqueness
theorem of Friedman [1] and it is not necessary to assume au constant. Of course,
when there is one space variable we can easily divide a a(x, t) and so it is not neces-
sary to assume c(x, t) attains a positive minimum on D. We now state the two
theorems precisely.

THEOREM 2.3 (see [2]). Assume that a’J is constant for each i, j, that all coeffi-
cients of N, defined in (2.1), are of class ca’x(O), u6 C(/), u C3(D), and ala22

+ b a2 >= for some constant 2 > O. Suppose, further, that the coefficients ofN are
uniformly H61der continuous (exponent ) in D, ]ail <= K a, Ibil <= K a,

Iftl <= K a, that m(c; B + S) >_ It > 0 while m(c; D) >= O, that Ifl < v, and that
(1.2) holds. If D has property (E’), O C2 +, and N, f on t3B, then there exists a
unique solution u of the first initial-boundary value problem (2.1) and, furthermore,
bl - C2 +

THEOREM 2.4 (see [1]). Assume that all coefficients of N, defined in (2.1), are
of class Ca(O), u C(b), u C3(D), that the coefficients ofN are un!lormly H61der
continuous (exponent ) in D, that there exists a constant K such that
Ibil <= K1, ]dl < K1, and that c(x, t)=_ 1. Assume also that ]f] < and that
(1.2) holds. If D has property (E’), C2 + and NO f on c3B, then there exists a
unique solution u of the first initial-boundary value problem (2.1) and, furthermore,
bl C2 +ot.

It is clear that if c(x, t) is bounded away from zero, then Theorem 2.4 applies.
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3. A priori estimates. We shall need Schauder-type estimates for solutions u
to the linear problems discussed in Theorems 2.3 and 2.4. We first consider the
degenerate problem.

The technique which was used in obtaining the solution in Theorem 2.3
involved perturbing the coefficient c by 1/K and considering the problem

Nku Nu -ut f on D + BT, U on B + S.

By Friedman’s work, we were guaranteed [2] a unique solution u C2 +(D).
We showed that the sequence {Uk} obtained in this manner is Cauchy in the Banach
space C2 +(D) and converges in I" 12 + to the unique solution u of the first initial-
boundary value problem (2.1). These u satisfy lUkl2+ =< kl/2M(l12+ + Ifl),
where M is independent of 112+ + Ifl. If , > 0, there is some UK() such that
[u UK()[ < . It follows that

lul / _-< lu u) / u<)12 / < lu u)12/ / lu)l/

<= + K(,)]a/2M(I’I2 + + fl=).

We have therefore proved the following theorem.
THEOREM 3.1. Assume all the conditions of Theorem 2.3. Then ifu is a solution

to thefirst initial-boundary value problem (2.1) and e > O, there exists a constant K(:)
and a constant M such that

(3.1) lu12+= _-< *: / Ig(e,)]X/2M(lOI2+ / Ifl),

where M is independent of e, re(c; D) and Iq12+ / Ifl.
The approriate theorem for the nondegenerate case is proved in 1].
THEOREM 3.2. Assume all the conditions of Theorem 2.4. Then a solution u of

the first initial-boundary value problem (2.1) satiates

(3.2) lu12+ =< M(I’I2 + / If )

for some constant M depending only on K1, 7, o and D.

4. The nonlinear problem. We are interested in solving the first initial-
boundary value problem

(4.1)
Lu f(x, t, u, V,u) onD+ BT,
u= (x,t,U,Vxu) onB+ S.

For v a fixed element of C2 +, consider the linear problem

(4.2)

Lvu iJ(x, t, ), Vxv)Uxixj -1- bi(x, t, v, Vv)u,
i,j=l i=1

c(x, t, v, Vxv)u, + d(x, t, v, Vxv)u

f(x, t, v, Vxv) onD + BT,

u= O(x,t,v,V,v) onB+ S.
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Assuming that as a function of x and t, the coefficients satisfy the hypotheses of
either Theorem 2.3 or 2.4, we obtain a unique solution u e C2+, to the initial-
boundary value problem (4.2).

Define b :C2+ --, C2+ by letting u b(v) be the unique solution to the
initial-boundary value problem (4.2).

Under appropriate conditions on the coefficients, we shall, show that:

(4.3) qS’A --, A where A is some closed convex subset of the Banach space C2 +"

(4.4) 4 is continuous in l. 12 + on A.

(4.5) ;b(A) is precompact.

We shall then apply the Schauder fixed-point theorem of [1, p. 189] to obtain
an element ue C2+ such that b(u) u. Then u will be a solution to (4.1).

Assume that the coefficients of L satisfy a Lipschitz condition in u and Vxu
in the [. Is-norm. That is, a coefficient y(x, t, u, Vxu) satisfies

(4.6) [y(x, t, Ul, VxUl)’- y(x, t, u2, gxu2)[e

_
g/y[u u2[ -]-- ylgxul -]- Vxb/2]

for some positive constants r/y and y.
Let A {u[ [u[2+ =< 2M(2M + 2KIM + 1)(, 2+ + [f[}. Analogously, for

the degenerate case we shall use for fixed t0 > 0,

A {u[ [u[2+ < 2[o + [K(%)]1/2M,o + [K(eo)]I/2MK lEO

+ [K(eo)]I/2M(2[K(eo)]I/2M

+ 2KlK(e,o)] 1/2M + 1)(l[2+ +

A is clearly a closed convex subset of C2 +.
Let v A and h [0, 1]. dp(hv) satisfies

We now show ’A A.

(4.7)
Lh4)(hv) f(x, t, by, V,hv)

4)(by) O(x, t, by, Vxhv)

on D + Br,

onB+ S.

We observe that (4.7) is equivalent to

(4.8)

Lqb(v) L,,qb(v) Laqb(hv) + f =_ F (v) on D + Br,

dp(v) dp(v) dp(hv) + O(x., t, hv, Vxhv) X(V) on B + S.
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It follows that

IF(v)l =< IL,g,(v) Lhch(hv)l + Ifl
-< K llt(v) 4(hv)12 + / [aiJ(X, t, v, VxV a(x, t, hv, Vxhv)]Ddp(hv)l

+ I [bi(x, t, v, Vv) b(x, t, hv, Vhv)]D(hv)l

+ Ic(x, t, hv, Vhv) c(x, t, v, Vv)llD4(hv)l

+ Id(x, t, v, VxV) d(x, t, hv, Vxhv)l14(hv)l + I/1

K14(v)- 4(hv)12+ + (a,lV hvl + (,,lVxV Vxhvl)lD4(hv)l
+ (,lv- hv + b, lVxV- Vxhv])]Dx(hv)l

+ (lv hvl + clVxv Vhvl)lDt(hv)l

+ (alv hvl + alVv Vhvl)14(hvl + Ifl
G Kl@(v) @(hv)l+ + 2 max.. {a’, a’}lV hvl+2lD4(hv)l

1Ni, jNn

+ 2 max {b’, i} Iv hvl2 + E IDx(hv)l
1NiNn

+ 2 max {n,., ,.}lv hvla +lD,O(hv)l
+ 2 max {a, a}lv hvl2 +10(hv)l + Ifl
K10(v)- 4(hv)la+ + 211 hi Ivla+KalO(hv)la+ + Ifl,

where

(4.10)

K max {l/laij, i, qC’ qd, aij, i, ., d}o
<-i,j<__n

Furthermore, the inequality

(4.9) IF(01 Kllb(v) c(hv)12+ / 21 h] Ilz+Kzl(h012+ + If]
holds in case aij is constant. If aij is constant, the term containing aiJ(x, t, , Vx
-aiJ(x, t, h, Vxh vanishes and K2 is the maximum of the remaining Lipschitz
constants.

We shall now be concerned with estimating I() (hv)12 +. u () (h)
satisfies

Lu [aiJ(x, t, hv, Vxhv a’J(x, t, v, Vv)]D(hv)
+ [bi(x, t, hv, Vhv) bi(x, t, v, VxV)]DO(hv)

+ [c(x, t, v, Vxv) c(x, t, by, Vxhv)J(hv)

+ f(x, t, v, Vv) f(x, t, hv, Vhv) in D + Br,
u= O(x,t,v,Vv)- O(x,t,hv, Vxhv) in B+ S.

Applying Theorem 3.1 or 3.2, whichever is appropriate, to the system (4.10),
we have the estimate

(4.11) IO(v)- O(h012 + M[I0(x, t, v, Vv)- 0(x, t, hv, Vxh012+ + Igl]
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or, analogously, for the degenerate case
< eo + [K(eo)]l/2m[l(x v VxVI(v) g,(hv)12 +(4.11’) O(x, t, hv, Vxhv)12 += / Igl=],

where g(v) is the forcing function appearing in (4.10). It is clear that in a manner
similar to that used in obtaining the inequality (4.9), we can estimate Igl, by

211 hi Iv12 +=g21(hv)12 += / 21fl=.
Hence, substituting (4.11) into (4.9), we see that

If(v)] < KxM{lO(x v Vxv) -d/(x hv Vxhv)12+

+ 211 hi Ivl2 +,Kzlck(hv)12 + + 2Ill=}
+ 211 hi

<- 2gM{ItPlz+o, + Ifl= / l1 hi Ivl2+g2lb(hv)l=+}

+ 211 hi 112 +=g2l(h)12
<_ (2KM + )(1’1+ / Ifl) + (2KaM + 2)11 hlg21cb(hv)12+ll=+.

The above chain of inequalities yields

If()l _-< (2K1M + 1)(1,12+ / Ifl)
(4.12)

+ (2KIM + 2)11 hlK214)(hv)12 +lv12 +.
For the degenerate case, we substitute (4.11’) into (4.9) and obtain

IF(v)l _-< Klo + (2KI[K(.o)-]I/2M + 1)(1’12+ + Ifl)
(4.12’)

+ (2KI[K(c,,o)]I/2M + 2)11 hlK2lcb(hv)12+lvl2+.
We now estimate IZ()I2/. From (4.8) and (4.11) we see that

Iz(v)12 / -<_.

=< m[2101 + + 211 hi IVlz+Kzldp(hv)12+ + 2lf[] + lOl2+,

=< (2M + 1)(112 + + I/Is) + 2MI1 hlK2ldp(hv)lz+[vl2 +,.

Thus

(4.13) Iz12+ _-< (2M + 1)(1,12+ + If ) + 2MI1 hlK2l(hv)12+,lvl2+.

Similarly, from (4.8) and (4.11’) we obtain

Iz12+= =< c0 + 2Eg(eo)]/2M(l12+= + If I=)
(4.13’) + 2[K(co)3/MI hlg21qS(hv)12+=lvl2+=.

Since qS(v) satisfies the system (4.8), we may apply Theorem 3.1 or Theorem
3.2 to obtain

(4.14)

(4.14’)

14(v)12 += < M(Izl2 += + Ifl=),

IcP(v)lz += eo + [K(eo)]a/2M(IzI2 + 4- Ifl).
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Substituting (4.12) and (4.13) into (4.14), we see that

Ib(v)12 + _-< M[2MJqJl2 +, + Jfj + 2MI1 hlK21dp(hv)12 +,lvJ2

+ (2K1M + 1)(1012+ 4-[f[)

+ (2KIM + 2)[1

M(2M + 2KM + 1)(IqJ]2+, +

+ M(2M + 2KM + 2)11

Now [b(hv)[ 2 + is uniformly bounded independent of h and v since di)(hv) satisfies
(4.7) and the estimate of Theorem 3.2 holds. Furthermore, yeA implies that

Iv12+ _-< 2M(2M + 2KM + 1)(112+ 4- Ifl). Choose h sufficiently near 1 that
2M(2M + 2KxM + 2)]1 -hlKzlck(hv)12+= < 1. Therefore, I(])(U)lZ+t 2M(2M
+ 2K1.M + 1)(Iq/12+, + [fl,)and we conclude that c/)(v)eA.

Proceeding with the degenerate case, we substitute (4.12’) and (4.13’) into
(4.14’); then

IqS(hvl2+ is uniformly bounded independent of h and v since dp(hv) satisfies (4.7)
and the estimate of Theorem 3.1 applies. Furthermore, v A implies that

Iv]2+,-<_ 2{o + [K(c,o)]/ZMeo + [K(eo)]/ZMKeo + [K(co)]X/ZM(2[K(eo)]l/ZM

+ 2KI[K(eo)]/2M + 1)(loI2+ + Ifl)}.

Choose h sufficiently near that

2[K(eo)]a/2M(2[K(co)]/2M + 2K[K(co)I’/2M + 2)K2ldp(hv)12+. 11 hl < 1.
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Then it follows that

I(v)lm+ 2{o + [K(eo)]’/2Me.o + [K(e.o)]I/ZMK,e.o
+ [K(co)]l/ZM(2[K(eo)]X/ZM + 2Kx[K(eo)]’/ZM + 1)(I’la+ + Ifl)}.

Hence, 4)(v) e A.
We shall now prove that (4.4) holds: 4 is continuous in l. [2+ on A. Using

(4.10) and (4.11) with vo replacing hv, we obtain

IO(v) 4(Vo)lz +, _-< M[I0(x, t, v, Vxv) tp(x, t, v o, Vvo)l: +,

(4.15) + If(x, t, v, Vxv) f(x, t, Vo, Vxvo)l

+ 2Iv Vo12 +=Kzlqb(Vo)12 +].

Using uniform boundedness of [qS(Vo)[.+ and continuity with respect to u
in [. [2 + Of 0(X, t, U, Vxb/) andf(x, t, u, Vxu), we see that (4.15) immediately implies
continuity of 4) on A in 1.12 +,. This accounts for the nondegenerate case.

To show continuity of 4) in case the equation is degenerate, we note that
(4.10) and (4.11) imply for arbitrary c > 0,

14)(v) 4’(v0)12 + <- + K M[ltP(c, t, v, Vv) p(x, t, voVvo)12 +

(4.15’) + If(x, t, v, Vv) f(x, t, Vo, V,vo)l

+ 2Iv Vo12 +K214(Vo)12 +],

where e, K(e), M are independent of

Ik(x, t, v, Vv) $(x, t, Vo, Vxvo)12 + + If(x, t, v, V,v) f(x, t, Vo, V,vo)l

4- 2Iv Vo12 +KzlqS(Vo)12 +.

Ib(Vo)[2+ is uniformly bounded and qJ and f are assumed to be continuous in
I" [2 +a" Hence, there exists > 0 such that

K M[lq4x, t, v, Vxv) 9(x, t, Vo, Vvo)12 +

+ If(x, t, v, Vxv) f(x, t, Vo, Vvo)l

+ 21v Volz+Kzlb(Vo)[2+ <

4) is therefore continuous on A in 1. [2 +,.
We must verify that b(A) is precompact. That is, if qS(v,,)} is any sequence in

qS(A), there exists a subsequence {b(v,)} which is convergent (in l. 12+) to some
element v of A. v need not be in the range of 4.

We shall need a theorem which appears in [1, pp. 71-75] and which we state
without proof.
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THEOREM 4.1. Let L be a parabolic operator in D, D satisfying the property (E’),
and assume that, for some p => 0, the functions DxDt DxDtbi,m DxDtm kC, DxDtdk
D,D (0 <= m + k < p) are uniformly H61der continuous (exponent oO in every
domain whose closure is contained in D + B + S + Br. Assume further that the

functions h which appear in the local representations of S are such that D’ + 2Dkth
k+lDxD h (m >= -2, k >__ -1, m + k <= p) are HOlder continuous (exponent ).

Assume finally that d/ C2 +, that L/= f on c3B, and that, as a function of the
local parameters of S, 9 is a function satisfying the condition that Dxm+EDtk,

k+lDxD (m >__ -2, k >= -1, m + k <__ p) are H61der continuous (exponent ),
whereas on B, D’+2(-2 m < p) are H61der continuous (exponent o0. If u
is the solution of (2.1), then in every domain whose closure is contained in D + B
+ S + Bt, the functions Dm +2Dktu DxDtmk+XU (m => --2, k => 1, m + 2k =< p)
are uniformly H61der continuous (exponent t).

Remark 4.2. The above theorem also holds for the degenerate case. Since we
cannot "solve" for ut, however, we use the estimates for [ut[ obtained in Theorem
3.1 and proceed in a similar fashion as in [1, p. 74]. Furthermore, its proof guaran-
tees a uniform bound for [Daqs(v,,)] and IDxDd(m)l which is independent of m.

Suppose [Da(v,,)[ __< K. Then M([Dac(v,,,)[;D)<= K and H,(Dack(Vm)i <= K.
Therefore, {Dac(Vm)} is a uniformly bounded and equicontinuous family in the
bounded domain D. By the theorem of Ascoli-Arzela, there exists a subsequence
qS(v,) such that {DqS(v,)} is uniformly convergent in O. By successive applications
of the Ascoli-Arzela theorem, we obtain a subsequence {b(v,)} of {b(v,)} which
is uniformly convergent in D together with its first three x-derivatives, its xt-
derivative, its txx-derivative, and its first t-derivative. That is,

(4.16)

For convenience, let m" m.
v e C2 +,, for suppose P and Q are arbitrary points in D. Since H,(D2dp(v,,,)) <= K,

(4.17) ID2dP(Vm)(P) D2dP(Vm)(Q)ld(P, Q)- <= K.

Letting m and using (4.16), we have

(4.18) IDly(P)- D2v(Q)Id(P, Q)- <__ K,

so that H(D2xv) < oe. The rest of the argument that I/)12 + < O0 is similar. To show
that 4(v,,)--, v in l. 12 +, we consider 14(v,,) v12 +,. It is sufficient to prove that
H,(D2xCk(v,,) D2(v)) --, 0 as m oe since all other terms ofthe norm are treated
similarly.

We shall show that for any e > 0 and for all P, Q e D with P 4: Q, there exists
m0 such that if m > too,

(4.19)
]I,,(P, Q) =_ lD2c(v,,,)(P)- D2v(P)

D2c(v,,)(Q)+ D2v(Q)]d(P, Q)- < .
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It is sufficient to assume thatP (x ,X2, Xn, t)and Q (x + h,xz, ..., x,,t)
since the domain D has the property that there is a simple continuous curve
in D connecting B to Br along which the coordinate is nondecreasing. If P and
Q are not related in this manner, we use the triangle inequality.

Dx3[b(/m) V] -- 0 as m uniformly in D. Hence, there exists mo and ho
(independent of x) such that if m > mo and [hi < d(P, Qy < Iho[ =< 1, then
ID2[qS(v.)- v](P)- D2[b(v.,)- v](Q)l Ihl-’ < e. But II,,,(P, Q) <- IO2[qb(v,.)- v]
(P)- D2[qS(v)- v](Q)llh[ -. Hence, [I,,,(P,Q)[ < :. On the other hand, if

d(P, Q) >__ ho, then, since Pdp(v.,) D2xC/5(v) uniformly in D,

II,.(P, Q)I -< d(P, Q)-[[D2dp(v.,)(P) D2v(P)[

+ ID2qS(v)(Q)- D2v(Q)I] < if m too,

where mo is independent of P, Q.
We have, therefore, shown that 4(vm) v in I" 12 +. This completes the proof

that 4 is a compact mapping.
By the Schauder fixed-point theorem, b has a fixed point u A. u is a solution

to (4.1). We have thus proved the following theorems. Theorem 4.3 is for the
degenerate parabolic operator, whereas Theorem 4.4 deals with the uniformly
parabolic case.

THEOREM 4.3 (THEOREM 4.4). Assume that the conditions of Theorem 3.1
Theorem (3.2)and Theorem 4.1 hoM, that the coefficients are Lipschitz con-

tinuous in l" I (i.e., (4.6) holds), that (x, t, u, Vxu) and f(x, t, u, Vxu) are continuous

with respect to u in [. 12 +. If D has property (E’), 6 C2 + and L/ fort 8B, then
there exists a solution u of the nonlinear first initial-boundary value problem (4.1)
and, .furthermore, u C2 +

THEOREM 4.5. lffand /arefunctions ofx and alone, then the solution obtained
in Theorem 4.4 is unique.

Proof See [3].
Iff and q are functions of u and Vu, the question of uniqueness is more

complicated. The usual arguments requiring a maximum principle do not readily
apply.
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TIME TO ATTAIN A GIVEN TEMPERATURE AT THE CENTER
OF A SPHERE DUE TO RADIAL HEAT FLOW*

M. L. GLASSER

Abstract. An explicit formula for the time required for the center of an initially uniformly heated
sphere to attain a given temperature due to thermal diffusion is given in terms of the radius and a
temperature parameter.

Let the interior of a sphere of radius R and thermal diffusivity a be initially
at the temperature To and let the surface be maintained from 0 at temperature
Ts. Then it is well known [1, p. 233] that the temperature at the center is given by

() T- T0=(T- To) + 2 (-1)"exp(-anZnZt/R2)
n=l

For many purposes, however, one wants to know the time that must elapse before
this temperature is attained. Due to the existence of the transformed version of (1)

(2) T- To= [_- ai/ exp
(2n + 1)2R2)4at

there is little difficulty in determining in practice since one or the other of the
quantities anZt/R 2 or RZ/4at will be greater than unity and the series in (1) or (2)
can be truncated after one or two terms. By dimensional analysis one also infers
that varies as R2, although the functional dependence on T is much more difficult
to assess.

The purpose of this note is to point out that relation (1) or (2) can be inverted
in a way that makes these features explicit. The resulting formula, although it may
not have great computational superiority over the pair of formulas (1) or (2),
does not eliminate the need to decide between them, and appears not to have
been noted before.

In (1), we introduce the dimensionless quantities

and note that we have

But [2, p. 479]

q exp {ni(iat/R2)}

fl 0](0, q),

0](0, q) -2(1 kz)/2K(k),

q exp (- nK(k’)/K(k)),
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where K(k) is the complete elliptic integral of the first kind of modulus k. Hence

R2 K(k’)
t=
a K(k)

(3)
2R2

rcZafl
k’K(k’),

where k’= (1 k2) 1/2 and

(4) k’ K(k)= rcfl/2 or K(ik/k’)= rcfl/2.

Thus, for given T (or fl), one need only solve (4) for 0 _<_ k _<_ and insert the result-
ing value into (3). We see, as expected, that varies as Re and depends only on the
square of the ratio (T. To)/(T To). The solution of (4) is facilitated by the series
expansion for K and by the existence oftabulations ofK for imaginary argument [3].
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A FIVE-PARAMETER FAMILY OF POSITIVE KERNELS
FROM JACOBI POLYNOMIALS*

M. RAHMAN
Abstract. The Jacobi polynomials 2Fl(-n, n + + t -Jl- 2 -" 3 1; + 2; x/E) over the

range 0, El, E > 0, are used to construct a generally nonsymmetric kernel with five parameters
1, 2, fit, fiE, f13 whose real parts are taken to be positive. Under further conditions on fl, fiE, f13
this kernel is shown to be square-integrable, and even continuous over a wide region of the parameter-
space. For real values of the parameters the kernel is shown to be essentially positive. Special limiting
kernels are obtained by considering various limiting cases: 0, (z 0, (Z E , f13 E .
Some bilinear sums are obtained involving the Jacobi and Laguerre polynomials.

1. Introduction. The motivation of this work can be briefly described as a
generalization of our previous work on Jacobi polynomials (Rahman I9]). The
kernels we produced in that paper contained four parameters and appeared to be
general enough, but in trying to derive some known bilinear sums (Erd61yi 63,
Popov [8]) we found out that four parameters did not allow enough freedom to
extend the results beyond a certain class. In particular, the family of kernels we
obtained in [9] were easily symmetrizable and therefore the bilinear sums we
obtained therefrom were characteristic of symmetric square-integrable kernels
while Erd61yi’s and Popov’s bilinear sums had an essential asymmetry. Our search
for such an asymmetric kernel resulted in this paper.

The method employed in this work is identical to the one used in 93, but
we actually started out with six different parameters 1, 2,/11, f12, f13, fl, all
with positive real parts, to construct a kernel K(x, y) which, when multiplied by
the Jacobi polynomial 2F(-n,n + 1 --2 1_ f12 + 3- 1:1 + 2:Y) and
integrated over y from 0 to 1, produces another Jacobi polynomial. We found
that this happens if and only if fib f12 + f13 fix. Of course, this relation is a
reflection of the manner in which the parameters are introduced into the problem.
It turns out that in the special case fll 2 the kernel reduces to the one derived
in [9] and obtained previously from stochastic considerations by Cooper [5].
(The references related to this problem will be found in [9].) We therefore assume
in this paper that fll and 2 are different. We have found that K(x, y) is essentially
nonsymmetric when /3 4:2 and that its effect on 2F(-n,n + + (x2 @ 2
+ /J 1; e + f12; Y)is a multiple of 2F(-n,n + el + 2 + f12 + f13 1; e
+ [];x). This is probably the most basic result of this paper, and, to arrive at
this result, we had to make use of some beautiful transformation properties of
Saalschtitzian aF2(1 and (1) series described in Bailey [3] and Slater [10]. We
have given a detailed derivation of this result in the Appendix even though we
proved almost an identical theorem in [9].

By introducing a sixth parameter E(>0) through the transformations
x x/E and y y/E, and then passing to the limits 2 E m or 3 E - mwe managed to obtain corresponding results for Laguerre polynomials. We also
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succeeded in deriving some other kernels by considering other limits like 0{1 - 0,
0{2-’0.

In 4 we give a rather detailed analysis of the square-integrability and con-
tinuity of the kernels in order that the range of validity of the bilinear sums we
write down in 5 can be justified.

2. Construction of the basic kernel. We start the process of constructing the
basic kernel by multiplying the Jacobi polynomial 2Fl(-r/,r/+ 0{1 -" 0{2 -- /2
+ /33 1;0{1 + fl2;y)by(y- z1)’2-1(z2 y)’3-1,0 =< Zl < z2 =< 1, and integrat-
ing the product with respect to y from z to z2. An elementary integration
following a series expansion of the hypergeometric function, a change of variable
u Zl(1 y) + yz2 and a binomial expansion of u yields

dy y z1)fl2-1(z2 y B
2F n n -+- 0{1 -- 0{2 -- f12 -- [ 3 1:0{ -F flz;Y)

(2.1)
(--n)r(n + 0{1 -t’- 0{2 -+- f12 -at- [3 l)r

(z Z1)flz+fl3- r=O/" (0{1 q- fl2)rr!

B(m -+- fl2,r- m + f13 Z1 "7’2,
m=0

where B(a, b) F(a)F(b)/F(a + b) is the beta function.
We now multiply (2.1) by (z2 z)1-t2-e3(1 z2)2- l(z2 x)f14-1Zll-1

(x z)’- 1, Re fla > 0, integrate over z from 0 to x and over z2 from x to 1.
Using the transformations

(2.2) Z2 U -- X(| U), Z XW,

followed by another binomial expansion of z’, we obtain

(2.3)

f0 f X)fl4(1 Z2)t2- I(Z2dz 1ZI-I(X- Z1)1-1 dz2 (z2 z1)fl2+fl3 -1
’2

dy(y z1)f12- l(z2 y)/3-

XX+flx_l(1 X)R2+fl4_ (--n)(n + 0{1 + 0{2 -+" 2 + f13
=0 (1 + 2)rr

(r B(m + fl2,r m + f13
m=O m

"=o B(k + fl4, m- k + e)B(r- m + , )x-.
Apart from the factor xal+/l-1(1 x)t2+f14-1 the expression on the right-

hand side of (2.3) is obviously a polynomial of degree n in x. What we shall now try
to do is to see if under some restrictions on the parameters , 2, fl,/32, f13, 4
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this polynomial can be expressed as a multiple of a Jacobi polynomial of degree
n. Clearly we can write this polynomial in the form

(2.4) M,(x) a,,pXp,
p=0

where

’ (--n)r(H %- 01 -t 02 "t- 2 %- 3 1)r - ()B(m %- 2,y m + 3)a.,p
( %- fl2)rrlr=p m=r-p

(2.5) .B(r- m +,
r-p

Simplifying this double sum and using some of the well-known properties of
the Pochhammer symbols (see, for example, Slater [10, pp. 243), we obtain

(2.6)

where

(2.7)

and

(-n)p(n + o + o2 %- 2 %- 3 1)p
((1 "+" 2)p(1)p (f12 %- fl3)p

B(oI, fll)B(fi2, fi3)B(fl4,

."P (--n %- p)l(n %- p %- O{ + 0{2 "-[- /2 @" /3 1)/(4)/
/=0 (0{1%- f12 + P)l(fl2 + f13 + P)I I!
P (2)k+l(3)p_k((X1)p_k((X2)k
70 ( + -( + t/(p-

c(-n)p(n + o1 + 2 + 2 -Jr- 3 1)pS(n" p),
(O + fll)pP!

C B(oI, fil)B(fl2, fl3)B(fi4, 2)

s(n )
P!(O1%- fll)p

(O1%- 2)p(2 %- fl3)p

(--n + p)t(n + p + o1%- fi2 + f12 %- f13
+ +

P (2)k+l(3)p_kl,(l)p_k((2)
k= (1%- l)p-k(2 %- 4)k+l(P- k)!k!

Note that for p 0,

(2.9)
/=0

"1
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where 4F3 is a generalized hypergeometric function defined by

al, a2, a3, a4 (al)l(a2)l(a3)l(a4)lxl(2.10) 4/73
bl, b2 b3

"x
1=0 i-1-)/(2-)/(b3)

(See, for example, Bailey 3].)
From the formidable look of the double sum in (2.8) it is not at all obvious

that S(n" p) is independent of/9. In fact, it is not, unless the B-parameters are related
by the equation

We prove in the Appendix that when (2.11) is satisfied S(n" p) is indeed independent
of p and equals

n n + z + O2 + fi2 -[- B3 l, [32, fi2 -[-" fi fi
(2.12) 2,= 4F3 "1

+ , & +/3, + fl + fi3 fi
Assuming (2.! 1) to be true, we then have

(2.13) m,(x) C2,2F(-n,n + Zl + 2 + f12 + [33 1" 1 + fi’x),

where in the expression (2.7) for C we have to replace fi4 by fi2 -+- fi3 ill"
The integral operations on the left-hand side of (2.3) can be seen as equivalent

to the double integral

i’l )//1-1 ;f dz
(1 Z2)z- l(z2 X)//2+//3-//1-1

0
dZ1Z]I-I(x- Z1 2 (Z2 Z1)fl2+fl3-1

(2.14) (y zl)//2- (z2 y)//3-1H(x z)H(y zl)H(z2 x)H(z2 y)

dt 1- l(x t)//1 -a(y 0//2-
0

[’1 dz(1 Z)2-1(Z_ X)//2+//3-//1-I(Z_ y)//3-1
max(x,y) (Z t)//2 +//3-

where H(x)is Heaviside unit function.
Hence equation (2.3) can be put in the compact form

olK(
x, Y" "1, ill. 2. f13..2)2F(--n, n + z + z2 + B2 + [33 1" "1 @ fi2 "Y)dy

(2.15)
2,2F(-n,n + + 2 + f12 +/33 1" 1 + ill" x),

where

K(x,y’ol,fll,2,fl3,o2) C-1x-(,+//I-1)(1

fmin(x,y)(2.16) o
dt ’ -l(.x; t)// -l(y

(1 Z2- I(Z X)//2q-//3-//1- I(Z y)//3-
dz

ax(x,y) (Z f)//2+//3-

is the basic kernel we sought for.
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We may introduce a sixth parameter E, real and positive, by using the trans-
formation

x u/E,

Equation (2.16) then transforms to

(2.17)

with

y viE.

f Ke(u, l)" O ill, f12, f13’ (2)

2 F1 n, n + 0 + 02 + f12 + f13 1" o -t- f12 v/E) dv

/]’n2Fl(-n, n + x + 02 "[- 2 "-[- 3 1" ox + fix’u/E),

K(u, v" Ol, fll, f12, 3, 02) C- Xu-=’+I’- ’)(E u) -(2+flz+fl3-fll-1)

(2.18)

dt ’ -’(u t)I’ -l(v t)el-
,0

dz
[Z "+- 3-

ax(u,v)

(E z)t2- l(z u)flz+fl3-fl- l(z V)f13-I

The kernels (2.16) and (2.18) are more general than the ones we obtained in
[9]. In fact, the kernels of [9] correspond to the case/31 f12. In this paper, there-
fore, we shall assume that fll g= f12.

Let us denote the weight functions

(2.19)
wa(x) x’ +-1(1 X)02+ff3- 1,

W2(X Xa’+/t’-l(1 X)O2+f12+3-ff1-1

Then the systems of functions

(2.20)
f,(x) Nlx/(x)2Fl(-n,n + 1 + 02 -lt- 2 "J- 3 l" O "J- 2" X),

g,,(x) N2xz())2rl(-n,n + o + Z2 -1
t- f12 AI- f13 1" o + fll "x),

define two complete orthonormal systems on [0, 1], where N1 and N2 are the
respective normalization constants defined by

N2 (2n + el + e2 + f12 + f13 1)F(el + f12 + n)r(n + 1 + 2 -[- f12 + f13 1)
n!F2(l + fi2)r(n + 02 + f13)

(2.21)

N22 (2n + 01 + z2 + f12 + 3 1)F(el + fll -’[- n)F(n + 0 + 2 + f12 "-[- f13 1)
n!F2(l + fll)F(n + 2 +//2 + 3 1)

It follows from (2.15) and (2.16) that

(2.22) Y’I, ill, f12, f13, 2)f.(Y) dy #.g.(x),
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where

(2.23) G(x, y" 0{1,fl, f12, 3,0{2)
LwI(Y

and

K(x,y" 0{1, fll, fl2, fi3, 2),

N1(2.24)

It is obvious that G is symmetric in x and y if and only if fll 2 in which
case f,,(x) g,(x) become the eigenfunctions of G with eigenvalues 2,. However,
for fll 4: f12, G is not symmetric and/, is not its eigenvalue for any n 0, 1, 2,
In fact, G may not have any eigenvalue or eigenfunction at all.

We shall now see what happens when we multiply g,(y) by G(y, x;0{1, 1,
//2,//3,0{2) and integrate over y. Interchanging x and y in (2.14) amounts to inter-
changing fll with 2 and 2 + 3 1 with//3. Hence if we carry out these inter-
changes of parameters in (2.3) we obtain

(2.25)

G(y, x; 0{1, ill, f12, f13,0{2)gn(Y) dy

1,/,.)/,/2 +/3 -/)I/3, 2)
I1,/)I/2,/3)/ +/3 -/,

Uz2’,,v/wl(x)zFl(-n, n + 0{1 + 0{2 + f12 + f13 1; 0{1 + fl2;x),

where

JF3F-n, n + oa + 0{2 -I- f12 -+- f13- 1, ill, f13 "1(2.26) 2’,
-[- ill,fl2 + 3,0{2 -[- f13

For fll 4 2, /]’In -7/: /]’n, however, since this 4F3 is Saalschtitzian (see Appendix
for details) a transformation exists for this series and we simply have

f13, n + 0{1 -{- 0{2 -[- f12 -[- f13 1,-n
/]/n 4F3 f12 d- fl3,0{1 -]- fll,0{2 q- f13

(2.27)

(0{1 -+- 2)n(0{2 "+" 2 + 3 l)n
(0{1 -+- ill)n(0{2 -I- 3)n

4F3Ff12 -- f13 fll,fl2,n + 0{1 / 0{2 -[- f12 -1- f13 1,--n

0{1 -- 2, 0{2 + 2 - 3 ill,2 + f13
(0{1 q- f12)n(0{2 q- 2 -+- 3- l)n

(0{1 -’l’- ill)n(0{2 -+- 3)n

(See Bailey [3].) Equation (2.25) then simplifies to

(2.28) x" 0{1 ,fla, f12, f13, 0{2)g,(Y) dy #,,f,(x).
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Hence, if we define the so-called left-iterated kernel (Tricomi 11)

(2.29)

then

(2.30)

G(x, y) G(z, x)G(z, y) dz,

G(x, y)f.(y) dy laZ, f,(x).

Similarly, for the right-iterated kernel

(2.31) G.(x, y) G(x, z)6(y, z) dz,

we get

(2.32) Gtc(x, y)g,(y)dy =/2g,(x).

The orthonormal systems {f(x)}=o and {g,(x)}=0 are therefore the eigen-
functions of the kernels G1jx, y)and GR(x, y)respectively, which are obviously sym-
metric kernels, with the same eigenvalue/x,2 for each n. Note that we have abbre-
viated the iterated kernels by dropping the parameters from their arguments.

Before closing this section it may be worth pointing out how the above results
can be expressed in terms of the standard Jacobi polynomials P"’b)(X) which are
related to the hypergeometric functions we have used here by the following
equation:

(2.33) P."’b(x) (a + 1),
n

-1 _<x_< 1.

In equation (2.22) we make the transformations

(2.34) x
2 Y 2

Then, after some manipulations, (2.22) reduces to

(2.35) drlH(, g/;0 ,/1, 2, fi3, 02)0n(g/) [nOn(),
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where

{2.36)
dr(1 ’]V g)2--1( t)//2+//3-/,-l(r t)fl3--1

(1 Z)’- I(Z )fl’-I(Z /)f12-
dz

max{,.) (Z t)a2 +/13

and {4}.{)}=o, {,.()},= o are two orthonormal systems on - 1, 1] defined by

{2.38)

Similarly (2.28) reduces to

(2.39) yl
-1

and consequently, we have

Hr(, r/)b.{r/)dr/

{2.41} j
-1

H(, q)qt.{q)dr/=

where

Hr(, rl) H{z, )H{z, ;7)dz,
-1

HR(4, tl) H{, z)H{rl, z) dz
-1

are the left- and right-iterated symmetric kernels, respectively.
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3. The limiting kernels. Apart from many interesting properties of the basic
kernels K(x, y), KE(x, y), G(x, y) and GE(x, y) which we shall discuss in the next
section, they lend themselves to a number of limiting procedures resulting in a
variety of limiting or degenerate kernels some of which have been known in the
literature. We shall present here a few of these limiting cases.

Case I. 1 --* 0, Re E02, 1, 2, 3] > 0 with Re (2 -- 3) > Re 1"
Since the measure ff’-1 dt behaves like a delta function at 0 as 1 0,

we have

fmin(x,y) dt 1F(t) F(O).

It follows from (2.16) that

K(X, y; O, ill, f12, f13,

lim K(x, y; 1,/31, fl, f13, t2)
aO

X-(/I- 1)(1 X)--(O2+fl2+fl3--fll-- 1)

B(fl2, fl3)B(fl2 -[" 3 1, 02)
(3.1) f dz

ax(x,y)

Xfl- ly2-

(l Z)a2-1(Z- X)/2+/3-fl-l(Z y)fl3-1
Zfl + f13

(1 X) -(2+f12+f13-fll- 1)yl12-
B(fl2, fl3)B(fl2 + /]3 ill, 02)

ax(x,y)

(1 z)=- I(Z X)2+3-1- I(Z y)//3-
Zfl2 +f13

Correspondingly,

G(x, y" O, fll, fl2, fl3, o2)

xfl- lyfl2-1 11/2X + f12 + f13 ( y + fl -1 B fl2 fl 3 B fl2 -- 3 1, (z2)] -1

(3.2)
dz Z -(B2+B3-1)(1 Z)a2- l(z X)Bz+B3-B1- l(z y)#3- 1.

ax(x,y)

The #,’s also approach simpler expressions. For,

(3.3)

since the 3F2(1) series is Saalschtitzian (see Appendix). By using the limiting values
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of N1 and N2 from (2.21) we obtain

lim /.

The limits off,(x) and g,(x) obviously exist and are determined easily from
(2.19), (2.20) and (2.21).

Case II. e2 0, Re [ex, fix, f12, f13 > 0, Re (f12 + f13) > Re fix.
As in the previous case the measure e2(1 z):- dz behaves like 6(1 z)dz

as 2 ’ 0o Hence

lim K(x,y;x,fix,fl2,fl3,2)
a2-- 0

(3.5)
x-’ /’ )(1 y)- rnt, if’ (x t)’ X(y t):-

] dt

Correspondingly,

G(x, y; Ol fll fl2, fl3, 0) [(1 x)2+3-’-1(1 Y)3-1]1/2

X + lye1 + l:-

(3.6)

In this case

[B(ex, fll)B(fl2, f13)] -1

dt
aO

’’-’(x t)e’-’(y t)

(3.7)

and

(tl + 2).(2 -Jr- 3)n

(3.8)

If we set

(Ol)n r(2 -- 3 fll)n(fl3)n F(I + fll)F(fl2 + 3 1)]1/2

fl2+fl3=l 01--v fl 1-o, f12--O- r,

so that

0<Rev< 1, 0<Rea< 1, 0<Re(1 +v-a)< 1,

then the kernel K reduces to the Popov kernel

x (1 y)V- fmin(x,y) V-
dt

B(v, oOB(o - --+ v oO I.,o (x ty- X(y t)-+ x"

So Popov’s equation (1) [8] is a special case of (2.16) in this limiting situation
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(note a misprint in (4) of 8]).

Case III. a2 E -, o, Re al,fil, f12, fi3] > 0, Re (fi2 + f13) > Re ill.
AsE,

B(fl2 + []3 ill, E),-
F(fl2 + fi3 fl)

and (1 z/E): e
E//2 + f13_/3

Using these limits we obtain

(3.9)

Also

Koo(X, Y" 01, ill, 2, 3, 00)

[B(l,fll)B(fl2,fl3)F(fl2 + 3 1)] -1X-(’+fl’-l) ex

dt I(X t)’ -l(y t)2-
0

e-(z X)f12+3-* I(Z y)3-
ax(x,y) (Z t)f12 + 3-

This 3F2(1) series is neither Saalschtitzian nor well-poised and consequently
does not seem to be reducible any further.

In the same limit

N1(3.11)
N2 I(l+fl2),,F’(Xl+fll)Jl/2E(fli-fll)/2

and

2F n n + z + x2 + f12 _ql_ f13 1" o + f12 x/E)

(3 12) n
--* 1Fl(-n" o1 + 2;X)

(1 + fl2)n
L(, +f12-1)(x

where L,’)(x) is the associated Laguerre polynomial.
Hence the equation that corresponds to (2.22) in this limit reduces to

(3.13) X, Y" 0{1, ill., f12, f13, c)f.(y) dy #,,g,,(x),
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where

G(x, y" x 1’ 2, 3’ 00)

[B(,, )B(/2,/z)F(/2 + z fll)]-l[x’+fl’-ly’+2-1] -1/2 etx+y)/2

(3.14) o

dz
e Z(Z- X)fl2+fl3-fll-l(z y)B3

max(x,y) (Z f)B2 + 3-

and

(3.15)

n! 11/2f"(Y)
r(x +f12 + n)

g.(x) r(, +/, + n)

(,-y/2 y, +2- 1)/2 l,(al +f12- 1)(y)

e- x/2 X(Ot, + fl,-1)/2LI "-{- all-- 1)(X

are the orthonormal Laguerre systems on (0, c), with

(3.16)

Case IV. 2 -’+ 0, 3 E Go, Re [-1, 1, 2] > 0.
From Case II one obtains

x-(, +,- 1)(E y)fl3- fmin(x,y)
| dti(l, -L, 3)

’-,(X Off’-l(Y t)f12-1

(E t)2 +-1

Since

F(fl2 + E)(E- y)E-1
lim
-, F(E)(E t) + E-1 =e-y+t

we find

K(x, y" 01, 1’ 2’ 00,0)

(3.17)
X-(a+fl-l)e- y/,min(x,y)

| dt ’ -1 et(x t),- X(y t)2-

Correspondingly,

G(x, y" 01, ill, f12, 00, O) [B(ol,f11)F(f12)]-l[x’+’-lya’+112-1] -I/2 e -+y)/2

t)fl2-dt a’ e’(x t)l,- l(y
dO
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with

(3.19) #,
F(I + fll)(0{1)n

v/F(0{1 + {/1 + n)F(l + : + n)

and f,(y), g,(x) given by (3.15).
Case V. 0{1 -’+ 0, 0{2 E --+ Go, Re [fll, f12, f13] ) 0, Re (f12 + f13) > Re ill.
Using the result of Case I and going to the limit 0{2 E 00 one easily

obtains

K oo(x, Y 0, fl x, f12, f13, )
yB:- e

B(fl2, fl3)F(fl2 + f13 fl,)

(3.20) dze-Z(z X)//2 -k//3 //1 I(Z y)//3
Zfl2 q- f13

ax(x,y)

Correspondingly,

(3.21)

111/2 e(X + y)/2

B(fl:, fl3)F(fl + f13 -//1)

e- Z(z X)//2 +//3-//,- I(Z y)//3-1
dz

z//2 +//3-1ax(x,y)

The/t, in this case becomes

(3.22) #,
[F(fl, + n)F(fl2 + n)] 1/2

F(fl2)(fl2 +

whilef,(y) and g,(x) are again given by (3.15) with 0{1 replaced by 0.

4. Properties of the kernels. Let us assume, for the time being, that 0{1, 0{2,

ill,/32, f13 are all real and, of course, positive. Then it follows from (2.16) that

(4..1) K(x, y’ 0{1, ill, f12, f13,0{2) 0

for0 =< x =< 1,0=< y=< 1.
Also, since 20 1, equation (2.15) gives

(4.2) y; 0{1, ill, fl:, f13,0{2) dy 1.

These two properties would appear to lend a stochastic interpretation to K,
but unless fll =/32, K cannot be symmetrized by multiplying by a weight function
and hence cannot be interpreted as a transition probability. However, the left- and
right-iterates of K, namely Kt and KR, corresponding to GL and GR of (2.29)
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and (2.32) respectively, and evidently defined by

(4.3)
KL w:z(z)K(z, x)K(z, y) dz,

K w.(x)
w(z)K(x, z)K(y, z) dz

have the desired "detailed-balance" properties"

(4.4)
WI(X)KL(X, Y; OI, Ill, fl2, 3, 2) WI(fl)KL(Y., X" 1,1,2,3,2),

W2(X)KR(X, Y" 1, ill, f12, f13, 2) Wz(y)KR(y, X’OI, ill, f12, f13, 2)"

Besides, since

(4.5)
N r( + fl.)r( +

(0 -Jr- l)n(2 nt- 3)n

equations (2.30) and (2.32) imply that the kernels

(4.6)

F(Ol -+- f12)F(2-+- f13)

F(o( -+- 2)F((2 -Jr- 3)KI F(o( -t- l)F(o(2 -Jr- 2 -t- 3 1)

KL,

both have the properties (4.1), (4.2) as well as (4.4). Under these conditions K),
and K can both be interpreted as stochastic kernels.

In the rest of this section we shall be looking into the questions of square-
integrability and continuity of the kernels G(x, y).

THEOREM 1. If l, (X2, ill, 2, f13 > O, f12 + f13 fll > O, then

(4.7) Z /, < oo
n=O

if and only if

(4.8) f12 "-]- f13 > -- Ifll /33t.

Proof Since S(n’p) in (2.8) is independent of p for 0 <_ p __< n, we have

n[( -Jr- fll)n (l)n-k(fl2)k(fl3)n-k(O2)k
(01 )--L %" fl3)n k:O (1 + ,)n-k((:--L L =-ik(l k)!k!
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Hence

+/,)r( +/ +/-/)-1/

()"-()()"-()
=0 ( + ),-( + + )(n-

Since all the terms on the right-hand side of (4.9) are positive, we have

(4.10) p, > 0, n 0, 1,....

In order to find the asymptotic behavior of g, for large n, let us consider the
series -o C,x" where

(4.) c.
=0 ( + [)2 k),. ( + ; ; ; ,),.

The finite sum on the right-hand side is obviously a Cauchy product, and
hence,

F(. + x)F,(a, + + x)

whenever the series on both sides converge.
For ]xl < the hypergeometric functions are both finite but as x 1- at

least one of them diverges. If fl f13 one of them converges and the other diverges
like

Hence, for

(4.13) C,
(IL -.flsl)n nltl_31_,

n!

If ill /3a, both hypergeometric functions diverge like log (1 x) as x ---,

Therefore

n-1 21ogn
(4.14) C, ,= k(n k) n

Now for large n,

[!1 nt" 1)n(2 " f12-1t- 3--’l)n]1/2 n nt-2 +f12 +f13 11Lnl + @2 + f12 + f13 ,f12 + f13
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Therefore,

nlB -//31-

nfl + fl 1-- H fl + fl -1fl fl 31] 1 5/z 3

(4.15) #"
log H _(f12+f13) f13

n.na+a3-1
n logn, fll

Hence the theorem.
Remark. It is obvious from the asymptotic property (4.15) of p, that if we

replace the inequality by the condition

(4.16) 1/2 < (2 -- 3)- Il /331 1,

then ,o/, diverges but ,0 ,2 is convergent.
If G were a symmetric kernel, then by using some well-known theorems of

Hilbert-Schmidt theory (see Tricomi 11] or Goursat 7]) we would be able to
draw some definite conclusions about its square-integrability and even continuity
from Theorem 1. But for fll 2, which is the case we are considering, G is not
symmetric. However, it is clear that if G is square-integrable, then ,=o It,

2 must
be finite. Since our final aim is to derive a bilinear sum whose validity depends on
the square-integrability of G, it seems desirable that we investigate this particular
property of G in some detail. The conclusions of the previous theorem indicate
that we may impose one restriction immediately:

(4.17) /32 --I- 3 > 1/2 + Ifll /331.
In 9] we proved the square-integrability of the symmetric G by assuming

that fl + 3 > 1. It seems-we can relax that restriction by requiring fi2 + 3 1.
It may be possible to show that G may be square-integrable even if 1/2 < f12
+ f13 < 1, but we have not been able to prove it. It can be shown, however, that
when f12 + 3 lies between 1/2 and the kernel G(x, y) has discontinuities all
along the main diagonal y x.

We shall prove two separate theorems to cover the cases f12 + 3 and

fl / f13 > separately, because for the former equality we get an exact result
which is subsequently used to deal with the second case.

THEOREM 2. Let (Z1, (2, ill, f12, f13 > 0 such that fll < 2 + f13 1. Then the
kernel G(x, y; 1, ill, f12, f13, 2) is square-integrable on (0, l) if and only if
(4.18) 1/31- 31 < 1/2.

Proqf. Let us suppose 0 < x < y < 1. Then, by using (2.16), (2.19) and (2.23),
we obtain, through a pair of obvious transformations,

G(x,y;l,ill,fl2,fl3,2) C -1

(4.19) o

X +/- 1(1 y)a2+/3- ]1/2
dt ’ -1(1 t)fl’ -l(y xt)fl2-1

dz f13--1(1 )2--l(y X)q- (1 y)2’}
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It is clear that G is well-behaved everywhere except possibly on the diagonal
y x and on the two lines x 0, y 1. By replacing z by z in the second
integral on the right and by using the integral representation of hypergeometric
functions [3] we obtain

2F1

If 3 > fll the second hypergeometric function converges everywhere, while
the first one also converges if//, +/32 > 1. But since /2 + f13 we have, in
fact, fl, //2 < and so there is a singularity on y x as (y- x) -(’-a’-a2).
However, because of (4.18) we also have/, +/12 > 1/2 and hence the singularity
is square-integrable. Conversely, if/1 +/2 > 1/2, then/3, + (1 -/3) > 1/2, i.e.,
3 1 < 1/2.

If, on the other hand, /3 < fl,, then /, + 2 > 2 / 3 and so
2F1( -/2, cz, 1 fl,;x/y) converges while 2F,(/1, 2 02 +/3 ;(1 y)/(1 x)
diverges like (y- x) -(a’-a3), but, again, this remains square-integrable if and
only if//1- /3 < 1/2.

Finally if /, =/3, /, + 2 "-3 / 2 and so both hypergeometric
functions diverge like log (y x). This, however, still remains square-integrable.

We need to examine the behavior of G as x --, 0, y 4:0 and y -+ 1, x 4: 0. One
can see quite clearly that G behaves as x(’ +a’-’)/2 as x - 0 and so it remains
square-integrable since 01 +/3, > 0. Similarly the behavior of G as y --* is like
(1 y)("+a3-1)/2 and is again square-integrable because e2 + 3 > 0.

Obviously same conclusions would follow ifwe had assumed x > y.
THEOREM 3. Let e,, e2,/1,//2,/3 > 0 such that /32 + /3 > max (/1,1).

Then
(i) G(X, y" 01,/1,/2,fl3,02) is square-integrable on the unit square if and

only if

(4.21) /, / 2 > 1/2 V3 1,

(4.22) /7, 3 < 1/2 /f/7, > 3

(ii) G is continuous everywhere except possibly
max (x, y)= if3 > 1 and

at min(x,y) 0 and

(4.23) /, / /2 > 1;

(iii) G is continuous everywhere on the unit square if, in addition,

(4.24) min (/3,, 2) Ol, min (3, 2 / 3 1) 2"

Proof To fix ideas let us again suppose that 0 < x < y < 1. Then, similar to



A FAMILY OF POSITIVE KERNELS 403

(4.19), we have the relation

(4.25)

_.C-1 XI+B1 -1(1 y)2+//3-1 ]1/2yl +a2-1(1

dt 1(1 t)#’ l(y xt)-

dzz//3-1(1 z)z-1
{y x + (1 y)z}Bz+//3-/a-1

{y xt + ( ;)z}+-’-1

In the indicated range of variables x, y, z and we have

y x + (1
y- xt + (1 y)z

Hence

o <= G(x, y)

[y x,+,-l(l_yy2+.-i ]1/2yfl2-1(1 x)-,B(ol fll)B(o2 f12)< C- i( +3"+- x) + -(4.26)

If fl > fl, 2F(fl,,e2;e2 + fl;(1 y)/(1 x)) converges on y =x but
2F(1 f12, e’ + ’x/y) diverges like (y x)+-a if fl + f12 < 1. How-
ever this remains square-integrable if fl + f12 > 1,/2 which is indeed the case if
(4.21) is true. Obviously G has no singularity on y x if fl + f12 > and

Now suppose a . Then zF(fl, e2;2 + fla’(1 y)/(1 x)) diverges
like log(y- x) while the first hypergeometric function on the right of (4.26)
converges since 2 + a + > 1.

Finally, let > fl. Then + > + 2 > 1. Hence 2Fa(1 -2,e"
+ ’x/y) again converges on y x but 2F(fl, ez’2 + fla’(1 y)/(1 x))

diverges like (y x) -(’ -) which, however, is square-integrable if fla fl < 1/2.
In the case fl fla the right-hand side of (4.26) is essentially discontinuous

on y x which, of course, does not imply that G will have singularities as well.
Regarding the possible singularities at x 0 and y it is obvious from

(4.26) that G has no singularities on x 0 if e + fl and none on y if

2 + fla 1. By considering x > y we can obtain similarly that G(y, x) has no
singularities on y 0ife + f12 1 andnoneonx ire2 + f12 + a 1.
Hence the condition (4.24). However, if any of these inequalities fails to be true,
the kernel still remains square-integrable because all the parameters are strictly
positive.
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4.1. The square-integrability and continuity of the limiting kernels. For real
parameters Theorem 3 is obviously applicable to both G(x, y0, fi,fi,fi3,2)
and G(x, y" 1, fla, f12, f13,0) with corresponding mpdifications in the inequalities
(4.24). However, for G(x, y" 1, , 2, 3, ) additional care needs to be taken
since the domain is now extended to (0, ).

Suppose 0 < x < y < . Then it follows from (3.14) that

G(X, y" 1, 1, 2, 3, )

[B(I, fll)B(2, 3)F(f12 + 3 1)]- l[Xa-ky-- ++B-lj1/2B2-- et +

dt - 1(1 t)- (y xt)-(4.27)
d0

dz ez(Z X)B2+B3 B, l(z
(Z xt)2 + 3-

For 2 + 3 this reduces to

+ -1
1/2

(4.28) .e-X-x)/2Ya:-IB(I,)F(3)2F( 2,1 + ’x/y)

"(Y X)/J3-/J1U(/I3 /3 11 l’y- x),

where

(4.29) fo -ztta-l(1 + t)b-a-1 dtU(a, b, z) e

is the confluent hypergeometric function of the second kind (see, for example,
Abramowitz and Stegun [1, Chap. 13]). By studying the properties of the U
function as Izl 0 (see [1, p. 508]) we see that G has a singularity at y x but
it is square-integrable if and only if Ifll f131 < 1,/2; in other words, the same
conclusion as in Theorem 2.

For f12 + fi3 > 1, we have the inequality

(4.30)

Since the right-hand side of this inequality is exactly the same as (4.28), the
conclusions (i) and (ii) of Theorem 3 apply also to Goo(x, y" , fi, fi2, f13,
while in (iii) we have only the first ofthe inequalities, namely, min (fi, fi2) ->_
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If we let 1 0 we obtain G(x, y" O, ]1, J2, /3, 00) of (3.21). Obviously for
/32 +/33= 1, andO<x<y< ,

(4.31)

Goo(x, y" O, l, fl2, 3, 00)

[B(fl2, fl3)I-’(fl2 q- f13 fll)] -1 x(//’-1),, y(//2-i)/2 e-y-x)/2

dz e-Zz//-- l[(y X) -+- Z]-

[B(fl2, fl3)F(fl2 + f13 ill)I-1F(fi3)x/;’- 1)/2 y(//2-1)/2

e-(r-")/2(Y x)//3-//’ U(fi3, f13 fll l’y x)

which, for positive-valued parameters ill, 2, 3, is square-integrable if and only
iflfll fi3[ < 1/2. For fi2 + f13 > the right-hand side of(4.31) is a majorant for
Goo(x,y;O, fil,fi2,fi3, m) and again (i) and (ii) of Theorem 3 apply with (iii)
replaced by min (ill, f12) > 1.

Finally, let us consider the kernel Goo(X, y; 01, ill, f12, m, 0) of (3.18).
In this case f13 > fll and f12 + f13 > are automatically satisfied. For 0 < x

< y < oe one can reduce this kernel to the form

(4.32) Goo(xY" l’fl" f12’ c 0) EB(l’ fl’)F(fl2)]- 1/2e_(X+ y)/2

,,1

j dtex’ ’- 1(1 t)//’- l(y xt)//e- 1.
o

Note that

Goo(X X" 01,131, 2, OD, O)

(4.33)
[B(Ol, l)F(l)]- x(//1+//2)/2-1 e j dt e’ t1-1(1 t)//1+//2 -2

0

This is bounded for all x if gl - 2 2, unbounded but square-integrable at
(0,0) if < fll + f12 < 2. If f12 ->_ 1, then (y xt)//2-1 <= y//2-1 and we get

0 <-_ Goo(x, y) <= [B(I, fl,)F(/J2)] -1
Ly’[xl-- q-//11//2_ ]1/2

e- + /2y- dt e (1 t)- .
On the other hand, if 2 < 1, then (y xt)- < (y xj- and hence,

G(x, y) < [B(I, fll)r(fl2)] -1 [X2
+fl,-1 ]1/2Ly’ a

e-+y)/z (y X)2-

) dt e’ (1 t)’
which has a singularity at y x but nevertheless is square-integrable if f12 > 1/2.
Evidently G(x, y) is bounded everywhere in (0, m) if rain (,) 1.
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5. The bilinear sums. Theorem 3 of the previous section was proved on the
assumption that the parameters 1,//1, 2, f13, 2 are all real. However, it can be
shown that the conclusions of that theorem remain valid even if these parameters
are complex provided the inequalities are understood as applied to their real
parts. Since {fn(x)},=o and {gn(x)}=o are two fundamental orthonormal systems
of the kernel G(x, y; 1, ill, f12, fi3, 2) (see Goursat [7, p. 149]) we have the follow-
ing bilinear sums:

G(x, y" o1, ill, f12, fia, 02) 2 #,g,(x)f,(y),
n=O

(5.2) G(y, x" (z1, 1, 2, 3, (z2) 2 t,f,(x)g,(y).
n=0

(See also Tricomi [11, p. 149].) Whenever G is square-integrable but not bounded
these sums converge in the mean. When G is continuous everywhere the bilinear
sums on the right of (5.1) and (5.2) converge pointwise to their respective kernels.

If we use (2.36), (2.37) and (2.38) as well as (2.7), (2.12), (2.21) and (2.24).we
obtain, after some simplifications, the corresponding sums in terms of the standard
Jacobi polynomials:

f_mintx’Y) dt(1 + t)2-1(x_ t)/2+/3--/,-l(y_

(1 Z)’- I(Z X)I1 -I(Z y)fl2-1
dz

max(x,y) (Z t)2 + f13-

(5.3) F(I)F(/,)F(/2)F(/3)F(fl2 + f13- fl)F(2)
F(ol + 2)F(f12 + 3)F(z2 + f12 + f13 ill)2ta+t2+//2+/3-1

(1 X)at+//’-l(1 + X)2+//2+//3-/-1(1 y)’+t--l(1 +
n!r(n + o + O2 --[- 2 + 3 1)(2n + o + O2 -[- 2 -[- 3 1)

,=0 r(l + fla + n)l-’(02 + 3 -’t- n)

n, n + + +/ +/ ,,/ +
4Fa

e, +e,- ,,+e+e-- (x)e,+- ,,+3- ().
In view of (2.27), the simultaneous interchanges x y, fl fl and fla f12

+ leave both sides of (5.3) unchanged.
The bilinear sums for left- and right-iterated kernels are

(5.4) G(x, y; 1, ill, f12, f13, 2) f,(x)f,(y),
n=O

(5.5) GR(X’Y; l’fll’fl2’fl3 ’2) Z gn(X)(Y)
n=O

which converge whenever G is square-integrable.
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Now let us consider the bilinear sums for the limiting kernels. Using (3.2),
(3.4) and the corresponding limiting forms off,(y) and g,(x) we obtain

-_S xB=Bi- [B(fl2’ fl3)B(fl2 + f13 ill, (Z2)] -1

dz Z -(f12+f13- 1)(1 Z)2- I(Z X)fi2+f13-l- I(Z y)#3-
ax(x,y)

F((2 -I-" f12 -- f13-
+ f13)

l(y)w2(x)

(2n + + flz + f13 1)(2)n(fll)n(fl2)n(2 + if2 + f13 1).
,=0 (02 -[- f13)n(f12 "- f13)n(02 -+" f12 -- 3 fil).n!

ZFl(-n, n + oz + flz + f13 1;flz;Y)zFx(-n,n + z + flz + 3
which simplifies to

dz Z -(f12+f13- 1)(l Z)2- I(Z X)2+3-- I(Z y)fl3-
y)

r(2)r(fl3)r(2 + f12 - f13- 1)r(fl2 + f13

fax(x,
/33)1-’(/32 + f13)F(02 +

(5.6)
(1 x)Ot2+fl2+fi3-al- 1(1 y)a2+fl3-1

E (2/ q- 2 -- f12 -- f13 1)(O2)n(fll)n(2)n(2 .qt_ 2 q- 3
n=O ((2 -- fl3)n(fl2 f13)n(02 f12 -- f13- fll)nH!

;x)

1).

2F1( n, n + o2 + f12 q- f13 ;fl2;Y)

"2Fl(-n, n + o2 + f12 -+- f13 1;ill;X).

The left-hand side of this equation can be reduced to an Appell function F
defined by

(a)m + n(b)m(b,)n xmyFl(a, b, b’, c" x, y) E )-m-]-i-im,n=O

(5.7) [B(a, c a)] - u"-1(1 U) 1(1 UX)-b(1 uy) -b’ du,

Rea>0, Re(c-a)>0.

(See Erdelyi et al. [4, pp. 224 and 231].)
But first, let us transform the variables x, y in (5.6) through the relations

1- +q
-1 < /7<x=

2 Y- 2

Then

2F1 -n, n + 02 + f12 .qt_ 3
: n!

1;
2] (l)n p(nfl, 1, 2 + f12 + f13- fl, i)(),
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and

+r/)2/71 --n,n + x2 + /2 -]- [J3 l’f12;------- (2)n(-1)nP(n2+l3-1’l2-1)(rl)
If (1 r/)/2 _<_ (1 + )/2, i.e., + r/ >__ 0, then using the transformation

z ((1 r/)/2)u in the integral of (5.6) and taking advantage of the integral
representation of F w.e obtain

F1 (X2’ 2 -if- /3 --1,1+ill
1-q l-r/

2 ’1+

r(2 -{- l3 fil)F(a: + f13)

(-- 1)"(2).1-’(2 + f12 + /3 + / 1)(2/’/, .qL 2 + [2 -+- 13
pfl-1,2+fl2+fl-fl,- l)()pa: +/s-1,/-l)(r/)

If on the other hand, (1 r/)/2 > (1 + )/2, i.e., + r/ < 0, then the trans-
formation z ((1 + {)/2)u in (5.6) combined with (5.7) yields

F1(2, f12 + 1,1 fl, 2 + f12 + fl fll ;(1 + )/2, (l + )/(1 q))

r(l3)r( + + - ,)(5)
(-)"(:).r(: + l: + f13 + n- 1)(2n + : + fl: +fi3 1)n

r ;i 7 ’ iL + + + + ,)

At this point one cannot help feeling tempted to take advantage of a well-
known reduction formula for F1, namely,

(5.10) Fl(a b b’ b+ b"x y)=(1-y)-":Fl(a b’b+ b"X--)-(
(see, for example, Erddlyi et al. [4, p. 238]).

We therefore set 2 1 3" Then, after some simplifications, the formulas
(5.8) and (5.9) reduce respectively to

(5.11) F(/l)r(b’: + 3- /1)

1;/31
-( + )/( + )1

2

fi3),F(fil + /3: + n- 1)(2n + []1 -- [2-.--o r(f, + n)r(/2 + 3 + /l)r(fl2 -+- /I)

p(,a,-,,a:-,)()p(.a,-1,/ 1)(/), qL [/

_
O,
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and

2

r(fl2)l-"(/ 3

2 (- 1)"(/ -/3).F(/ +/ + n- 1)(2n + 1 +/ 1)n!
n=O F(fl -I- tl)F(2 r- f13 + Y/)F(fl2 +

+r/<0.

For real values of the parameters the left-hand sides of (5.8)-(5.12) must all
be positive since they were obtained as special cases of a positive kernel. Further-
more, when Re e2 < 0, even though the integral representation (5.7) is not valid,
since F(2) has cancelled out from both sides, the kernels of the above formulas
still exist.

Finally, if fll f13 -m, m a nonnegative integer, then the sums on the
right-hand side of (5.11) and (5.12) reduce to finite series. Thus

+ (/m F12 2

F(fll)F(fl2 + m)

(- 1)"(-m).r(fl, + f12 + n- 1)(2n + fl, +/32 1)n!
.=o F(/ + n)F(/ +/2 + m + n)F(/32 + n)

pf,- ,,-,)()pf,-

and a similar reduction for (5.12). However, in view of the relations between hyper-
geometric functions and the Jacobi polynomials quoted above, the two formulas
now reduce to one, namely,

(5.14)

where

t/

P’-l’/z-1)(1)
mP(m#,- 1,#z-1)(( q_ r/)/( q-

2 Cn,mP(f’- 1,//a-,()pf,-,,-,(),
n=O

I’(fl 2 -- m)F(m + 1)F(fl, +/32 + n- 1)F(fl,)F(n + 1)(2n + fl, +/3: 1)
F(fl, + f12 + rn + n)F(fl2 + n)F(m- n + 1)F(fl, + n)

Formula (5.14) is known in the literature as Bateman’s formula [2].
One might say (5.11) and (5.12) are the infinite series extensions of (5.14) while

(5.8) and (5.9) are generalizations of (5.11) and (5.12) respectively.
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Next, by considering the kernel (3.6) for the case 02 -- 0, we obtain

dt tx- l(x t)fl- l(y t)fl2-(1 t) -(flz+/3-1)

r(,)r(,)r()r( + + - )
r(, +/)r(/: +/)

xOtl +1 ytl +f12

(5.16) (1).(1 + f12 + f13 1).(2n + 1 + f12 + f13 1)

n=O (f12 -+- fl3)nn!

2Fx(-n,n+ +f12 +f13- 1;l+flz;y)

2Fx(-n, n + + f12 + f13 1;i + ill;X)’.

Note that this formula reduces to equation (28) of Popov [8] if we set 2 -+- 3
and make the transformations y - (1 y)/2, x - (1 x)/2.
Let us now consider the kernels on L2(0 )-space. First of all, using (3.14),

(3.15) and (3.16) we have
y)

e(X + y) dt ’ l(x t)fl’ l(y t)2-
aO

dz
e Z(z x)2 +3 , (z y)t3-

max(x,y) (Z t)z + f13-

(5.17) B(,, fl)B(fl2, fl3)F(fl2 + 3 1)
r( +/)

n=O + 2, 2 -- 3I,(’+- 1)(y)L(.’ + ’- 1)(x)

Corresponding to (3.18) and (3.19) we have the bilinear sum

X-(tl+//’- 1)y -(1+/2- 1) dtt’-1 e’(x- t)’-r(y- t)-,0

(5.8) r(l)r(/,)r(/2) (x).n

This is essentially the same as equation (13) of Erd61yi 6].
Finally, for (3.21) and (3.22) we get

e-Z(z X)//2+//3-/,- I(Z y)/3-
e + y dz

Zfl2 + f13
ax(x,y)

(5.19)
r(//3)r(//. + f13 ill) n!

r’(fl2 -[- f13) n=O/- (f12 -{- fl3)n
L(, +- )(y)L(, +,- 1)(x).
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The regions of validity of the above bilinear sums are indicated in the detailed
square-integrability and continuity analysis of 4.

Appendix.
THEOREM 4. For Re (o1, ill, f12, f13,02) > 0, Re(fl2 + f13 ill) > 0, fll : f12

and positive integers p, n such that 0 <= p <= n the double sum

(2.8)

S(n’p) P !(01 -’[" fll)p
(01 -+- fl2)p(fl2 -+- fl3)p

nvP(--n d- p)l(n + p -t- O -3
t- O 2 -3

t- f12 "+- f13
/=0 (01 -- f12 - P)/(fl2 q- f13 + P)l1!
P (Ol)p_k(fl2)k+l(3)p_k(O2)k
Y0(I -k- fll)p-k(O 2 d- fl4)k+l(P k)!k!

is independent of p if and only if
(2.11) fi-- f12 + f13

1)/(fl)/

and is equal to

Iln, n-t-1 qt-2 t-f12 +-f13 1,f12, f12 -+- f13 fll iI"’n-- S(n" 0) 4F3 + f12, f12 + f13,02 + f12 + f13 fll

Proof The proof depends, as in [9], on the two following results for Saal-
schiitzian series"

3F2 "1
(A.1) ,1 + a + b c m (C)m(C a b)m’

(A.2)

(- z)(w- z)
(v)(w)

v-

4F3[U x,u-y, z,-m

kl -v+ z- m, w+ z-m,u
;1

where m is a positive integer and

(A.3) u+v+w=x+y+z-m+l

(Bailey I3]).
By using the identity

(A.4) (a)u-, (- 1)"(a)u/(1 a N),, N>=n,

we obtain

(A.5) S(n" p)= " (-n + p)l(n + p + 0, + o2 + f12 + f13 1)l(fl2)l(fl4)l
/=0 (01 q- f12 nt- P)/(fl2 -F f13 q- P)/(O2 nt- fl4)ll!

Ap,l,
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where

(A.6)

( 1)p(fl3)pAp’I
(1 + 2)p(2 + fl3)p

1 fll P, 2, 2 - --p |F
[fiX2 "+" f14 "+- l, O p, -/33 p

The 4F3 series on the right of (A.6) is Saalschtitzian if and only if/34 =/2 -- f13
-ill. For fi # [52 "-]- 3 /1 we can show that S(n" p) is indeed dependent on p
as can be seen by considering the special values S(1 0) and S(I’ 1), say.

One can easily show that

S(1 "0)
24(01 + 2 -- 2 + f13)

(01 -- f12)(f12 + fl3)(02 -+-

while

s(.)
f12f14(l -+- 02 -+- /2 -+- /3)- 2fl2(/ /2 f13 -+- ill)

(0 -F- f12)(f12 -+- fl3)(02 -+-

Using (A.2), (A.4) and (2.11) we get

"1

Hence

(A.7)

(A.8)

S(n" p)--
(--n + p)l(n + p + (1 -+- 2 -F- 2 -+- 3

/=0 k=0 (V "F- f12)/(f12 -- fl3)/(2 -at- ),1!

(p + + 1 + 2 + flz + fl 1)(f12 + l)(fl + l)u(-p)
((1 Jr- f12 qL_ /)k(fl2 -- f13 -Jr- /)k(O 2 + f14 + l)k!

"P P (-n + P)z(n + 1 "-F- (Z 2 + fl2 - [3 + 13 1)l(2)k+l(4)k+l
/=0 k=0 (01 -- fl2)k+/(fl2 nt- 3)k+1(02 Jr- 4)k+ll!k!

(p -+- 0 -F- t2 2 -’F" 2 "+" 3 1)k+/
(P + 1 -- 2 + f12 - 3 1)/

Writing m k + we obtain- (p + O -Jr- O 2 + 2 Jr- 3 1)m(2)m(4)mS(n; P) m:O/’ (0 "1- 2)m(f12 Jr- fl3)m(O2 qt_ 4)m
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where

(--n + p)m_(n + 0, + z2 + fi2 + f13 + P 1)m-k(--P)k
k=O (P -]- 01 + 02 + 2 -I- 3 l)m-k(m- k)!k!

(--n + p)m(n + O + 2 + 2 + fi3 + ]9 1)m
P + 01 -- 02 "- 2 "q- fi 3 1) m

(--P)k(2 10 01 02
(1 +n-p-m)k(2-n e

fi2 fl3)(-m)
02 f12 fi 3 P m),k

(--n + p)m(n + 1 + 2 + f12 + f13 + P-
(P "+" 01 2r- 02 "{- 2 "+" fi3 1)ram!

3Fz-P, 2 P 1 02 2 f13,-m

+ n p m, 2 n 1 2 2 -p-m

Note that the 3F2 series is Saalschtitzian and hence, by (A.1),

(-n + p)m(n + 1 + cz2 + [32 + f13 -+- P- 1)m

(1 + n m)m(n + 1 + 2 + f12 + fi3 1)m
(1 + n- p- m)m(n + x + o2 + f12 + 3 q- P-

(-n)m(n + 0, + 02 + f12 + fi3 l)m
(P + 1. + (X2 + f12 .qt_ [3 3 1)ram

Therefore

(- n)m(n + O + O2 -- f12 -I- f13 l)m(fl2)m(4)m
(A.9) S(n P)

(.1 + f12)m(#2 "- f13)m(02 -- fi)mm!m=O

Hence the theorem.
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SOME POSITIVE KERNELS AND BILINEAR SUMS
FOR HAHN POLYNOMIALS*

M. RAHMAN"

Abstract. A five-parameter family of kernels KN(i, j; t, i, :, f13, 2) is constructed by using the
Hahn polynomials Q,(i" I + k- I, 2 + f12 + 3 k- I, N), k I, 2, under the assumption that
the real parts of the parameters , , fl:, f13, : are positive. For real values of these parameters this
kernel is shown to be positive. Special limiting kernels are obtained by considering various limiting
values of the parameters. Some bilinear formulas for the Hahn and Meixner polynomials ale also
derived.

1. Introduction. In two recent.papers [14], 15] we developed a method of
constructing integral kernels from Jacobi polynomials with four [14] or five [15]
complex parameters with real positive parts such that the kernels take on positive
values in the event that the parameters are all real. In [14] we showed that the
Jacobi polynomials 2Fl(-n, n + o + fl + 7 + ’ 1"o / fl’x/E), 0 x <= E,
are the eigenfunctions of a kernel Ke(x, y" , [3, , 6) which is symmetric apart
from a weight factor. Reference [15] extends this result to generally nonsymmetric
kernels Ke(x, y; o, fl, f12, f13, 2) which produces a multiple, of the polynomial
2F(-n, n + x + 2 - 2 + 3 1"1 + flz;X/E) after it is allowed to operate
on 2F(-n,n + (Z + t2 -+- 2 + 3 1"1 + ill;X/E) Since the present work
deals essentially with the discrete analogue of the results obtained in the above
references it seems appropriate to quote some of those results here. Specifically,

(1.1) Ku(x, y" z, , z,,)
C-ax-(,+t-)(E_ x)-(z+#z+#3--)LE(X,y),

where

(1.2) C B(a,, fl,)B(fl, f13)B(o2, f12 + f13 --.ill),

B(a, b) being the usual beta function, and

L(x, y) dt a’ I(X t)fl’ l(y t)fl2-
(1.3)

f; (E Z)(12- I(Z X)fl2+fl3-fll- I(Z y)/3-
dZ

ax(x,y) (Z t)/2 + f13-

In the special case fll f12, LF(X,y) becomes a symmetric kernel and
K(x,y;,fl,fl2,fl3,2) reduces to the kernel of [14]. We showed that the
eigenvalues of these kernels are positive and hence obtained a set of bilinear
formulas. We also showed that under some conditions these kernels are bounded
and therefore lend themselves to stochastic interpretation. In fact, as we mentioned
in [14], it is through the works of Cooper 5] and Hoare [10], 11] on a family of
stochastic urn-models that the kernel K(x,y;,fl, 7,6) came to be known,
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although in their works the parameters z, fl, ?, 6 are essentially positive integers
denoting the degrees of freedom of certain stochastic systems.

It wouldbe natural to expect that the discrete analogues of the results stated
above must exist. Hoare 12], in fact, did write down the discrete analogue of
KF(X, y" o, fl, , ) although he apparently did not succeed in solving the corre-
sponding eigenvalue problem. Recently, however, Cooper, Hoare and Rahman
7] did manage to solve the eigenvalue problem for a restrictive class of discrete
kernels with positive integral parameters and showed that the Hahn polynomials
are their eigenfunctions.

Following Erd61yi and Weber 17], Karlin and McGregor 13], Gasper [8]
and Askey [2], we define the Hahn polynomials [9] Q,(i) by the following relation"

Q,,(i) Q,,(i" o, fl, N)

+ 1,-N r=o (z + 1)r(-g)r!

where 0, 1,..., N; n _< N is the degree of the polynomial; and 3F2(1) is a
generalized hypergeometric function defined through the series

(1.5) pF,[bt, ap ] (a),. (ap),. x"
1, bq

"x
’", o (b,), (b), ;

(see, for example, Bateman 4], or Slater 16]), where (a)o and (a) a(a + 1)
(a + k 1) is the usual Pochhammer symbol.
It is well known that the Hahn polynomials are the discrete analogue of the

Jacobi polynomials P(,,"(x) and can be obtained from the Hahn polynomials as
a limiting case"

P("’(1 2x)_ Q, (Nx" a, fl, N).(1.6) P’)(1)
The Hahn polynomials satisfy the orthogonality relation

/V (mn
(1.7) p(i)Q,(i)Qm(i) , m, n 0,..., N,

i= 0 n
where p(i) is the weight factor defined by

p(i) p(i’,,N)= {B( + 1,fl + 1)(N + 1),+a+x} -a
(.8)

(i + 1)(N- + 1)t
and re. is the normalization constant given by

.(,/, N)

(1.9) (-1)"(-N),(a + 1),(0+fl+ 1), 2n+cz+fl+
n!(N + z + fl + 2)o(fl + 1). + fl +

The discrete analogue of the power function x can be written as a falling
factorial xt"l= x(x- 1)...(x- r + 1) or a Pochhammer function (x + 1)

(x + 1)...(x + r). Following Hoare [12] we shall use the second analogue
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consistently throughout this paper. The discrete analogue of KE and LE of (1.1)
and (1.3)can then be written down almost on sight"

Ks(i,j" Ox, fix, f12, f13, a2)
(1.10)

C(i + 1), +//,_ I(N / 1)2+//2+//3_ 1- XLs(i,J),
where
Ls J Ls J o fix, f12 f13 2)

min(i,j)

(kl + 1),_1(i- kl / 1)//,_l(j- k, 4- 1)//2_(1.11) u,=o
n (N k2 + 1)2_1(k2 + 1)tb_+o3_t ,_l(k2 j + 1)t_a

kz max(i,j) (k2 k -- 1)//2 + f13

When is not a positive integer the Pochhammer function (x), is to be under-
stood as F(x + )/F(x). The parameters 1, fix, f12, f13, 2 are again assumed to
be generally complex with positive real parts such that Re (f12 +//3 fix) > 0.

It is tempting to assume that the Hahn polynomials will turn out to be the
eigenfunctions of Ks. Fortunately the assumption is true but it needs some work
to prove that.

2. Construction of the kernel Ku(i, j). Analogous to the manner in which we
constructed the kernel KF(X y" 1, ill,/2’ f13, 02) in [i5] we proceed by multiply-
ing the Hahn polynomial Q,,(j" ox + 2 1, O2 -’[- f13 1, N) by (j + kx)//2-
(k2 + -J)//3-1 and summing over j from kl to k2 where 0 __< kl < k2 N.
However, for this summation procedure the particular form of Q, as given in
(1.4) is rather inconvenient since ": o there should indeed be replaced by r=0-min(j’n)
and therefore the summation over j must also take this into account. Fortunately
there exists a transformation of the terminating 3F2(1) series, namely,

3F2 Ia, b n l (e a),,(f a),
e, f (e),,(f),,

(2.1) [1- e- f + a + b n,a, -n
3F)

+a-e-n,1 +a-f -n

(see Slater 16, (2.5.11), p. 761). Using this transformation the Hahn polynomial
Q, can also be written as

(2.2) Q.(J o1 3v f12
where we are writing

(2.3)

for abbreviation, and

(2.4)

1,02 -[- 3 1,N)=
(02 + fl3),,(N + A),,

A O .qt_ O 2 + 2 .qt. 3

3F2 FN + 02 + f13P,(j)
o2 + fl3,N + A

j,n+A- 1,-n

(-n),.(n + A- 1),
:o ( +/)(U + A).r!

(N + 2 + 3



HAHN POLYNOMIALS 417

We now need the discrete analogue of the binomial formula

which is

(2.5)

Hence

and

(a + b) L
m=O

rm) (N + o- kz)_,.(kz + fi- j),.

k2

z_,V (j q- kl)/; l(k2 -k- -J)fl3 1Pn(J)
j=kx

(2.6)

L (-n)r(n+A-1)r L
,.=o (a2 + fl3)r(N + rn--O r)(N + 0{2 k2)r_

k2 -kl

2 (j + k, +
j=O

--L (-- Y/)r(F/ -- a l)r
=0 (02 q- fl3)r(N q- A)r’ m--0

B(fi2, m q- f13)(k2 k q- 1)t2 + f13 q-m-- 1"

In deducing (2.6) we have made use of the formula

M

(2.7) (j + 1)h_ x(M + J)c-1 B(b, c)(M + 1)h+c_l"
j=0

for Re b, c > 0. This formula can be seen as a direct consequence of Vandermonde’s
theorem

(2.8) 2FI(-M,b c" 1)
(c b)M

(C)M

(Slater [16, p. 243]) after transforming the Pochhammer symbol (M + j)_
according to the formula

(2.9) F(a- n)=
(- 1)"F(a)
(l a)n

We now divide (2.6) by (k 2 k + 1)fl +f13_ 1, multiply by (N + k2)2_

(k2 + i)2+l3-fl,-1 and sum over k2 from to N.
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Noting that

(k2 kl + f12 4- fl3)m (k2 4- f12 4- f13 fll
/=0

we get, after using (2.7),
k2N (g + k2)2_l(k2 4- -i)fl2+fl3_ 2 (J + kl)fl2_2 (k2- kl 4- 1)//2+,3k2 =i

(k2 4- J)//3- ,P.(.J)

(-n),(n+ A-1), )B(fl2(N- i+ 1)flz+f13-//’-1
r=0 (02 4- fl3)r(N 4- A),r)m=0.(2.10)

0 B(a2 + r- m, f12 + fl fl + l)(i- k + fl)m-
l=

i)ti- k 4- fll)m-I

.m+ f13)

(N- 4- o2 4- f12 4- f13 ill)r-re+l"

Finally we multiply (2.10) by (k 4- 1),,_ 1(i kl 4- 1)//1-1 and sum over k
from 0 to getting

v (N + 1 k2):_ l(k2 4- i)// +fl3_fll

k, =0
(k, + 1)al_ 1(i- k 4- 1)//,_, k2=i (k2 -k, + 1)a2 +a3-,

(j + k,)2_,(k + j)3_P(j)
(2.11) j=k,

C(i" 4- l),+lll_ l(N + 1)l12+//3_111_ lMn(i),

where

(2.12)

Since

M,(i)= i (-n),.(n + A-1),. rm) (fl3)m
0 (2 4- fl3)r(g + A)rrl (f12 4- fl3)mm--O

/=02 (t2 4- f12 4- f13 ill)r- ((Z, 4- ill)/

(i + , + fl,),(N- + + fl + fl fl,),_,.

(i 4- x 4- ill)/

(2.13) --(--1)I([N 4- 2 4- f12 4- f13 fll 4- t’ 1]

[N+ A + r- 1])1,

we have

(i + (Z 4- fla)l(N + O2 4- f12 4- f13 fll)r-I

The coefficient of (N- + 2 + f12 + fla fl) in M#(i) is obtained by
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setting r- + k p. Noting that

(U + A + p)r_p/(U + A)r
(N + A)p’

we see that the coefficient of (N + 2 + 2 -+- f13 fll)p in M,(i) is obtained as

( (-n).(n + A- 1) + (3)m(t2)r_m
(N + A)p m (2 + fl3)rl / (f12 + fl3)mr=p m-r-p

l=r-p (0(’2 + f12 + f13 r-l l--l ql_ 13 ((ZI

(-n)p(n + A- 1)p S(n" p),
(N + A)p(2 + f12 +/33- fll)pP

where

P!(02 -+- f12 + f13 fl p nx- ?1 nt- p),(n + A + p-
S(n P)

" (3)+,()-
(2.14)

=o (P- m)(fl2 + f13)+,

)’(, ), + ,( + fl,) _,
=oZ (m -/)’/(x. + fl + f12 + - ill)p-t"

Unlike the double series (2.8) of El5] this is a treble series and it needs a
separate proof to show that this is independent of p and is equal to

(2.15) 2’,=S(n’0)=4G
-n,n + + + a + B l,,B

"1

We carry out this proof in the Appendix.
The summing operations on the left-hand side of (2.11) can be seen as

(g + kaG- (k + i)+_,_ (k= + j)_,
"==o (k- k + 1G+_

(2.6) ( + k,)(j + k,)(k= + -)(k= + -j)

rain(i,])

k=O

(k k+lG+k max(i,j)

where

(2.17) H(x)-{O if x< 1,

ifx>= 1,

is the Heaviside unit function.
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Collecting the above results we finally obtain

N

Ku(i,J" 1, ill, f12, f13, a2)Q,(J al + f12 1, a2 + fi3 1, N)
j--o

2,,Q,(i" , + fl’l l, oz + fi2 + fl3- fi, 1, N),

=0,1,...,N,
(2.18)

where

(2.19)
n n + z + o2 + f12 + [:]3 1, fi 2 [3 :2 + f13,F3

(see [15-]), n 0, 1, N; and

Ku(i,J" 1, fi,, f12, fia, 2)

(2.20)

min(i,j)

kl =0

(i + 1),+t,_l(N + 1)2+2.+.,_/,_

N (N + k2)a2_ 1(k2 --I- i)t2+t.,_t 1(k2 + J)fl3-1
k2 max(i,j) (k 2 --k + 1)f12+f13-1

which is, of course, the same as (!.20).
Note that for fll f12, the Hahn polynomials on the two sides of (2.18) have

the same arguments and hence Q,(i) is an eigenvector of the matrix Ku(i,j) with
the eigenvalue 2, 2’,.

For general values of the parameters let us denote

Ql)(i) Q,(i. a, + fll
Q2)(i) Q,(i al + fi2

1,2 + ]2 "-]- f13- /1
1,2 4-3- 1,N),

(2.21)

and define the corresponding weight functions

(2.22)

p(’)(i) [B(a + ill, A 1 ill)(N + 1)A-1] -1

1,N),

(i + 1),+t,_l(N- i+ 1)a2+2+f13_fl,_l,
p(2)(i) [B( _+_ f12, A 0 fi2)(N + 1)_ 1] -1

(i + 1), +t2-1(N + 1)2+//3_ 1,

where we again use the abbreviation A for 1 + a2 + f12 + fl.
The Hahn polynomials satisfy the following orthogonality relation"

u bmn(k) (k) (k)(2.23) p (i)Q, (i)Qm (i) _()
i=0 7n

where

(2.24) ) 1)’( N),(I + fl),,(A 1), 2n+A-1
k= 1,2.

n !(A o fi),(N + A). A
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Let us now introduce the orthonormal systems

(2.25) R(,,k)(i) n,(,,k)ptk)(i)] l/2Q(,k)(i).

In terms of R(,,k)(i) equation (2.18) then reads
N

(2.26)
j=0

where

(2.27)

and

(2.28)

0,1, N,

r( + fl)r(A fl)( + fl).(A 1).1112+/:)I-(A (1 fl2)((1 + ill),,(A -- f12),,

C-1[(i -+- 1)+/,_I(N- -+- 1)A_.,_,_I(j + 1),+2_

(N j + 1)a_1_t 1]-1/2Lz(i,J),
Lu(i,j) being given by (1.11).

If fll f12, Gu(i,j) is symmetric. It can be verified by interchanging fll 2
and 3 2 " 3 1 that

N

(2.29) Gu(j, i" (z1, ill, f12, f13, a2)Rtnl)(J) #,Rt,2)(i), 0, 1,2,... N.
j=0

If we use the symbol Gu to denote the (N + 1) (N + 1) matrix whose
element in the ith row and jth column is GN(i,j’l,fll,fl2,fl3,2) and Gfv to
denote its transpose, then it is evident that GNGv and GTGN are both symmetric
and their normalized eigenvectors are

(2.30)
R(1) JR(,,’)(0), R(nl)(1), R(nl)(N)] T,

R2) JR(,,2)(0), R(,,2)(1), R(,,2)(N)] T,

respectively, with the same eigenvalue/,2, that is,

(2.31)

The symmetric matrices GGv and GfvG are the discrete analogues of the
right- and left-iterated kernels of [15].

3. The limiting matrices. The matrices Kv(i,j) and Gu(i,j) may appear
rather formidable, but the presence of five parameters enables us to consider
various limiting forms of these .kernels. In this section we shall look at some of
these limiting cases with the understanding that a great many others can be worked
out in a similar manner.
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Case I. 0 0, Re [, f12, 3,02] > 0, Re(//2 + 3 ) > 0.

Obviously

Hence

lim
(k + 1),_ =f0 ifk-#0,

,-,o B(a,fl) (1 ifk =0.

Kc(i,j" O, fl,, f12, f13, a2)

(3.1)

Also

[B(fl2, f13)B(2, 2 -- 3 ill)(N q- 1)a2+/]2+/]3_,_ 1]-’(J + 1)a_,
N (N -I- k2)2_ l(k2 q-- J)#3- l(k2 -I- i)/]2+/]3-#,-

k2 max(i,j) (k2 + 1)/]2 +/]3-

GN(i,j" 0, 1, 2, f13,02) EB(2, f13)B(2, f12 + f13 1)] -1

(3.2)

(i + 1)/],_l!j_" + 1)/]2_
n + 1)2+/]2+/]3_/],_,(n j+ 1)2+/]3_

N

k2 max(i,j) (k2 + 1)/]_ +/]3

(N + k2)2_ l(k2 + i)/]2+/]3-/],- l(k2 -b J)/]3-

The eigenvalues #.’s take particularly simple form

(3.3)

lim /.

+ + fll)] 1/2

r(fl2)r(2 + f13)

This is obtained, as in [15], by noting that the Saalschiitzian 4F3(1) of (2.19)
reduces to a Saalschiitzian 3F2(1) in this limit which can be summed by means of
Saalschtitz’s theorem [16].

The limiting forms of Qt,,k)(i) and Rt,,k)(i) are self-evident.
Case II. (1 "- 0, (2 fll f13’ Re f12 > Re (ill 3) > 0 Re/]3 " 0.
This is indeed a special case of Case I, but because it produces a rather interest-

ing bilinear formula, as we shall see later, let us write down the forms of the matrices
and the eigenvalues. We have
K(i,j; O, ill, 2, f13, fll 3)

(3.4)
[B(fl2, fl3)B(fll f13, f12 q- f13 ill)(N + 1)/]2_ 1]- l(j -t- 1)/]2_1

(N + k2)/],_/]3_ l(k2 -t- J)/]3- l(k2 d- i)/]2+/]3-/],-Z
k2 =max(i,j) (k2 -+- 1)/]2 +/]3-

GN(i, j" O, fl,, f12, f13, fl, f131 [B(fl2, fl3)B(fll f13, f12 + 3 fll)] -1

I 11/2(i + 1)a_l(j + 1)/]2_.(3.5) (N + ]-_ l(S- j + i)/],_ 1
N

k2 max(i,j)

(N + 1 k2)#,_/]3_l(k2 q- 1 i)/]2+/]3_/],_1(k2 -+-
(k2 -q- 1)/]2+/]3_
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and

(3.6) lim #,
at 0 (f12 + fl3)n"

52 --ill

The kernels above can be expressed in terms of a Saalschfitzian 4F3(1) series"

K(i,j" 0, fl,, f12, f13, ]1

r(2 -+-3) (J + 1)f12-1
F(/3)F(fl2 + 3 fll)r(fll f13) (N- i/ 1)#:_,

(N max (i,j) + 1)a,-J3-1(max (i,j) j + 1)ff
(max (i,j) + 1)//2+//3_//

(max (i,j) + 1)a2+t._
max (i, j) / 1, max (i, j) j + f13, max (i, j)

+ f12 +//3 ill,-N + max(i,j)
4F3 "1

1 + max (i, j) min (i, j), max (i, j) + f12 + f13,

N + max (i,j) +//3 -//1
GN(i, j) has, of course, the same 4F3(1) as a factor.

Note that the above ,,F3(1) series is Saalsch0tzian, i.e., the sum ofthe denomina-
tor parameters exceeds the sum of the numerator parameters by 1. For such a series
we have the following transformation property:

F3Ix’ Y’
v, w

-m .11= (v- z).(w- z),.

(3.7)

I -x’u-y’z’-m JFz
I) + z m, w + z --,m, u

(See, for example, Bailey [3, p. 56].)
Applying this transformation twice and simplifying the Pochhammer symbols

we obtain

(3.8)

KN(i,j;O, 1, 2, f13, 1 3)

r(/ +/3)
r(3)F(fl2 + 3 fll)r(N + 2 "-[- 3)

F(max (i,j)- j + fl3)F(max (i,j)- + 2 + 3 1)

(j + 1)a2-I(N j + 1)/,_.1

F(i + /1 min (i,j))F(max (i,j)- + /2)

.F3[fl___. 3’ 2 + f13 l’ -N + max (i’J)’ -min (i’J)

N, min (i,j) + ill, max (i,j) + f12
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and

(3.9)

Gs(i,j" O, fll, fl2, fl3, fll )

+ fl,)F(N + fl). +
[(i + 1)#,-l(j + 1):_,(N- i+ 1):_I(N- j + 1),_ 1] 1/2

F(max (i,j)- j + fl3)F(max (i,j)- + f12 + f13
F(i- min (i,j) + fl,)F(max (i,j) + fi2)

4F3Ffll-f13,f12 -1- f13 ,, -N + max (i,j), -min(i,j)

N,i-min(i,j)+fll,max(i,j)-i+fl2
In this case

(3.10)

and

"1

p(1,2)(i) [B(fll, fl2)(N + 1), +2-,]- ’(i + 1)t,,2_ I(N + 1).,-1

(3.11) g(nl,2) (Nn
so that

(1 dr- f12 1)n (fll,2)n 2n + fl, + f12
(N + fll -1- fl2)n (fl2,1)n" fll + f12-

R(nl)(i)

I2n+ fl, + fl2-1 F(fll + fl2)(fll + fl2-1). (ill)hi 1/2

fll + f12- F(fll)F(fl-(]-{ - n)n(n- n)’(fl
(3.12)

[(i+ 1),_,(N i+ 1)_,]/23F2[;,n’n+flx+fl2-1’-i ]--g

while R2)(i) has the same expression with and f12 interchanged.
The interest in this particular case is further heightened by the fact that one

can now consider the limit fl fla -m where m is a nonnegative integer. The
GN(i,j) kernel approaches the limit

Gu(i,j; O, fl, fi2, + m, m)

r( + + m)
F( + m)F(2 + m)r(g + + 2 + m)

(.) f(i + )_ (j + )_ 1( + )_1( J + ),-
F(max (i,j)- j + fl + m)F(max (i,j)- + f12 + m)

F(i- min (i,j) + )F(max (i,j) + f12)

-m,fla + f12 + m- 1,-g+max(i,j) -min(i,j)
aFa "1

N, i- min (i, j) + ill,max (i, j)- + f12
Case III. e 0, Re (,fl,fl,fla) > 0, Re(fl2 + fl fl) > 0.
In this case

lim
(N+ 1-k2)_ __0’ ilk2 CN,

oB(2,f12 +fl-fl) [1, ilk2 =N.
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Hence

Ki(i,j" 1, ill, f12, 3,0) [B(I, fll)B(fl2, f13)]-1 (N
j + 1)t3_

(i + 1),+t,_

(3.14)
min(i,j) (k -{-- 1)a (j k -Jr- 1)f122 (i-k -t-1)a,_
kl =0 (N- k + 1)//2+3_

and

GN(i,j" Ol, [l, fl2, fl3, 0)

(3.15)

[B(I, fll)B(fl2, 3)]_1
N + 1)t+3_,_ I(N j + 1)fl3--

min(i’J)(k -[- 1),_1(i- k 4- 1)t -l(J- kl +
kl=0 (N k -t- 1)t +3

The limiting values of the other relevant quantities are given by

(3.16)

(( 1)n(fl3)n
((X1 -- fl2)n(fl2 q- 3)n’

(Ol)n V(fl3)n(fl2 + f13 fll)n F(0(1 -- fll)F(fi2 + f13 fll)] 1/2

#" (f12- 3).[_ ; -.( + fl). ’(3) + f12)

(see 15]).
CaselV. e2o,N such thatch. =(c-1- 1)N, 0<c< 1.
The Hahn polynomials Q,k)(i) approach the Meixner polynomials in this limit"

M)(i; el + ilk, C)

[i,--n,n+l+fl +f13-- +(c-’-- 1)N 1(3.17) lim F2 "l
-oo + ilk,-N

2Fl(-i, -n; x + ilk" c- 1), k= 1,2.

Also

(3.18) rck) --, c n
and

(3.19) p(k)(i) +

so that

ci + }(3.20) Rk)(i) (1- C)a’/flk
n(l -[- flk)n(l _ql_ k)i 1/2

n!i!
Mtnk)(i; (X1 + "ilk’ C).
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The matrices Ks and GN approach the following limits"

K j o fl fl 2 fl3

(3.21) [B(a,, fl,)B(fl2, fl3)F(fl2 + f13 fl,)] ,(1 c)+-t’c-i
Loo(i,j)

(i + 1),+t,_

and

G.(i,j al, fll, fl2, fl3, ) [B(l, fll)B(fl2, fl3)F(fl2 + f13 fll) -1

ci+J} 1/2(1 c)a+t-a)/2Lo( j)(3.22) {(i + 1),, +,_ ,(j + 1),,+a_,

where

(3.23)

L(i,j)
min(i,j)

(kl + 1),-1(i- kl + 1)a,-l(j- kl +
k=0

Z ck2(k2 / 1)a + f13 fll- l(k2 J + 1)f13
k2 max(i,j) (k2 k + 1)a2 + a3-1

As for the eigenvalues #, we have

(3.24) k. L(al -t-1)-1 -- i 3F2 -t- f12, f12 -i- f13

It may be remarked that for large N and g2 the eigenvalue/, in (2.27) and the
kernel GN(i, j) in (2.28) both behave like N’--’)/2. The expressions (3.23) and
(3.24) therefore imply that, in view of (2.29), we have cancelled out this factor and
retained the finite parts.

Case V. 1 O, 2 -- ’ N ., 2 (C-1 1)N, 0 < c < 1.
This is a special case of Case IV. The limits (3.17) through (3.20) remain the

same with el replaced by 0. Combining Cases I and IV we get

Ko(i,j O, ill, f12, 3, )

(3.25)

(3.26)

Goo(i,j; fl,, f12, 3, (X)) [B(fl2, fl3)F(fl2 + f13 fll)] -1

[(i + 1)t,-l(j + 1)2_lC-i-J]l/2(1 c)3+(fl2-1)/2

ck2(k2 + i)t2 + 3- fll- l(k2 + J)3-
k2 :max(i,j) (k2 + 1)t= + f13-
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(3.27)

and the eigenvalues become

v()
( + )""

Case VI. z 0, s, N such that fls (c- 1)N, 0 < c < 1.
As in Case IV the Hahn polynomials Q(i) again approach the Meixner

polynomials given in (3.18). Also )(i), p)(i) and R(i) approach the same limits
as in (3.18), (3.19) and (3.20) respectively. Taking the above limits in (3.14) we
obtain

Koo(i,j;l,a,2, oo,O)= [B(o,,flx)F(fl/)(i + 1),,+,_]-1(1 c)cJ
(3.28) m.,

c-k’(k + 1),,_(i- k + 1)a,-l(j- k + 1)a:_.
k=0

The eigenvalue #, and the kernel G(i,j) are again of the order N#2-#’)/2 for
large N. Cancelling out this common factor as before we obtain

G(i,j l, ill, f12, , O)

[B(ax, fla)F(flz)]- (1 c)’ +)/2

(3.29)
min(i,j)

C-k(k + 1)_1(i- k + 1)0_1(j --k + 1)Oz-1
k=O

with

(3.30)

4. The bilinear sums for Hahn polynomials. Some properties of the kernels
KN and GN follow from the manner in which they were constructed. First of all,
for real positive values of the parameters 01, ill, f12, f13,02 such that//2 + f13 > 31,
we have the positivity of the kernels:

(4.1)
Kl(i,j; ox, fix, f12, f13, 2) > 0,

Gl(i,j; o fll,.fl2, f13, 2) 2> 0.

Also, for finite N,

(4.2) Ku(i,j; 0x, fix, f12, 3,02) < 1.

This follows from the fact that for n 0, 2, 1, Qt,k) 1, k 1, 2, and, according
to (2.18),

N

(4.3) K1(i,j; x, fix, f12, f13, x2) 1.
j=0
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In the special case fll 2, GN(i,J) is a symmetric matrix and KN(i,j) satisfies the
detailed-balance property"

(4.4) p(i)Ku(i,j) p(j)KI(j, i)..

Properties (4.1) through (4.4) imply that Kv(i,j) can be interpreted as a
stochastic kernel.

As for the eigenvalue/,, which reduces to ,, in the symmetric case fll f12,
we have already proved in [15] that/x, is positive and bounded, while 2, is bounded
by 1. Also, for large n,

n-[2+t3-1’-31] fll fl3,(4.5) .
n-2+3) log n, fll f13.

Since for finite N the orthonormal systems {R,k)}, n 0, 1, ..., N" k 1, 2
can both be taken as complete bases for the (N + 1)-dimensional vector space we
have the following spectral representation of the matrix G"

N

(4.6) GN(i,j" (z1,/1, 2, 3, (z2) E #,,RI)(i)R2)(J)
n=0

This, when written out in terms of the double sum on the left and the general-
ized hypergeometric functions 4F3(1 and 3F2(1) on the right, assumes a rather
formidable look. However, the limiting forms for this bilinear sum corresponding
to various limiting cases considered in the previous section may appear somewhat
more interesting. Passing to the limit a --* 0 in (4.6) and using the special forms we
obtained in Case I of 3 we get, after some simplifications,

N

k2 max(i,j)

(4.7)

(N- k2 + 1)2_l(k2 + 1)/2+t3_,_i(k2 -j + 1)fl3_1

This may be compared with the formula (5.5) of [15] for the Jacobi polynomials.



HAHN POLYNOMIALS 429

If we set (2 1 f13 in (4.7), replace j by N j and use (3.7) and (3.8) we
obtain

(4.8)

f12 f13 fl14F3 Ffl f13 f12 nt- f13 l,-i,-j
(N i- J +

ill,N-i-j+ fl2,-N

B(fll, f12 -1- f13 ill)I-’(g -[- fi2 -[- f13)

N (ill fl3)n (2n + fl + /2 1)(1 nt- f12 |)n(l)nN!(

Q,(i’fl, 1,f12 1" N)Q,(j’fil 1,f12 1" N).

In expressing Q,(N j) in terms of Q,(j) we have made use of the symmetry relation

(4.9) Q,(N-j’fl2- 1,ill- l’N)=(-l)Q,(j’fl,- 1,f12- 1,N).

(See [13, (1.15)]" note a misprint.)
By virtue of the transformation property (3.7) we may also express the formula

(4.8) in the form

fll)fl3_fl,4.F3Ffll f13,f12 -[- f13 1,-N + i,-N + j
( +j N + Lfl2,i +j- N + ill,-N

B(fl2, fl3)F(N + f12 + f13)
(4.8’) B(fl,, f12)

N

___
]_)n(fl, f13)n(2n q_ fll -[- f12 1)(ill q- f12 l)n(fll)nN!

n--0 (/-’2 -t" ))(---1 " L ----f(] / + n)n !(N n)!(fl2)n

Q,,(i" fl 1,f12 1" N)Q,,(j fi, 1, f12 1" N).

The kernels on the left of (4.8) and (4.8’) are positive for /2 -- ]3 > ]1 > 0,
fi2 > 0 (when they are real) which follows from (3.8). If we now consider the
degenerate case fll f13 -m, where m is a nonnegative integer, we obtain, after
some simplifications,

fi 2 ,,F F m fl + f12 -t- m- 1,--i,-j
(N i- J + N, fll, N j + f12

(4.10)

where

F(N + fl, + f12 + m)F(N + 1) (/l)nE Cnrn
.=0 F(N- n- 1)F(N+ fl-+ n) n!

Q,(i" fl, 1, f12 N) (fll)’-n-. Q.(j" fl, 1, fi2 1" N),

F(fl2 + m)F(m + 1)F(fl -[- f12 -[- n- 1)F(fl,)F(n + 1)(2n + fl + f12 1)
F(fl, + f12 + m + n)F(fl2 + n)F(m- n + 1)F(fl + n)
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This is the discrete analogue of. Bateman’s formula [2]"

(4.11)
(x -y)"P’-x,t2-x)((1 + xy)/(x + y))

If N- i-j _> 0, the kernel on the left-hand side of (4.10) is obviously
positive for fll > 0, //2 > 0. If, however, N i-j < 0, we may use the form
(4.8’) rather than (4.8) to show that the kernel still remains positive.

If we replace i,j in (4.10) by N and Nr/respectively and proceed to the limit
N --. we obtain (4.11) after using the well-known formula

P’a)(1 20(4.12) lim Q,(N , fl, N)-. n(.’)(1)

and the transformation 1/2(1 x), r/= 1/2(1 y).
In the case fll f13 5: -m but /J2 "[- /3 > 1 > 0, /2 > 0, if we take the

same continuous limit and use the variables x, y we obtain

(4.13)

2n+fll +//2-1
31+32-1

pn{/,- 1,2- 1)(X)Pn(/3,- ,//2- 1)(y). x+y>0.

When x + y < 0, we may use (4.8’) and derive a similar formula [15]. The
kernel on the left of (4.13) is positive since that of (4.8) or (4.8’) is.

Let us now consider the bilinear sum corresponding to the case 2 --’ 0. The
sum on the right of (3.15) can be expressed in terms of a ,F3(1) series. Thus

(4.14) (i + 1)a (j + 1)a2_

Using (3.16) and the expressions for RI)(i), R(,2)(j).for 02
--t, 0 we see that
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equation (4.6) becomes

4F3[1,. N- f12 -//3,-i,-j
l-N,l-i-fll,1 -j-fl2

(4.15)

+ + fl,.)r(fl: + fl3)(N -t-" 1)1+#2+fl3--
(i + 1),+#,_,(j +

(i + 1)#,_l(j + 1)#:-1

n=O

Q,,(i;ol + fll 1,flz + f13 fll 1,N)

",(J;l + flz- 1,f13-- 1,N).

Note that the 4F3(1) series on the left is not Saalschiitzian unless tl f13
If we then take this special value of (x we obtain

ill, N- 13: -/5’3,
4F3 -N, i- ill, -j- f12

(4.16)

-i,-j ;11
+ 2fl 3 ill)

r(3)r(fl. + f13 fll)F(fl- + f13)(N -]- 1)#:+2//3-//,-1

(i -t- 1)//3_ l(J + 1)0:+#3-#,-
(i + 1)#,_ l(J + 1)#:-1

"nO (f12 + fl3)n(N -t- f12 + 2fl3 fll)n(fl2 + 2fl3 fll 1)

Qn(i;fl3- 1,fla + /3a B, 1,N)

Q,(J; f12 + f13- fll- l, f13- 1, N).

that
5. The bilinear sums for Meixner polynomials. In this section we shall assume

(5.1) Re (f12 + f13) > IRe (ill -/33)1

so that, according to (4.5),

(5.2)

Under this condition the bilinear sums with the Meixner polynomials
converge for all c, 0 < c < 1.

The first and most general formula in this class corresponds to Case IV of
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3. We obtain, after some simplifications,

min(i,j)

(kl / 1)1-1(i- kl / 1),_,(j- k, +
kx =0

(k 2 -i + 1)t2+t3 t x(k2 -J + 1)t32 t?k2
k2 "-max(i,j) (k2 k + l) + f13-

(1 cy’ +t’-t3ci+J(i 1), +,_ x(j + 1), +:_

2 Cn(Ol + 2)n3F2 t1,2,2 + 3 1
,=o n! + 2, 2 -- 3M.(i; a, + fl,, c)M.(j; a, + fi2, c).

If we take the limit 1 0 in (5.3) we get the sum corresponding to Case V
of3"

(5.4)
k2 max(i,j) (k2 + 1)t= + f13

ck2(k2 --i 4- 1)t:+t3_t,_.(k2 -j 4- 1)t3_

F(fi3)F(fl2 + 3 1)
F(2 -- 3) (1 C)fl’-fl3ci+Jn0 cn(l)n(2)n

(f12 -+- fl3)nn!

M,(i; ill, c)M,(j; f12, c).

Finally, the bilinear formula corresponding to the Case IV of 3 can be
expressed as

min(i,j)

kx=0

2 c" M.(i; al + , c)M,(j; ax + f12, c).
n--O

To close this section it maybe remarked that the bilinear formulas (4.7) and
(5.4) for the symmetric case fl f12 were recently obtained by Cooper, Hoare
and Rahman [7] by a different method. At the time of writing this paper it was
brought to our attention that A1-Salam and Ismail [1] have derived what appears
to be a different set of bilinear sums for Meixner polynomials.
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Appendix.
THEOREM. For Re (x, fix, f12, f13,02) > 0, Re (f12 + f13

integers p, n such that 0 <__ p n, the treble sum
ill) > 0 and positive

(2.14)
S(n" p)=

P!(@2 -[ f12 ’[- f13
(2 -[- 3)p x)piS(-n+p)r(n+A+p-1)r(-2 + 3 -i- p)rr!

(3)m+r(O2)p-m
m=O (do --m)r(fl2 + fl3)m+r

(--|)l(fll)l+r(fl2 + 3- fll)m-I

is independent of p and is equal to

(2.15) 2’, S(n" O) 4F3
+/,l +/3 +/3

Proof We shall first try to reduce S(n; p) to a double sum and then use
Theorem 4 of [15] to draw the main conclusion. By manipulating the Pochhammer
symbols, S(n;p) can obviously be written as

i=i (-n+p)r(n+A+p-1)(flx)(fl3)
Ap,(A.1) S(n" p)=

((x2 nt- 3)p ((z2 -- 3 -t-- P)r(fl2 + 3 nt- 1)-- - )l)rr[

where

Ap,
(A.2)

Now, by (2.8),

(1 2 -/3a f13 -t- fll P)l
((X - fl -- r)

2Fx(-I,A + p + r- l’z + 1 -- r" 1).

Also

(A.3)

(ill qt_ r)/(fl2
__

/3 fll)m-I
(f12 "[- f13 -+- r)m

r(: -[’- 3 + r)

dtt+-+--(1
0
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Hence

(A.4)

/ r)t(fl2 / fi3 ill)m-t( 2 fi2 f13 / fll P)*
(f12 / f13 / r)m(51 / fll /

r(fl2 -!- f13 / r) f.,r(/ + r)I-’(/: +/a -/x).o
dt +3-’ +,.-,1( t)’ +-1

2Fl(-I A +p+r- l’51+fix +r;1).

Using the formula

(A.5) 2
n=O

snzFl(-rt, b;c;’z) (1 + s)’2F1

(see Bateman [4, p. 85]) we can see (A.4) as

(f12 / f13 / r) _f_F(flx + r)F(fl2 + f13 fll)-o
dtt2+l3-t’-l(1

2Fx(-m,A +p+r- 1;51 +fix +r;1 -t)

JoF(flx + r)F(fl2 + fla ill)
dttt’ + x(1 t)t2+t3 t

2Fx(-m,A + p+ r- 1;5 + fix + r;t).

Using (A.5) and a relation similar to (A.3) once again we obtain

r(/ + a)r’( +/ + p + r)r( +/a + p + r)
Ap’r--

F(/2 / 3 l)F(fi2 / 3 "-[- P)l-’(]l + r)F(52)F(fla / r)

dtdztl+,-x(1 t)/2+ta-/",-XZt3+r- x(1 Z)2 -x

2Fx(-p,A + p + r- 1;sx + fix + r;tz).

Now we make use of the general Euler transform

p +xFq +l[C, (a); d, (b), u]

(A.7) r(d) f]F(c)F(d c)
dv v x(1 v)a-c-XpFq[(a)’(b)’uv].

(See Slater [16, p. 108].)
Using (A.7) twice in the double integral of (A.6) we finally obtain

(A.8)

"1
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(A.9)

Hence we get

S(n,;p)= i=i (-n+p)r(n+A+p-1)r(x)r(z)r(2 + 3)r(2 + fiR)r(, +

.Fa
p,A+p+r- 1, +r,a+r

;1
+ + r,/ +/a + r, + + r

But this is exactly the same as (A.7) of [15] with the interchange of fl fl
and fla + fl fl. By using Theorem 4 of [15], then, our present theorem
also follows.
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METRIC CURVATURE, FOLDING, AND UNIQUE
BEST APPROXIMATION*

C. K. CHUI,I E. R. ROZEMA,$ P. W. SMITH,?
AND J. D. WARD?

Abstract. In his paper, the concepts of metric curvature and folding of a Cl-representable
manifold in a normed linear space are studied. With certain restrictions on the metric curvature and/or
folding, one can obtain a neighborhood of unique best approximation from the manifold, and in some

cases, the manifold can be shown to be Chebyshev. Several familiar examples, including some classes
of T-polynomials, are given.

1. Introduction. The purpose of this paper is to study unique best approxi-
mation from subsets of normed linear spaces which are Cl-manifolds with
boundary. In order to study such problems from a general geometric vantage
point, John R. Rice [12] introduced the concepts of folding and metric curvature
(originally called curvature) in smooth, rotund, and finite-dimensional spaces.
These concepts were generalized to uniformly smooth spaces by two of the
authors in [13] (see also [5], [6]). In 3 and 4 of the present work, we closely
examine these concepts for Cl-manifolds with boundaries and obtain results
which demonstrate several connections between local uniqueness, metric curva-
ture, and folding.

In C[a, b], there are nonlinear sets, for instance, the set of rational functions
of degree no greater than (m, n), that are Chebyshev. We show that the fact that
Haar embedded manifolds are Chebyshev (proved in a special case by Daniel
Wulbert 17] and generalized by D. Braess [2]) follows from general results on the
metric curvature of the manifold (see Theorem 6.1). For example, we see in 7
that the set

N

is Chebyshev in C[a, b], where 0 < a < b.
In L([a, b], x) it is well known [14, p. 368] that a nonconvex boundedly

compact subset is not Chebyshev (i.e., there is a point which does not have a
unique best approximation from the set). In 7 we exhibit for the first time some
familiar subsets M of L2([a, b],/x) each of which is a Cl-manifold with boundary
and has a neighborhood of unique best approximation for M. Thus, for points in
this neighborhood of M, steepest descent methods may be attempted. Many
nonlinear regression problems fall into the above category.

Both of the above results are special cases of Theorem 5.1 in this paper,
which basically states that every manifold M with boundary which has finite
metric curvature and positive folding has a neighborhood of unique best approxi-
mation from M.

* Received by the editors August 16, 1974.
f Department of Mathematics, Texas A & M University, College Station, Texas 77843.
$ Department of Mathematics, University of Tennessee, Chattanooga, Tennessee 37401.
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2. Preliminary definitions and results. Throughout this paper, X will denote
a normed linear space. Let A be a subset of X and r > O. Then we set

(2.1)

B(x, r)--{y X’l]x y[]--<

B(x, r)= {y X "]Ix Yl] < r},

8B(x, r)---- B(x, r)\B(x, r),

dist (x, A) inf {l[x a II" a A},

PA (X)-----{a 6 A llx all dist (x, A)}.

If PA (X) consists of a single point for each x X, then A is called Chebyshev. The
mapping x PA (x) is called the metric projection from X to subsets of A. For each
x e X, the elements of PA (X) are called the best approximations to x from A. A
point a A is a local best approximation to x from A if there is a neighborhood U
of a such that a G Putqa(x). If a is the only element of PUCA(X) for some
neighborhood U of a, then a is called a strict local best approximation. Throughout
the paper, we will use 0 to denote the zero element of any linear space. If A is a
cone with vertex at the origin, then S(A)=-OB(O, 1)f-I A. In various examples we
will use lP(n), l<-p<=oo, to denote R" with the norms I](Xl,’’’,Xn)llp
(Ei=l ]xilP) 1/p for 1 _--<p<oO and I](Xl, Xn)][oo=SUpl<-i<=n[Xi[

We will be concerned with approximation from subsets M of X which have
the following structure (see Braess [2]).

DEFINITION 2.1. A subset M of X is called a C-representable manifold (with
boundary) if for each mM there is a relative neighborhood Uc M of m
satisfying the following three properties"

(i) There is a closed convex body C R n, a relatively open subset V of C,
and a homeomorphism g V- U. (If g-i(m) 0, then g is said to be centered for
m.)

(ii) The map g is continuously Frdchet differentiable in V. (The Fr6chet
derivative of g at a 6 R" is denoted by g’(a).)

(iii) Assuming that g is centered for m, there is a continuous map k from U
into g’(O)" (U>o aC) satisfying k(m)= 0 and

(2.2) Ilu m k(u)l[ o(l[k(u)ll) as u m.

For each m e M, we define a tangential cone C,,M at m as follows (see [2]).
DEFINITION 2.2. The vector h e X is called a tangent vector to M at m if there

is a continuous map [0, 1 t- mt 6 M satisfying

(2.3) lira,- m th]] o( t) as 0.

The set of all tangent vectors to M at m is called the tangential cone at m, denoted
by C,M.

As noted in [2], if M is an n-dimensional C-submanifold, then Cram is an
n-dimensional subspace. Further, it is known that Cram is a subset of the
Dubovickii-Milyutin cone [2].

Since we feel strongly that the geometry of the manifold M is more clearly
elucidated by visualizing the tangential cone as being fixed to the manifold at m,
we set TC(m) =- m + C,M and call TC(m) the tangent cone with vertex at m. For
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x, y X, let r(x, y) {Ay + (1 A)x A => 0} be the ray from x through y. Then the
normal cone N(m) of M at m may be defined by

N(m) {y r(m, y) _1_ TC(m)},

where, by definition, r(m, y)_l_ TC(m) if and only if PTC(,)(Y) contains m.
Rice introduced the concept of metric curvature in [12] (there called curva-

ture). Here we extend this definition to Cl-representable manifolds. The metric
curvature is meant to be a measure of how quickly the manifold M bends relative
to the unit ball of the space X; hence it depends on the norm of the space X into
whichM is embedded and thus is not an intrinsic property of M. It is for this reason
that we have appended the adjective "metric". For a more complete motivation of
the definition below, the reader is urged to read [12, pp. 190-198] and [13]. To
define the metric radius of curvature at m M, we first define for y N(m), the
metric radius of curvature in the direction y as follows.

DEFINITION 2.3. For z M, let p(m, y, z) be the radius of the smallest ball
centered on r(m, y) which contains m and z in its boundary. If there is no such
ball, then p(m, y, z)-=c and, if X is rotund, it is easy to see that this ball is unique.
The metric radius of curvature ofM at m in the direction y, written p(m, y),-is

(2.5) p(m, y) =- lim inf {p(m, y, z) z M}.

The metric radius of curvature, p(m), of M at m .is

(2.6) p(m)-- inf p(m, y).
yN(m)

The metric curvature tr(m) of M at m is defined by

o-(m)=-l/p(m).

A concept somewhat related to metric curvature is that of folding. The
folding of a set A at a 6 A, denoted fld (a), is

fld (a) sup {to 6 R B(a, t) f3 A is compact and connected for each =< to}.

We will call an element m M a critical point of y X if y N(m). The
following lemma was proved by Braess in [2].

LEMMA 2.1. Each local best approximation to y from M (a Cl-representable
manifold) is a critical point.

Finally we state a fundamental result due to D. Braess [2], which generalises
Theorem 3.1 of 13].

THEOREM (Nonzero index theorem). Let M be a Cl-representable manifold
and let yX. Suppose that A={mM:a<=l[m-yl]<=} is compact and
B(y, ) (3 M is connected. If m A is a strict local best approximation to y and
m:A satisfies Ilmz,yll<=llm-yll, then there is a critical point z 6B(y,)M
which is not a strict local best approximation to y from M.

This theorem will be used several times throughout the course of this paper.
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3. Medic curvature. In this section, we collect various results on metric
curvature, most of which will be used in the later sections. We first state and prove
two lemmas which clarify the notion of metric curvature.

LEMMA 3.1. Ifm M, y N(m),.and tn is not a strict local best approximation
to y, then p(m, y)--<llm-

The proof of this lemma is a simple variation of Lemma 2.1 of [13].
LEMMA 3.2. If m M, y N(m), and m is a strict local best approximation to

y, then p(m, y)
Proof. Suppose to the contrary that 0(m, y)<Jim yl[. Using the definition of

o(m, y), we see that for every e > 0, there exist zi M, zi - m, and y r(m, y)
satisfying

(3.1) ][yi-z,I[=][y,-ml]<--p(m, y)+e.

Set e :l]m-yi]-p(m, y). Then

(3.2) Ilzi- y,l] Ily,- mll--<llm- yll.

It follows that zi is as close to y as m. Since zi m, it is clear that m is not a strict
local best approximation to y. This contradiction means that we must have
p(m, y)_->]lm-

One of the useful properties of finite curvature is illustrated .in the next
theorem.

THEOREM 3.1. Let M be a C-representable manifold with tr(m)< 00 for all
m M. Then the map P4 X\M-.M is a surjection.

Proof. Suppose rn M satisfies

(3.3) mP(X\M).

Then for any y N(m), tn is not a (strict) local best approximation to y from M.
Lemma 3.1 then implies that p(m, y) 0 for any y N(m) and hence o-(m) 00.

This is the contrapositive of Theorem 3.1 and completes the proof.
It is not hard to see that there are Cl-manifolds C (even in R 3) for which

Pc(X\C) C. For instance, consider g R2 R3 defined by

g(x, y) (x, y, -( 1 -Ixl/)/ + (1 -ly 13/2)2/3)
in a neighborhood of (0, 0). Note that cross sections of the X-Z and Y-Z planes
give locally at (0, 0) the bottom (resp. top) of the/3/2(2) unit sphere. It is clear that
if R has the/2(3) norm and C g(R2), then no point of R\(0, 0) projects onto
(0, 0), since the /2 ball bends more rapidly than the 12 ball.

Many results on metric curvature are somewhat uninitiative. In particular, in
nonrotund spaces, finite-dimensional linear varieties which are not Chebyshev
have infinite metric curvature at each point. A related fact is contained in the
following.

PROPOSITION 3.1. Let X L 110, 1]. Then any C-representable manifold M
which is locally contained in some finite-dimensional subspace has o(x)= 00 at
each point. Furthermore, every neighborhood ofMcontains a point which has more
than one best approximation from M.

Proof. It is known [14, p. 232] that for any finite-dimensional linear manifold
L L 110, 1] and y 6 L, there is a y 6 L 110, 1] so that PL(Y) contains a relatively
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open subset in L containing x. Let m 6M and L" be a finite-dimensional
subspace containing a relative neighborhood of m M. Then there is a y L [0, 1
so that PL’(Y) contains a neighborhood of m relative to L’. Since TC(m) L ", it
is clear that y N(m). But since PL.(y) contains a neighborhood of m M, then
for any y’ r(m, y)\m, P..(y’) contains a neighborhood of m M, and hence m
is not a strict local best approximation from m. Using Lemma 3.1, one sees that
o(m, y) 0 and hence o-(m) oo. Further, if y’ is chosen close enough to M, then
PM(Y’) P.’(Y’) M has more than one element.

As the previous proposition shows, the metric curvature is infinite for many
manifolds in nonrotund spaces. However, even in 12(2), "most" C-manifolds
have infinite metric curvature everywhere. This is made precise in the ollowing
proposition. To see this, we should first remark that if f: R i- R is a C l(R )-
function, then the manifold M R 2 given by the graph of [ is a Cl-manifold.

PROPOSITION 3.2. The set of all real-valued continuous periodic functions g
on R with period c >0, such that each corresponding manifold M=Mg
{(x, o g)’x R 1} in /2(2) has infinite curvature everywhere, is a set of second
category.

Pro@ Following Chui-Smith [5], [6], we compute the metric radius of
curvature at (x, f(x)), where f(x)= g for some continuous function g. Since
n--(x +’(x), -1 +f(x))N[(x, flx))], we need to solve for in the following
equality (/3 0):

(3.4)
II(x, f(x))-[tn +(1 t)(x,

]](x +/3, fix + ))-[tn +(1 t)(x,

Squaring both sides and solving for t, one obtains

--2-- [f(x q-/) --f(x)]2
(3.5) t(/3)----

2[f(x + 8)-f(x)-f’(x)8]"
We will show that lim inf t(/3) 0 as/3 tends to zero for a set of functions f whose
derivatives f’ g form a second category set in the space of periodic functions with
period c > 0. This will show, via (3.4), that the metric radius of curvature is zero at
each point. Let F {g e C[0, c]- g(0) g(c)} and then extend g periodically to
R 1. Set f(t)=-j,’ g(’) d" so that f’-- g. Since f is C
tends to zero, so that we only need to prove that

(3.6) lim inf 0
t-.o 2[f(x +8)-f(x)-f’(x)]

for some second category set of g f’ in F. To this end, set

(3.7)

K, { g" there exists O <- x <- a so that l fx
x+

for all
1
->/ >0
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Following arguments similar to those in [8, p. 23], it is easy to see that Kn is closed
and nowhere dense. Now clearly F\U,_ Kn is second category and each g in this
set gives rise to an f whose graph has infinite metric curvature everywhere in 12(2).
This completes the proof of Proposition 3.2.

In [5], [6], two of the authors computed bounds on the metric curvature in a
Hilbert space for sufficiently smooth manifolds. The following theorem is an
immediate consequence of the definitions and the two earlier studies.

THEOREM 3.2. Let M be a C-representable manifold in a Hilbert space. If
there is a C2 centered parameterization g as in Definition 2.1, then ]’or rn g(0),

[l(g’(0))-’l[
In particular, it was shown that for C2-curves in 12(2), the concepts of metric
curvature and the usual calculus definition of curvature agree.

4. Folding. As in the previous section, we introduced the metric curvature as
a measure of "how quickly" a manifold "bends", so we introduce the folding of a
set A at a point a A as a measure of "how much" the set A turns "back toward
a". More precisely, recall that

fld (a) =fldA (a)=sup{to6Rl: B(a, t)f)A is compact and

connected for all =< to}.

Clearly, 0_-< fld (a)=< o. If A turns "smoothly" around a, then we will show that
fld (a) >0; we will also be given a condition which will insure that fld (a) =c. It is
clear from the definitions that there are connections among the metric curvature,
the folding, and (local) uniqueness. We will prove in this section that if the metric
curvature is identically zero, then the folding is identically infinity. An example
will be given to show that if a manifold is not smooth at a point, then it may have
zero or infinite metric curvature, depending on the shape of the ball of X.

The first result of this section involves a condition on the parameterization g
which will be satisfied whenever g’(O) has a trivial kernel. Thus this theorem
generalizes 13, Thm. 1.4].

THEOREM 4.1. Suppose M is a Cl-representable manifold and, for some
mM, there is a parameterization g, centered at m, such that for all b
S(U>o aC), we have

(4.1) Ilg’(O)

Then fld (m) > 0.

Proof. Suppose that fld(m)=0. Since M is Cl-representable, there
relative neighborhood U of rn which is homeornorphic to a relatively open subset
Vof a closed convex body Cin R; thus, there isan e >0so that Mf’IB(m, e) is
compact. Now if fld (rn) =0, there must exist a sequence {en} such that 0< e, < e,
e, 0 and B(m, en)FI M=-An is disconnected. Choose a connected component
C, of An which does not contain m. Since C, is compact, there is an x, C,
satisfying

IIm x.[I-- dist (m, C,).
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We may apply Lemma 2.1 to obtain

IIm x.II dist (m, TC(x.)).

But we will show, under the hypothesis of this lemma, that

dist (m, TC(x,,)) o(llm
which yields a contradiction.

First let bn R k be such that g(bn) x,,. Thus

dist (m, TC(x.)) <- IIg(O)-(g(b,,) + g’(b.)(-b.))ll

(4.2) _-< Jig(0) g(

o(llb.ll).
We will now show that

as b, - 0, which together with (4.2) will complete the proof. To this end, set

Note that 6o is greater than zero by the compactness of S(LJ.>o act and the
assumption (4.1). Let

=max {[[g’(O)-g’(y)[[ y[O, b.]},

where [0, b. is the line segment from 0 to bn. Note that 6. --> 0 as n -> oo. In the step
below, we will use a version of the mean value theorem (cf. 1 ]). For convenience,
set

Then

sgn b.

g(0)[[
lim

__
tij /ij sgn bn

Vi-,..j = i"(n) 1 ,0 < .t( < 1, ( e [0, b]. Thuswhere

g t j sgn b
i

o- lim t (g’(O)- g’( ))
i

o/2

for large enough n, thus completing the proof.
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In Theorem 4.1, it could happen that (4.1) holds for some parameterization
but not for others. For example, with

C={(Xl x2)’x2>x>O} and g(x x2)=(x 2 xa)

we have that M gl(C) is a C-representable manifold satisfying (4.1). But with
2> >0} and g2(xl x2)=(x x2),C2 {(X,, X2)" X2=X

we have the same M g2(C2) but g2 does not satisfy condition (4.1).
THEOREM 4.2. Let M be a connected C-representable boundedly compact

manifold such that o-(m) 0 for all m M. Then fld (m) oo for all m M.
Proof. The proof proceeds by contradiction. Let mo 6 M with fld (too) r <

oo. Then there is a ball B(m, A) with 0 < A < oo such that B(m, A) f’l M is discon-
nected. Since M is boundedly compact, there is a y e M such that y is a local best
approximation to mo and y is not in the same connected component of B(mo; A) f3
M as is too. In addition, M is connected and locally path-connected, which implies
that M is path-connected. Thus there is a/1 )/ SO that y and mo are in the same
connected component G of B(mo, A)C’IM. G is clearly a Cl-representable
manifold. If y is not a strict local best approximation to too, then by Lemma 3.1,
we see that O(Y) --< ]]mo- yll. If y is a strict local best approximation to mo, then the
nonzero index theorem implies that there is a z G which is a critical point with
respect to mo but which is not a strict local best approximation to too. Hence, again
by Lemma 3.1, we have o(z)<-IIm,,-zll. In either case, we contradict the zero
curvature hypothesis.

In some cases, a simple condition on the embedding map g leads to a result on
folding.

PROPOSITION 4.1. Suppose Cis a convex subset ofR and g is a homeomorph-
ism of C onto M g(C). Let m g(a) and suppose that

(4.3)

for all A (0, 1) and all C. Then fld (m) oo providedMis boundedly compact.
Proof. Suppose there exists a p > 0 such that B(g(a), p) f3 M is disconnected.

Let/3 be chosen so that g(/3) and g(a) are in different components. Then there
exists a A e (0, 1) such that

which contradicts (4.3).
COROLLARY 4.1. There exists a non-Chebyshev, boundedly compact man-

ifold in/2(2) so that fld (m) oo and tr(m) oo for all m M.
Proof. Let g be a positive periodic function such that f(t) Io g(s) ds satisfies

the conditions of Proposition 3.2. By Proposition 4.1, M-graph (’) has the
property that lid (m) oo and by Proposition 3.2, or(m) oo for all m M. M is
not Chebyshev since it is boundedly compact but not convex.

In particular, this corollary shows that the converse of Theorem 5.4 does not
hold.

Folding is a concept which depends very much on the smoothness of the
manifold and the shape of the ball. For instance, Theorem 4.1 shows that under
certain smoothness conditions, fld (x) > 0 for each x M. On the other extreme,
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consider the non-Cl-manifold M graph (2x sin (l/x)) in /(R2). It is easy to
check that lid(0,0)=0. However, by renorming R 2 with
max {21x[, fld (0, 0)=oe for (0, 0) M.

5. Central results. The first result in this section gives general conditions on
M which entail that M has a neighborhood of unique best approximation. The
results of the preceding sections will then allow us to obtain more specialized
results.

THEOREM 5.1. LetMbe a C-representable manifold in X. Suppose thatcr(m)
is bounded on compact subsets o] M and fld (m) > 0 ]:or all m M. Then M has a
neighborhood Uin Xso thateach u Uhas a unique best approximationfrom M.

Pro@ Let mM. Pick an e satisfying 0<e<fld(m), and set O=
inf{p(z) z Mf’lB(m, e)}. By assumption, p >0. Choose positive eo--e(m)<
min (0/3, e/4). We will show that if y 6B(m, eo), then y has a unique best
approximation from M. Suppose, to the contrary, that P(y) contains two distinct
points {ml, m2} for some y 6 B(m, eo). Clearly, IlY- mil[<=llY rnll for i= 1, 2.
Thus

{m, m2} c__ B(m, 2eo) 71M B(y, 3eo) (’1M c_ B(m, 4eo) 71M.

This, together with the definition of folding, implies that B(y, 3eo) (’1M contains a
compact connected component C containing {ml, m2}. Since y6N(mi) and
lira,- yll < 0 --< 0(m), both ml and m2 are strict local best approximations to y. By
applying the nonzero index theorem to the Cl-representable manifold C, there is
a critical point z 6 C with respect to y which is not a strict local best approximation
to y. Hence B(y, Ily- z[I) contains a sequence in M converging to z. By Lemma
3.1, we have

o(z) <- I[y- zll -< 3 o< 0.

This is a contradiction since z e B(m, e)f-IM implies p(z)>-p. To complete the
proof, we note that we can take

U= U B(m, e(m)).
meM

If M is a Cl-representable manifold for which the kernel of g’(O) is trivial,
then fld (g(0)) : 0 for all m e M. Hence, for such manifolds, this hypothesis may
be dropped in Theorem 5.1. More generally, we may use Theorem 4.1 to obtain
immediately the following theorem.

TIEOREM 5.2. Suppose M is a Cl-representable manifold such that, ]’or every
m M, there is a centered parameterization g satisfying g’(O), b 0 for every
b S(U>o ceC). Then, if the curvature is bounded on compact subsets ofM, there is
a neighborhood U o]:M such that every element of U has a unique best approxima-
tion from M.

As another consequence of Theorem 5.1, we obtain the following.
THEOREM 5.3. Let M be a connected boundedly compact C-representable

manifold with or(m) 0 for all m M. Then M is Chebyshev.
Proof. By Theorem 4.2, we have fld (m)= oo for all m e M. Thus, in th-e

notation of Theorem 5.1, e(m) may be taken as large as we like. Hence, every
y e X has a unique best approximation from M.
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There is a partial converse to Theorem 5.3, namely, the following.
THEOREM 5.4. I[ M is a boundedly compact Chebyshev Cl-representable

manifold, then [or all m M, we have fld (m) and either r(m) 0 or o’(m)
00.

Before proving this theorem, we remark that there exist boundedly compact
Chebyshev C-representable manifolds M for which o-(m)= 0 for some m 6 M
and o-(m’)= for some m’6 M. In particular, consider X =/(2) and the C1-
manifold given by the mapping

R t(t, sint).

Then M is the graph of the sine curve and for every (Xl, x2) R 2,
PM[(xl, x2)] (x,, sin x).

Thus M is Chebyshev; it is also easy to see that fld [(t, sin t)]= c for all R .
Furthermore, r[(t, sin t)] 0 as long as sin’ (t) # + 1 (i.e., the tangent plane is not
parallel to any facet of the ball). If sin’ (t) +1, or kr for k 0, + 1, , then it
is easy to check that r((t, sin t))=

We now prove Theorem 5.4. Since M is boundedly compact and Chebyshev,
it is easy to see that PM(. is continuous. Thus, by a result of Wulbert (cf. Theorem
3 in [15]), the folding must be infinite at each point. Suppose or(m) . Then, for
every y N(m), there is a y’ on the line segment between m and y so that

IIx- Y’II < o(m)<--o(m, y’). Thus m is a strict local best approximation to y’. Since
M is Chebyshev, one may apply Theorem 3 in [15] to show that m is the unique
best approximation to y’. Since M is a sun (cf. [14, Thin. 3]), every y r(m, y’) has
m as the unique best approximation from M. Hence, from Lemma 3.2, o(m, y)
lira- yl[ for every y. Thus p(m)= oo.

6. Chebyshev maitollls. We first apply the results above to Haar embedded
manifolds in C(T).

DEFINITION 6.1. [2] Let 0_--< m _--< n and hi, , h C(T). For any subset J
of natural numbers with

{1, 2,..., mIJ_{1, 2,... ,n},

let the functions {hi J} be a Haar system. Then

K={h- aihi’aiRfori=l,2,...,m, ai>-Ofori=m+l,"’,n}
i=l

is called a Haar cone. A Cl-representable manifold M__ C(T) is called a Haar
embedded manifold if all the tangential cones are Haar cones.

Results on the uniqueness of approximation from such manifolds were first
considered by Wulbert 16] and proved in the generality to be stated in Theorem
6.1 below by Braess [2] without reference to metric curvature or folding. An
essential property used is that of strong uniqueness.

DEFINITION 6.2. Let A be a subset of X. Then a A is called a strong (local)
best approximation to y from A if there is a > 0 such that, for every u 6 A (in
A f) U for some neighborhood U of x),

(6.1) Ily ull >_-Ily all + h[lu all.
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Intuitively, suppose m is an element of a Cl-representable manifold M.
Then, by (2.2), M and TC(m) are "separating slowly". If m is a strong local best
approximation to y from TC(m), then TC(m) and OB(y, Jim- Y[I) are "separating
linearly". Hence it should be expected that m is a strong local best approximation
to y from M. Similarly, if m is a strong local best approximation to y from M.
Similarly, if m is a strong local best approximation to y from M, one should expect
the curvature at m in the direction y to be zero since, relative to the sphere
OB(y, [[y-m[[), the manifold is not bending at all. This is made explicit in the
following lemma.

LEMMA 6.1. Suppose M is a C-representable manifold. A necessary and’
sufficient condition ]:or m M to be a strong local best approximation to y from M is
that m be a strong best approximation to y from TC(m).

This theorem was first proved for C-representable manifolds without edge
for which the kernel of g’(O) is trivial by Wulbert [16]. The sufficiency part was
proved by Braess [2, Thm. 5.2]. The necessity is proved as follows. Since m is a
strong local best approximation to y from M, there is a neighborhood U of m in M
and a A > 0 such that

]]y u[llly rnl[+ Allu rnl[ for u U.

If m is not a strong best approximation to y out of TC(m), then there is a sequence
h, in C,,M so that

(6.2) [[y m h,[I < IlY ml[ + (1 /n

Since h, CraM, there is a continuous map from [0, 1] into M with t m,(t)
satisfying

I[m,(t)-rn-th,l[=o(t) ast0.

Thus

(6.3) [Im. (t) mll tl{h.ll- o(t).

Now for so small that m.(t) U, we have

][y- m[]+ AlIm. (t)- ml] ]ly- m. (t){I
]]y m th.[] + ]]rn. (t) -.m

II(1 -t)(y m)+ t(y m- h.)ll + o(t)

--< Ily roll + t[lly m h,,ll- Ily mill + o(t).

Cancelling Ily --,11 and using (6.2), one obtains

Ailing(t)- ml[_-< t(1/n)llh,,][+ o(t).
By (6.3), , tllh II- o(t) _-< t( a / n)llh / o(t).

Dividing by and letting 0, we obtain

, lib. (a /n)llh. II,
which is a contradiction.
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In order to compute the curvature, we need the following lemma, which may
be considered in the light of the defining property of suns.

LEMMA 6.2. Suppose x is a strong best approximation to y from a convex set A.
Then every point on r(x, y) has x as a strong best approximation from A.

Proof. Let A > 0 satisfy

]]y zl]-> I]Y xl] + Allx zl] for all z 6 A.

Let y’=yy+(1-y)xer(x, y), y->0.
Case 1. 0-< y-< 1. We have the estimates

]ly’- zll Ily zll- Ily y’]]

I[y- xll + llx- zll- ]ly y’ll

=lly’-xll+Allx-zll.

(Note: convexity not used here.)
Case 2.

1 _-< 3’ ]]Y’- xl] I[YY +(1 v)x

,(y x)ll + ;llx

PROPOSITION 6.1. Suppose m is a strong best approximation to y in TC(m).
Then p(m, y) 0o.

Proof. Lemma 6.2 implies that every point y’ r(m, y) has x as a strong local
best approximation in TC(m). Hence by Lemma 6.1, m is a strong best approxi-
mation to y’ in M. By Lemma 3.2, p(m, y)_->]]m- y’ll. Thus o(m, y)= 0o for every
yeN(m).

Braess has shown that, for Haar embedded manifolds, the best approxima-
tion to any y e X C(T) from any tangent cone TC(m) is strong. This, together
with Proposition 6.1 and Theorem 5.3, immediately imply the following result of
Braess (cf. [2]).

THEOREM 6.1. Every connected, boundedly compact, Haar embedded man-
ifold of C(T) is Chebyshev.

Wulbert has shown that the best approximation from any Chebyshev sub-
space of L (/x) is strong. Hence, we obtain the following theorem similarly.

THEOREM 6.2. If m L l(/z) is a C-representable manifold such that every
tangential cone is a Chebyshev subspace, then M is Chebyshev.

7. Examples. In this section, we exhibit familiar examples of nonlinear
manifolds in either L2([a, b],/x) or C[a, b] which are Cl-representable. For
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manifolds in L2([a, hi,/), we will show that there, is a neighborhood of unique-
ness of best approximation. In C[a, b], we will present explicitly some C1-
representable manifolds which are Chebyshev.

Let Tbe a closed interval of the real line and let y be a continuous real-valued
mapping on T[a, b]. We further assume that y(t, .) is continuously Fr6chet
differentiable in the first variable. The Fr6chet derivative with respect to 6 T will
be denoted y’(t,.). Let xl<x2<... <x2N be elements of T and e,..., eN be
positive numbers. Then the subset of y-polynomials [3], [4], [7], [9]

(7.1) M={ aiT(ti,’)’ai>=ei>Oandx2i_l<=ti<:x2i, i:l,...,N}
i=1

may easily be seen to be a Cl-representable manifold when the set of 2N-
functions {y(ti, "), T’(ti, ")}L1 are linearly independent for all ti satisfying the
constraints in (7.1).

Suppose, in addition, that y(t, is twice continuously Fr6chet differentiable.
Then viewing M as a subset of L2([a, b],/),/ a positive Borel measure, we can
apply Theorem 3.2 to conclude that the curvature of M is bounded on compact
sets. Theorem 5.2 then implies that M has a neighborhood of unique best
approximations from M.

In particular, we remark that if is an extended sign regular kernel of order
2N(ESR2N) (cf. [10, p. 49]) and if the dimension of L2([a, b], ) is no smaller
than 2N, then M has a neighborhood of unique best approximation from M.

An example o a manifold M as in (7.1) which is not ESRz but has a
neighborhood of unique best approximation is given by the spline kernel y(t, x)
(x t)_, where n => 3.

We now turn our attention to manifolds in C[a, b]. In [15], Wulbert showed
that if g R R satisfies g’(x) >= e > 0, then the manifold given by

(7.2) M g oliU o
_
R and { i}i: is a Haar system

i=:1

is a Haar embedded manifold (hence Chebyshev by Theorem 6.1).
It is easy to see that certain manifolds with boundary are also Haar embed-

ded. Consider

Oi
_. 0

:0

Then if 0 < a < b, it is easy to see from Theorem 6.1 that M is a C-representable
Chebyshev manifold in C[a, b] since {xi}_:o is a Descartes system [10, p. 25] on
[a, b] and M is clearly boundedly compact. Note that if there is no restriction on
the coefficients in (7.3), then M is not closed (0 M) and hence not Chebyshev.
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SOME A PRIORI AND ISOPERIMETRIC INEQUALITIES ASSOCIATED
WITH A CLASS OF BOUNDARY VALUE PROBLEMS FOR DOUBLY

CONNECTED DOMAINS*

L. E. PAYNE- AND R. P. SPERB$

Abstract. In this paper isoperimetric inequalities are derived for the eigenvalues which appear as
the optimal constants in certain classes of boundary value problems for multiply connected regions.
These eigenvalues are related to the fundamental modes of vibrating membranes with rigid inclusions.

1. Introduction. The motivation for this paper stems from the fact that the
optimal constants in the types of explicit a priori inequalities which are used in
computing bounds for solutions of various problems in partial differential
equations are eigenvalues in some associated eigenvalue problems (see, e.g., [2]).
It follows then that isoperimetric lower bounds for these various eigenvalues in
terms of geometric properties of the region on which the problem is defined will
lead to simple, explicit and in a certain sense optimal a priori inequalities.

The eigenvalue problems whose eigenvalues arise in the study of the
Dirichlet and Neumann problems for the Laplace equation have been well studied
(see [2] and the references cited therein). In this paper we consider another class of
problems associated with the Laplace operator, namely, the Poisson equation
defined on a doubly connected domain in the plane with the value of the function
prescribed on the outer boundary and the value of the tangential derivative
prescribed on the inner boundary. Such a problem is not uniquely defined so
additional auxiliary conditions must be imposed to insure uniqueness. The
simplest example of a problem of this type is the determination of the stress
function in the elastic torsion problem for a hollow beam.

2. Some a priori inequalities. Let G be a doubly connected region in the
plane bounded internally by a curve /and externally by a curve F. Let H denote
the interior of /. Let Ao be the total area enclosed by F and let Ai be the area of H.
Suppose we are interested in obtaining a priori bounds for the energy D(v)=

Igrad v]2 dA for the solution of the following problem for the Poisson equation:

* Received by the editors March 27, 1974, and in revised form September 10, 1975.
t Department of Mathematics, Cornell University, Ithaca, New York 14850. The publication of
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GP33031X.
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Buchs/CH. Now at Vanderbilt University, Nashville, Tennessee 37203. The publication of the
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This problem has been studied by P61ya and Weinstein ]. We shall subsequently make use of
symmetrization arguments described in [1].
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(1)

Av =Fin G,

v=f onF,

Ov/Os g on y,

Here O/Os and O/On denote, respectively, the tangential and normal derivative on
3’, the quantities F, f and g are the given data functions and the prescribed
constant K eliminates the indeterminacy of v on 3’. We assume throughout that F,
/and the data are sufficiently smooth so that the indicated operations are valid.

Let us approximate v by a function q on which for the moment we impose
only smoothness requirements. Then set
(2) w v q.

Our aim is to compute an explicit a priori bound for D(w) of the following type:

(3)

D(w) <- C K- -n as + fo (F-Aq) dA}

+C2{
r [s(f-q)]2ds-+-v (g-s):ds}.

The constants C1 and C: will, as we shall see, be related to the lowest eigenvalues
of certain associated problems.

To pursue this question we decompose w as follows: Set

w=u+h,

where

(4)

hu=F-Aq inG,

u=0 onF,

Ou
=0 on%Os

Ou
ds K- ds,

On

and

(5)

Ah=O inG,

h=f-q onF,

Os- g- on %

Oh
ds=O.

On
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Under the appropriate smoothness hypotheses, the solutions of (4) and (5) will
exist, and D(w) D(u) + D(h); hence the bound for D(w) will be obtained once
we have determined bounds for D(u) and D(h). We first consider D(u).

Since Ou/Os 0 on y, it follows that u =/3 on ),. This constant/3 is unknown a
priori. Now

C}.r OUds-I uAudA,(6) D(u) =/3
On

and Schwarz’s inequality for vectors gives

2 OUds)Z+IG (Au)2dA].(7) [D(u)]--<[fG u2dA + ZAi][i (, -n
If we now define A to be the first eigenvalue of the following Rayleigh

quotient,

D(w)
(8) A inf 2,, [. w2 dA +Ai
where N is the class of Dirichlet integrable functions which satisfy

w =0 onF,

OW/Os--O (W ]1) ony,

then we are led to

(9) <1 1 (K_
v
Oqds) 2

D(u) =-{y n +I (F-Aq)2 dA}"
In (8) the value of/31 is not prescribed a priori. Inequality (9) thus gives us the first
part of (3) provided we are able to obtain a lower bound for . To obtain the bound
for D(h) we note that since vOh/Onds =0, the conjugate function of h is
single-valued in G. Thus if we choose the arbitrary constant so that vo, 0 ds O,
we have

D(h)=D()

(10) 0: ds
oru,

ds

N[D()] 1/2[
v (0)2 ds]l/2,

where p2 is the first nonzero eigenvalue in the Stekloff problem for G (see [2]). It
follows then that

(11) D(h) <_ _1 0
(f (p)

P2
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Since the equality sign can hold in (9) if u satisfies the Euler equation of (8), i.e.,

Au+Au=0 inG,

(12) u=0 onF,

u=/3 one,,

where the value of/3 is determined by the condition

(13)
Ou

ds AAi,
On

it follows that the optimal C1 in (3) is 1/A and the optimal C2 is 1/P2. If we use the
triangle inequality

(14) (dD(v) -/D(q)) <-_ D(v q),

we may state the result as the following theorem:

THEOREM 1. The energy expression D(v) associated with the solution v of
problem (1) is bounded by (14) where

D(-)<=; K- -n ds + (F-a)dA

2

Here is any suciently smooth funcaon.
We see then that explicit bounds for D(v) can be obtained provided lower

bounds for a and P2 are known. We shall give an isoperimetric lower bound for a
in } 3. ere is no isoperimetric lower bound known for P2 in the case of a multiply
connected domain O. It is possible, however, to find a lower bound using
techniques as given in [3].

We make brief mention of a second problem which is similar to (1) but which
leads to a slightly different eigenvalue problem. Using the same notation as before
we now let v be a solution of

(15)

Av=F inG,

v=f onF,

v=g+fi on 7,

-n ds + O.

Here fi is unknown a priori and a is a given positive constant.
If we now approximate v by a function q such that

w=v-qg=O onF, w=/3-/3 on3,,
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we obtain

(16)

Again Schwarz’s inequality gives

D(w) + c(/3-/3,)2 <_-- w 2 dA +(fi-,)2A,

[// (,,/ )2 IG )2 1 1/2
(17)

1 __0qds+ + (w dA
On

As before, if we knew a lower bound for the eigenvalue I() defined by the
following Rayleigh quotient,

inf
D(0) +2

it would then follow that

1 1 O ds + + (F-)2 dA(19)

and we would obtain a simultaneous bound for D(v) and . We also derive an
isoperimetric lower bound for X() in 3.

We remark in passing that the Rayleigh-Ritz technique may be used to make
the right-hand side of (3) or (19) small once the explicit bounds for the eigenvalues
have been inserted.

3. Isperimeie inequalities [or nn (). We consider a membrane
spanning the region G with a rigid portion H which is allowed to move in such a
way that H stays in a horizontal plane during the motion of the membrane. We are
led then to problem (12), (13), and the corresponding Rayleigh quotient is given
by (8). We establish the following theorem for 1.

THOaM 2. For given values ofAo andA the eigenvaNe I defined by (8) is a
minimum either (i) for Ne circular annulus with Ne rigid portion in Ne cenwr or (ii)
for me circular membrane 4 area Ao-A (i.e., wiNout rigid portion).
e proof of Theorem 2 is similar to the one given in P61ya and Weinstein’s

paper [1] in the case of the torsion problem for multiply connected domains. An
important difference, however, is that the solution of the torsion problem in the
case of a circle with ring-shaped "holes" is elementary, whereas in our case we are
concerned with zeros of complicated equations involving Bessel functions.

The first part of the proof is completely analogous to the situation in [1];
hence we do not carry out all the details.

We apply a Schwarz-symmetrization to the "hill" given by the solution
u(x, y) of (12), (13). The symmetrized hill u* will have either a "plateau" as a top
or a ring-shaped plateau. The first situation will appear if Um U(7). It is
sufficient to consider the second situation only. We extend u continuously inside
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H by setting

(20) 5(P)=- fl
for any point P 6 H, and analogously

(21) 5*(P*) =/3

for P* in the ring H*, the symmetrized portion corresponding to H. The same
arguments as in [1] show now that

D.jH.(fi*)Dufi) >
)2 >X*(22) A iufiZdA=i.uH.(fi, dA=

Here, G* U H* denotes the circle with the same area Ao, H* is the ring with area
Ai, fi* is the symmetrized function u (as in [1]), and A* is the first eigenvalue
corresponding to G*. In order to establish Theorem 2 we consider now the
following situation:

Let R be the outer radius of the membrane and and b(t) the radii of the ring,
where < b(t) and Ai ,n-(bZ(t)- t2). We then have for u u(r, t), the differential
equation

(23) Au+Au=0 for 0--< r--< t, b(t)<=r<=R,

together with the boundary conditions

(24) u(R, t) 0

and

u(t, t)= u(b(t), t)= fl(t),

Ou Ou }(25) 27r t-r(t, t)-b(t)-r(b(t), t) 1Au(b(t), t),

which is the side condition corresponding to (13) in the present case.
We wish now to investigate the sign of )t ’(t) dA/dt. In what follows we use

the notation

Ou Ou
(26) u, --(r, t), ur -rr (r, t).

We start with the equation

k .lG
+ fl2(t)Ai] =- AP= D(u),

where/3(t) u(b(t), t) and G is the domain consisting of the circle 0-<r_-< and
the ring b(t) <- r <- R. Differentiating (27) we get

(28)
h’P+h{2 I uutdA +2uutA +2"rr(tuZ(t, t)-bb’uZ(b, t))

+ 2uur(b, t)Ab’}
27r{tu(t, t) bb’u2(b, t)}+ 2D(u, u,),

D(u, u,) denoting the expression Igrad u.grad u, dA. An easy calculation
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shows then that (28) can be rewritten as

(29) A’P= 2rt((ur(b, t))Z-(ur(t, t))2),

which may be put into the form

(30) A’P O(-(b + t) + u(t, t)),
where

Q (-Ur(t, t)+A--2 (b-t)) >-0.

In fact, Q > 0 unless Ai 0 or 0. If we write (30) as

(31) A’P QA (b + t)-- ru d

then it is clear that for sufficiently small t, A’ will be positive while if b is close to R
(/3 sufficiently small) A’ will be negative.

We shall show that there is only one critical point of A in the interval 0
(A-A)I/-/ and that this is a maximum point. is will show that for the
circular membrane with a rigid ring the first eigenvalue will always be greater than
the smaller of the two extreme cases, that is,

(i) when the rigid part is a centrally, located disk, or
(ii) when the ring is at the outer boundary of the membrane.
To carry out the arguments it is convenient to introduce the actual form of the

solution u in 0 r t, i.e.,

(32) u(r, t)= B(t)Jo(xfA(t)r),
for some positive function B(t). Then

(/x2A’A)(33) A’p Jo(x) x + +---/ 2Jl(x),

where x t/A(t) and p 2PQ-B-1. Clearly

2+ AiA (AiA,2X).x+ x max ,
Thus for each x [0, jo]o 2.4048...) the curve

niAY (X + x2+/Jo(x)
lies above the curves

yl(X) ,----Jo(x), yz(x) 2XJo(x).



458 L.E. PAYNEAND R. P. SPERB

In particular then the first positive value xo at which A’ vanishes satisfies the
inequality Xo--> 1.84 , the first zero of

(34) XJo(x)-J,(x)-0.

It is easy to see that at a critical value of t, i.e., when A’ 0, the sign of )t" is given by
the sign of

(35) Jo(x) x + x +---/-2J,(x) Jo(X) g-’ + g---(l+ g)2

with

g-- 1+ 2.

But for x -> Xo we have
2

--l X --I 1, /.1.)2
g + g--(1 + g)_-< g + g -(I+ g)2_= H(g).

Since H(g) is decreasing for g _>- 1, we arrive at

(36) -x Jo(x) + +---/-2Jl(X) =H(1)Jo(x)=-4.78Jo(x).

Since A" 0 at any critical point it follows that there is a single maximum for A (t) in
the interval under consideration. We have thus established Theorem 2.

The subsequent discussion will show that the alternative in Theorem 2 cannot
be sharpened, in general, since the eigenvalue in case (i) may be larger or smaller
than that of case (ii) depending on the geometry of G. To see this we consider now
a circular annulus G with fixed area A r(b2_ 2) containing a centrally located
hole H of area rt2. We have then the differential equation

(37)

with (25) replaced by

Au+Au=0 fort<-_r<-b(t),

u=0 forr=b(t),

u=/3 forr=t

(38) -2ur(t, t)= At.

It follows from the boundary condition at r b(t) that

(39) u,(b, t) +- ur(b, t) O.

A computation similar to that following (28) leads to

(40) A’P 2rrt{u2(t, t)- u2(b, t)},
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with P U
2 dA + 3-/- 2t2 in this case. We now make use of the identity

(41) rUr (fUr) + Aru dr 0

to solve (integration by parts) for ur(b, t), and get

b2 t2t \4r-1 -2 ru dr

Here we have also introduced (38). It is clear from (42) that if is sufficiently small,
I’ will be negative, while an asymptotic analysis of the Bessel functions in the
solution shows that I’> 0 for A sufficiently small. A rather crude use of ine-
qualities shows us in fact that

(43) if Ao/Ai > 9, then ’ < 0.

This establishes the assertion that, in general, Theorem 2 cannot be sharpened by
eliminating one of the two alternatives.

In the case of the eigenvalue (c) defined by (18), the symmetrization
arguments used for the proof of Theorem 2 remain valid. By employing argu-
ments similar to those used previously in analyzing the eigenvalue problems for
the circular annuli one can establish theorems similar to Theorem 2 for (c). For
instance one can obtain the following result.

TI-IEOREM 3. LetL be a lower boundfor the eigenvalue c(a) defined by (18)
in the case ofa circular annulus. Let 6 1 a/(LAi) > O, and let Xo be the first zero
of
(44) 6{x +(xZ+AtTr-)/Z}Jo(x)-2J,(x).
Then, if x>= 1/6, the alternative of Theorem 2 holds for ().

Remark 1. A convenient lower bound L for ]c(c) is for instance 7rlo/Ao.’2
Remark 2. A similar theorem could be stated if 6 < 0.
Remark 3. A discussion analogous to the one after Theorem 2 can be made

here showing that the result of Theorem 3 is again best possible in a certain sense.

4. Additional inequalities.
(a) One could also get a lower bound for in the following way (see, e.g.,

[4]):
For any w g set

(45)
where

(46)

(47)

Ah=0 inG, h=0 onF, h=l on 3’,

A0=Aw inG, 0=0 onFU%
If we extend h and q continuously as constants inside H, we may write, using a bar
to denote the extended functions,

1 Iuu(+/3/)2 dA(48) - max
DLu(q + h
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Applying Schwartz’s inequality we get after some routine calculation

(49) -l<-h2dA+A+ max th2dA B+A 1
Dc(h) q=0 0G D(q) 47rC

Here, B h dA, C capacity per unit height of the infinitely long condenser
generated by y and F, and Af is the first eigenvalue of the fixed membrane on G.
Isoperimetric bounds for C and Af are known [2].

For (a) we would get analogously

1 B+A 1
(50)

(a) 47rC + a ,,
(b) We can also obtain isoperimetric upper bounds using conformal mapping

and the same reasoning as in [5]. The result is then the following theorem.
THEOREM 4. For given values of the capacity C of G and A (and a), the

eigenvalue A( (a)) is maximal in the case of circular ring with inner area A.
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REGULARIZATION AND APPROXIMATION OF SECOND
ORDER EVOLUTION EQUATIONS*

R. E. SHOWALTER?

Abstract. We give a nonstandard method of integrating the equation Bu"+ Cu’+Au =f in
Hilbert space by reducing it to a first order system in which the differentiated term corresponds to

energy. Semigroup theory gives existence for hyperbolic and for parabolic cases. When C cA, e >= O,
this method permits the use of Faedo-Galerkin projection techniques analogous to the simple case of a
single first order equation; the appropriate error estimates in the energy norm are obtained. We also
indicate certain singular perturbations which can be used to approximate the equation by one which is
dissipative or by one to which the above projection techniques are applicable. Examples include
initial-boundary value problems for vibrations (possibly) with inertia, dynamics of rotating fluids, and
viscoelasticity.

1. Introduction. Let A and C be continuous linear operators from a Hilbert
space V into its antidual V’. Let W be a Hilbert space, of which V is a dense
subspace continuously imbedded, and let B be continuous and linear from W to
W’. We naturally identify W’ with a subspace of V’ and use .,. to denote the
various dualities.

Problem 1. Given U V, U2 W, f C((0, (x3), W’), find u C([0, c),
V) fq C((0, ), V)fq Ca([0, ), W) fq C2((0, ), W) such that u(0)= u,
u’(0) u2, and

(1.1) Bu"(t)+Cu’(t)+Au(t)=f(t), t>0.

We shall rewrite this as a first order system. Define the Hilbert product spaces
VI V V, V, V W and the operators

M(xI, x2):(Ax1, Bx2), L(xI, x2)(-Ax2, AxI +CX2)
from V,, to V and Vl to V’, respectively. If u is a solution of Problem 1, then
w--(u, u’) is a solution of the next problem.

Problem 2. Given (u l, u2) V,,, f 6 C((0, oo), w’), find w C([0, ),
V,,)f3 C((O, c), Vm) such that w(0)= (Ul, u2) and

(1.2) Mw’(t)+Lw(t)--(O,f(t)), t>0.

Our plan is as follows. In 2 we obtain existence and uniqueness results
under hypotheses which imply that Problems i and 2 are equivalent. Examples of
initial-boundary value problems to which our results apply are given in 3.
Approximate solutions are obtained in 4 from standard Faedo-Galerkin projec-
tion techniques. When C= cA, e >=0, the L-projection factors into the A-
projection onto a subspace of V; then we can give energy norm error estimates for
models of finite-element subspaces when A is an elliptic operator of order 2.
Finally, in 5 we examine the error resulting from certain perturbations of (1.1)
into more regular models which are parabolic. In certain models these regulariza-
tions represent artificial viscosity or artificial inertia.

* Received by the editors July 15, 1974, and in final revised form June 5, 1975.
? Department of Mathematics, the University of Texas, Austin, Texas 78712.
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2. Existence and uniqueness. We shall seek hypotheses for which Problem 1
is well-posed. Recall that the operator A V V’ is monotone if Re (Ax, x)>=O,
x V, and symmetric if (Ax, y)= (Ay, x), x, y V. Such an operator induces a
seminorm I]xl[ =(Ax, x)/, x V, and we have a Cauchy-Schwartz inequality

I<ax, Y>I <-IlxllollYll, x, y V.

Let u be a solution of Problem 1. IfM is symmetric, then w --- (u, u’) satisfies

(2.1) Dt(Mw(t), w(t))+ 2 Re (Lw(t), w(t))- 2 Re if(t), u’(t)),

so we obtain

(2.2) (Mw(t), w(t)}+2 Re (Lw, w}=(Mw(O), w(0)}+2 Re (f, u’}.

This is equivalent to the identity

{Au(t), u(t)}+{Bu’(t) u’()}+2 Re (Cu’, u

(Au(O) u(O)}+(Bu’(O) u’(0)}+2 Re {f, u

Suppose B is also monotone, and denote by I1" IIw, the norm on the Hilbert space
W,which is the antidual of Wwith the seminorm induced by B. The last term
in (2.1) is bounded by

where T>0 is arbitrary, so (2.1) gives

D,(e-t/r(Mw(t), w(t)))+ e-’/7"2Re (Lw(t), w(t)) <-

Integrating this inequality gives the a priori estimate

fOt fOt2(2.3) (Mw(t), w(t))+2 Re (Lw, w)<=e(Mw(O), w(0))+ Te

0<t<T.

We summarize the above as the following proposition.
PROPOSITION 1. Let u be a solution of Problem 1 on the interval [0, T] and

assume that A and B are symmetric and monotone. Then we have

(Au(t), u(t))+(Bu’(t), u’(t))+2 Re (Cu’, u’)

<=e(Aua, u)+e(Bu2, ue)+ Te O<-_t<= T.

From the representation u (t) u +0 u’ by the (strong) integral in W and the
fact that I1 is a continuous seminorm on W, it follows from Ilu’ll -0 on
that Ilull i constant on [0, T]. This gives the following proposition.

POPOSTION 2. Let A and B be symmetric and monotone and let C be
monotone. If u is a solution of Problem 1 on [0, T] with u u2 0 and f(. O,
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then

I]u(t)[]a =]]u(t)]lb --0, 0 -< -< T.

Thus, there is at most one solution of Problem 1 /f ker (A)T)ker (B)= {0}.
We could continue to permit B to be degenerate as in [15]; it would be

necessary to modify the definitions above and work in dual spaces but nothing
essential is changed. For the remainder of this section we shall assume B is
W-coercive:there is a c > 0 such that

I1 , w.
This holds, for instance, if B V V’ is given symmetric and (strictly) positive and
if W is the completion of V with the norm {. {b-

We consider the question of existence. In addition to the hypotheses of
Proposition 2, assume A is V-coercive and B is W-coercive. Define D
{x V Lx V}. Since A and B are isomorphisms, M is also, and we can define
an operator N:D V by N=M-o L. Note that (x, y) (Mx, y) gives an
(equivalent) inner product on Vm for which we have the identity

(Nx, y) (Lx, y), x 6 D, y 6 .
It follows that N is accretive:

Re (Nx, x) O, x D.

To show that -N generates a strongly continuous semigroup of contractions on
V, it suffices to show that A +N is onto Vm for every A > 0. But this is equivalent
to the following lemma.

LEMMA 1. AM+L maps D onto V for every > O.
Proof. Let f e V’, f2 W’. Since A is V-coercive, so also is A + AC+ A 2B,

and each maps onto V’, so there exist Xl, xz e V for which

(A + AC+ A2B)x2 Af2-fl
AAx Axe +fl.

It follows that Ax14-Cx2---ABx24-f2EW’, hence (xI, x2) ED, and that
(AM+ L)(xl, x2) (f,, f2).

Our first existence result follows directly from the preceding discussion and
standard results on the generation of semigroups [9].

PROPOSITION 3. Let A be symmetric and V-coercive, B be symmetric and
W-coercive, and C be monotone. If U l, U2 V with Au14-Cbl2 W and if.f 6
C([0, oo), W’) are given, then there is a (unique) solution of Problem 1. The
equation (1.1) is satisfied up to the initial time" (u, u’) C1([0, oo), Vx W). From
this it follows that (u, u’) C([0, oo), Vx V).

PROPOSITION 4. In addition to the hypotheses of Proposition 3, suppose that
C+ AB is V-coercive for A > O. If U V, u2 W and f :[0, oo) W’ is H61der
continuous, then there is a (unique) solution of Problem 1.

Proof. For each A > 0 and x (Xl, x2) 6 D we have

Re ((A + N)x, x),, A(Axl, Xl) +((AB + C)x2, x2),
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so A +N is V-coercive and, hence, sectorial. Thus, -N generates an analytic
semigroup [9].

In the situation of Proposition 4, either the equation is irreversible or N is
bounded, i.e., V W [7]. In particular, Proposition 4 applies to parabolic prob-
lems while Proposition 3 is appropriate in the hyperbolic situation.

3. Examples. We illustrate some of our preceding results with initial-
boundary value problems which occur in various applications. These existence-
uniqueness results are far from best possible, but will serve as models for our
following work.

Let G be a nonempty open set in " lying on one side of its smooth
(n-1)-dimensional boundary, OG. H(G) is the Hilbert space of (equivalence
classes of) functions in L2(G), all of whose (distribution) derivatives of first order
belong to L:(G). The inner product is given by

j=O

where D, 1 j n, denotes a partial derivative and Do is the identity. Let Fo be an
open subset of OG and F OG Fo. Let V be that subspace of H(G) consisting
of those functions whose traces vanish on Fo. We shall denote the gradient
V =(DI,"" ", D,) and Laplacian A =i=D as indicated. Also, v will
denote the unit outward normal on OG, and D, V u is the directional normal
derivative. See [12] for details.

Example 1. Define A V V’ by

f v. v, ,(A, V.

For each 6 V, the restriction ofA to the space (G) is the distribution -A.
Regularity theory for elliptic equations shows that Green’s formula

(A, ) (-A)+ O
G

is meaningful whenever A LZ(G). Take W= LZ(G) and (B, ) (, $)c().
Let R 0 and r 0 be given and define

(C, )=R +r , ,6 V.
G

Finally, let F(x, t) be a real-valued function in C(x[0, )) and set f(t)=
F(., t), t0. Propositions 2 and 3 show that for each pair ul, uz V with
Au L2(G) and Du+ru2=O on F1 there is a unique generalized solution
u u(x, t) of

Du + RD,u Au F(x, t), x G, 0,

u(x,O)=u(x), D,u(x, 0)= Ul(X),

u(x, t) O, x Fo,

Du(x, t) + rDu(x, t) O, x F1.



SECOND ORDER EVOLUTION EQUATIONS 465

This hyperbolic problem is the classical wave equation with weak dissipation
distributed through G(R > 0) or along OG(r > 0).

Example 2. Let A and B be as above and set

(c, 0)--

where 0. Propositions 2 and show that for each pair u V and uL(G)
there is a unique generalized solution u u(x, t) of

DZt u e AD,u Au F(x, t), x G, > O,

u(x, O)= ul(x), D,u(x, 0)= Uz(X),

u(x, t) O, x Fo,

D(u(x, t) + eD,u(x, t)) 0, x 6 F.
This is a parabolic problem arising from certain models in classical hydrodynamics
or viscoelasticity. Strong dissipation results from the presence of the positive
constant e which represents viscosity in the model [8].

Example 3. Take A as above but set C 0, W V, and define

(Bo, O> (oq, + eVo- 7q), o, 4’ V,

where e >0. Let G(s, t) be a real-valued function in CI(F x[0, )) and define
f:[0, o) V’ by

(f(t), qg) f F( t)q + Io G( t)qg, qg V.

Then either of Propositions 3 or 4 shows that for each pair u, u2 V there is a
generalized solution u u(x, t) of

DZu-e ADZu-Au =F(x, t), x G,

u(x, O)= u(x), D,u(x, O)= uz(x),

u(x, t) 0, x Fo,

D(u(x, t) + eD2 u(x, t)) G(x, t), x 6 F.
This problem arises in classical vibration models in which e represents inertia
[13, 278].

Example 4. Here we choose W-- V and C 0 as before, but define

I vo. vq,, , 4, v,(B,

{Aq, q} a DqDfi + bOnqD

where a _->0 and b_->0. Define f as in the preceding example. From either of
Propositions 3 or 4 (and possibly after an exponential shift to obtain an equivalent
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problem with A replaced by the coercive A + A2B) we obtain for each pair u l,

u2 V the existence of a generalized solution u u(x, t) of the problem
n--1

aO ,u 20 .u t,O u t), x (;, >-_ o,
j=l

u(x, 0)= Ul(X), D,u(x, 0)= u2(x),

u(x, t) O, x F0,
n--1

D,(D2tu)+a ,iD.iu+b,,,D,,u=O, xF1.
j=l

Such problems arise in models of "fat bodies" of homogeneous incompressible
fluid in rotation. These include the internal waves in which the term with b > 0
results from the rotation while that with a >0 is contributed by a vertical
temperature gradient [10, 6]. Similarly, certain models of wave motion in a
rotating stratified fluid [17] lead to the equation

(Dr + D1)2 zu + dDu O.

An elementary change of variable reduces this to the form above.
Various models of diffusion processes lead to problems gimilar to Examples 3

and 4 but with D,2 replaced by D, and without the initial condition on D,u(x, 0).
These are resolved as Problem 2 with M= B and L A in the respective
examples 14].

Many other similar problems arising from models of waves in fluids or solids
could be added. If one considers transverse vibrations (instead of longitudinal
vibrations) of rods, then we obtain problems like Examples 1 and 3 but with Au
replaced by A2u. Consideration of shear forces could add a term A2u to Example
3. Finally, we mention the models of coupled heat-sound systems and plate
vibrations which lead to systems in the form of (1.1) in which the operators are
2 x 2 matrix-operators. Our results apply to these as well.

4. Approximation by projection. In order to describe the approximation
methods we shall discuss, we denote as indicated the following forms"

a(x, y)=(Ax, y), c(x, y)=(Cx, y), x, y V,

b(x, y)= (Bx, y), x, y e W,

m(x, y)= (Mx, y), x, yeV,,,=VxW,

l(x, y)= (Lx, y), x, yeV=VxV.

These forms permit a weak formulation of Problem 2.
LEMMA 2. If W( is a solution of Problem 2, then

(4.1) m(w’(t), v)+l(w(t), v)=((O,f(t)), v), v6 V, t>0.

Let S be a closed subspace of V. We shall consider an approximation of w(.
by a function W" [0, oo) S x S which satisfies

(4.2) m(W’(t), v)+l(W(t), v)=((O,f(t)), v), v6SxS, t>O,
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and for which W(0) is specified below. We note that if U:[0, oo)- S is the
corresponding approximation of a solution u of Problem 1, i.e.,

(4.3) b(U"(t), v)+c(U’(t), v)+a(U(t), v)=(f(/), v), vS, t>0,

then the pair W= (U, U’) satisfies (4.2). If ker (A) {0}, then (4.2) and (4.3) are
equivalent. When S has finite dimension, (4.3) is the expansion method of S
(Faedo [5]).

We obtain error estimates in the energy norm IIx[I,, re(x, x)1/2 by comparing
each of w(. and W(. with the pointwise L-projection W(t) of w(t) onto $ S:
for each t>0, W(t)SS is defined by

(4.4) l(W(t), v) l(w(t), v), v S x S.

From (4.1), (4.2) and (4.4) we obtain for each v e S x S,

m(w’(t)- W’l(t), v)= m(W’(t)- W’(t), v)+ l(W(t)- W(t), v).

Setting v W(t)- W(t) and using the monotonicity of L give

DtIIW(t)- Wl(t)ll2,,<--21lw’(t) wl(t)ll,,llW(t)-

Since the function t- w(t) W(/)]I,, is absolutely continuous, hence, differenti-
able almost everywhere with

DtllW(t)- Wl(t)ll2m 211W(/)- W(t)llmO,llW(t)- Wl(t)ll,,,

we obtain the estimate

(4.5) O,(llW(t)- W(t)ll)[Iw’(t)- w’(t)llm

off of the set of > 0 for which w(t)- W(t)[I, 0. But (4.5) trivially holds at an
accumulation point of this set, and there are at most a countable number of
isolated points of this set, so (4.5) holds almost everywhere on (0, oo). Integrating
(4.5) yields the following lemma.

LEMMA 3. LetA andB be symmetric and monotone and let Cbe monotone. If
u is such that w e C([0, oo), Vt)(cf. Proposition 3) and if w’, W’ e L I((O, e), V,,,) for
some e > O, then

IIw(t)- W(t)lim llW(0)- W(0)ll + IIw’-
If the initial value W(0)e S x S is chosen by M-projection, i.e.,

m(W(O), v)= m(w(O), v), veSXS,

then IIw(0)-w(0)llm so the triangle inequality yields

w(o)- w,(o)ll, mllw(O)-

If W(0) is chosen by L-projection (4.4), then W(0)= W(0) and the preceding
estimate holds trivially. Either way we obtain the following proposition.
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PROPOSITION 5. In the situation of Lemma 3, if W(0) is chosen by M-
projection or by L-projection, then

(4.6) Ilw(t)- W(t)llm llw(t)-- W(t)ll + 2llw(0)- w(0)ll + IIw’- w’,ll,

Thus, the error in approximating (4.1) by (4.2) is determined by the error in
the corresponding stationary Galerkin approximation (4.4).

Hereafter we restrict our attention to the case of C cA, e >-_ O, for then (4.4)
factors into a pair of A-projections of V onto S. That is, denoting the error by
e(t)- w(t)- W(t) , we see that (4.4) is equivalent to (j 1, 2)

(4.7) a(ej(t), v)=0, v6S, t>-O,

so Ut(t)(U’t(t)) is the A-projection of u(t) (respectively, u’(t)) onto S, where
Wt(t)=(U(t), U’l(t)), t>-O. This gives

Ilu(t)- Ul(t)ll inf {llu(t)-vll v S},

and similar estimates hold for the various derivatives of the error.
We shall combine the preceding remarks with approximation-theoretic

results. Denote by Hk(G) the space of functions q which with all derivatives D"0
of order lal at most k belong to L2(G). Such a space is complete with the norm

For appropriate functions v from an interval [0, T] into a normed space N with
norm I1" I1,,, we recall the norms

IoT l) lipI111,,) IIv(t)l]r d 1 <_- p < oo,

I111o<> ess sup {llv(t)ll 0 t_-< T}.

Our approximation result is based on an approximation assumption that is typical
of multivariate spline and finite element spaces 16].

PROPOSITION 6. Let V be a closed subspace of Ha(G) (as in 3), and
{Sh 0 < h < 1} a collection o" finite-dimensional subspaces o]’ V which satis]’y the
following approximation assumption: There are a constantMand an integer k >- 1
such that

(4.8) inf {11 11.’ sa} Mh-lllllm,
qg Vf-IHk(G), 0<h<l.

Let A and B be symmetric and monotone, A be V-coercive, and set

g sup {a(, )1/2 Ilwll’ 1},

K sup {b(, )1/2 IIllg’ 1}.

Let u C1([0, T], be a solution of Problem 1 with C eA for some e 0 and
assume that

u, u’ e L([0, T], H (G)), u" L ([0, T], H (G)).
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Then the approximate solution U defined by (4.3) with S Sh and initial data
chosen by M-projection (or L-projection) satisfies the estimate

(4.9) (llu(t)-U(t)ll2a+llu’(t)-U’(t)ll)l/2<=Ch k-l, 0<t<T,=

where C M{3g llulk    )+ (3Kb + Tg )llu’lkoo,. )+
Additional Remarks. The coercivity of A implies that (4.9) bounds the

Hi-norm of u(t)- U(t). Similar remarks apply to u’(t)- U’(t)when B is coercive.
The preceding proofs give estimates for problems of first order in time in the

form of Problem 2.
Proposition 6 applies directly to Examples 2 and 3 of 3. After an elementary

change of variable, Example 1 with r 0 is included. In the following section we
indicate how Example 4 can be perturbed into a "nearby" problem to which
Proposition 6 applies.

Since B is not required to be coercive, Proposition 6 gives error estimates for
problems like the following:

-Au(x, t)= F(x, t), x G, >-O,

D2t u(x, t) + Du(x, t) = O, xF1,

u(x,O)=u,(x), Dtu(x, 0)= u2(x),

u(x,t)=O, X6Fo, t=>O.

Such problems arise as linear approximations of gravity waves [11], [15].
The preceding techniques lead directly to energy estimates of error in the

approximation of equations with higher order elliptic coefficients. Such examples
were mentioned at the end of 3. For related results, see 1], [2], [3], 16], 18].

5. Perturbations. Three methods will be given for perturbing (1.1) into
"nearby" equations with desirable properties. We shall assume that A, B and C
are all monotone and that A and B are symmetric. None are necessarily coercive,
so the functions I1" Ila and I1" I1 are continuous seminorms on V and W, respec-
tively; denote the corresponding seminorm spaces by Va and Wb. The first two
methods are appropriate for the most common situation (e.g., Example 1) in
which A is strictly stronger than B and C. The first method corresponds to an
introduction of artificial viscosity for strong dissipation in the model (cf., Example
2) while the second method is suggestive of an introduction of artificial inertia.
The third method is a means of perturbing (1.1) into an equation to which we can
apply our approximation results of 4. It is appropriate for situations (e.g.,
Example 4 with a --0 or b 0) in which B is an elliptic operator and A is not
coercive.

Parabolic regularization. We modify (1.1) by replacing C with C+ cA, e > O.
If u is the corresponding solution of Problem 1 on [0, T] and we (u, u’), then
we have

(5.)

(0where L=L+e 0

Mw’(t) +Lw(t) (0, f(t)), 0 -<- t <-_ T,

A
If u is a solution of Problem 1 and w (u, u’) the
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corresponding solution of Problem 2, then

(5.2) M(w’(t)-w’(t))+L(w(t)-w(t))=(O, eAu’(t)), O<-t<-_ T,

and from (2.2) we obtain

I0Ilw(t)-w(t)ll/2 Re ((C+eA)(u’-u’), u’-u’)

22 Re (eAu’, u u2> <- (llu’ll/llu’-

Since C is monotone, it follows that

I0 I0
PoPosvro 7. I’ u’ e L([0, T], V), then

In particular, u u (u’ u’) in L([0, T], V) (respectively, L([0, T], W)) and
u’ is bounded in L([0, T], V).

From (5.1) and (2.3) one shows easily that Ilull., Ilu;Ik and
lu;lc(v, are bounded. The existence of a solution of (1.1)can be deduced from
existence for (5.1) and weak*-compactness of closed balls in L 12, Chap. 3.8].

When C 0 and A is coercive, Proposition 6 applies both to (1.1) and (5.1).
However, the strongly dissipative parabolic equation (5.1) may be more desirable
for numerical work [16, Chap. 7.3].

Sobolev regularizaion. In this perturbation of (1.1) we replace B with
B + eA, e > 0. Denoting by u a solution of the perturbed problem and letting
w (u, u;) as before, we have

(5. M ;( + ( (0, (, 0 T,

0) With u and w as before we have
0

whereM=M+e 0 A

(5.4) M(w’(t)-w’(t))+L(w(t)-w(t))=(O, eAu"(t)), ONtNT,

so (2.2) gives the estimate

IIw(t) w(t)ll+ellu’(t) 2u(t)ll 2e Re (Au", u u’)

(llu"llZ + Ilu’- u’ll), 0 < < T.

Setting H(t) Ito Ilu"ll + Ilu’- u’IIZ, we have

H’(t) u"(t)ll + n(t), O<_t<__T,
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and hence,

 llu"( )l12 dr < e Ilu"ll2a.H(t)< e t-

Our original estimate now gives, the following proposition.
PROPOSITION 8. If U" 6 L2([0, T], Va), then

2 2 e .]]2Ilu(t)-u(t)ll2/llu’(t)-u(t)llb/ellu’(t)-u(t)l{o<=e Ilu O<_t<_T.

In particular, u u (u’ u’) in L([0, T], Va) (respectively, L([0, T], Wb)) and
u’ is bounded in L([0, T], Va).

From (5.3) and (2.3)it follows that Ilu’ ll oo    and  llu;ll oo ,,o)are
bounded. We can obtain existence proofs from such a priori inequalities.

Discrete analogues of this method appear as Laplace-modified Galerkin
techniques [1], [2] for equation (1.1) with B I and first order equations, (1.1)
with B --0. In these numerical schemes, e is chosen as a first or second power of
the time increment.

A nonsingular.perturbation. For our final method we modify Problem 1 by
replacing A with A + eB. Letting u denote the corresponding solution and
w (u, u’) as before, we have

(5.5) Mw’(t) +Lw(t) (0, f(t)), 0 <- <- T,

B
L =L+ewhere M M+ e

0 B
tions of Problems 1 and 2, then we have

0B). If u and w are respective solu-

(5.6) M(w’(t)-w’(t))+L(w(t)-w(t))=(O, eBu(t)), O<-t<- T,

so Proposition 1 gives us the following.
PROPOSITION 9. If U and u are respective solutions of Problem 1 and the

indicated perturbed problem, then

2Ilu(t)- u(t)ll +llu’(t)- u(t)ll + ellu(t)- u(t)ll <- ere Ilull, O<- <= r.

The point of Proposition 9 is to perturb Example 4 into a form to which
Proposition 6 can be applied. An attempt to do so by introducing the unknown
v(t) e-X’u(t) leads to Problem 1 for v with A replaced by the coercive A +,2B
but at the expense of introducing a term 2)Au’(t), thus making Proposition 6
nonapplicable.

Similar techniques work for corresponding problems with a first order time
derivative. Such a problem arises with the equation

Dt(Au(x, t)) +D1 u(x, t) 0

for divergence-free Rossby waves [10, 7].
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CAUSALITY OF TIME-VARYING NONLINEAR OPERATORS
AND THE EXTENDIBILITY OF THEIR DOMAINS*

REUVEN MEIDAN?

Abstract. When applying operator theory to model the behavior of the electrical system, it is
advantageous to initially consider a restrictive domain of infinitely differentiable functions with
compact support. It is shown that by the assumption of causality and related postulates, the domain of
an operator, continuous from D into D’, can be continuously and uniquely extended onto DR, the
space of right-sided testing functions. A converse theorem is established too.

1. Introduction. When applying operator theory to mathematically model the
behavior of physical systems, the process usually involves two stages. First, the
setting is constructed in such a way that a large class of operators amenable to the
analysis is obtained. This is accomplished by choosing a restrictive space with a
strong topology to serve as the domain and a broad space equipped with a weak
topology to be the range space. In the second stage, certain postulates, motivated
by the physical nature of the system, are proposed and imposed on the operator.
Their effect is to restrict the class of permissible operators, provide them with
characterizations and to extend the initial domain and to restrict the initial range.
In this work, the attention is focused in the last subject, namely, the extendibility
of the domain and the restrictivity of the range which are obtainable by the
postulate of causality and related postulates. The importance of the subject
originates from the fact that extending the initially restrictive domain will allow a
larger set of admissible input signals to the system. On the other hand, restricting
the initially broad range space will furnish information about the expected output
signals.

We consider the postulate of causality and related postulates like; finite
memory, finite lag and localness. It is shown that they allow us to extend the
operator, initially assumed to operate on functions of compact support, to a larger
domain which consists of the functions whose supports are limited only from the
left. Furthermore, the extended operator enjoys the properties of continuity and
causality on the extended domain as well. This is very satisfying from a physical
point of view. The operator is initially defined for infinitely differentiable func-
tions of compact support. However, although there is physical sense in "starting"
the inputs at a finite time, there is no justification to assume that they should also
"end" at a finite time in the future. The natural inputs to a causal system are
functions which are not limited with regard to their support or growth on the
right-hand side of the time axis. Being able to extend the domain of definition in a
unique way and such that the extended operator remains continuous and causal,
to include those functions is significant from a physical point of view. As expected,
this extendibility can uniquely be tied to the postulate of causality or related
postulates.

Newcomb [2] postulates an electrical network to be defined by an operator

(or actually by a binary relation) which maps Dn into itself, where Dn is the space
* Received by the editors October 8, 1974, and in revised form April 15, 1975.
School of Engineering, Tel-Aviv University, Tel-Aviv, Israel. This work was carried out while

visiting the Department of Applied Mathematics, University of the Witwatersrand, Johannesburg,
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of right-sided testing functions. Among other things, it is shown in this work that
this need not be taken as a basic assumption. Instead, if one takes the usual course
and defines the operator on input functions of compact support and adds the
assumption of causality, the extendibility of the domain onto Dn is automatically
fulfilled.

The physical system under consideration is, of course, the electrical network.
The analysis will be carried out for signals which are scalar-valued time functions.
Extending the results for the n-dimensional case is straightforward, provided that
an extended definition of causality to R (Meidan [1]) is adopted.

The analysis will be carried out in the framework of Schwartz’s distribUtion
theory. This provides the space D, of infinitely differentiable testing functions of
compact support as the initial domain and the space D’ of distributions as the
initial range. This framework is compatible with other works in the literature (e.g.,
Zemanian [5]). The domain D will be equipped with the strong testing function
topology and the range D’ with the weak dual topology. This will meet the
abovementioned requirements from the initial domain and range spaces.

At this point, the postulate of continuity will be imposed. In view of the above
topologies, this is a fairly weak restriction. However, it implies boundedness. One
should remember that, for nonlinear operators, continuity does not, in general,
imply boundedness. However, in view of the domain space chosen, this is the case
for the operators under consideration.

In the literature, the assumption of linearity is usually imposed at this stage.
This proves to be very powerful from the standpoint of the analysis. In particular it
allows us to invoke Schwartz’s kernel theorem (Schwartz [3]). Since in this work
linearity is relinquished, the analysis will be carried out without the help of
Schwartz’s kernels. We will also see, especially when the converse subject is
pursued, that certain properties automatically fulfilled for linear operators, in
view of the nonlinearity, will have to be assumed independently.

2. Preliminaries and notations.
Spaces of testing functions. Let R denote the set of real numbers and D the

space of complex-valued infinitely differentiable functions on R with compact
support. We equip D with the testing functions topology. By this topology, a
sequence {n} of functions in D converges to zero if the sequence of functions as
well as their derivatives of any order converge uniformly to zero, and if, in
addition, all functions have their supports contained in a compact subset of R. DR
denotes the space of right-sided testing functions. It consists of infinitely ditteren-
tiable functions whose supports are bounded on the left. Dn is equipped with a
topology according to which a sequence {n} of functions in DR converges to zero
if the sequences of functions and all their derivatives converge to zero uniformly
on all compact subsets of R and if, in addition, all functions have their supports
limited on the left by a fixed real number. The space DL on left-sided testing
functions is defined in a similar way. The last space of testing functions to be
considered is E. It consists of infinitely differentiable testing functions on R with
no restriction on the support. It carries a topology by which a sequence {$n} of
testing functions in E converges to zero if the functions and all their derivatives
converge uniformly to zero on every compact subset of R. The relation between
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these spaces can be described in terms of the following set inclusion:

DL

This inclusion defines natural injections of one space into the other. In view of the
assigned topologies, these injections are continuous.

Let f be an open subset of R. We will need spaces of testing functions
restricted to f. Hence D()) denotes the space of testing functions defined on
whose supports are contained in a compact subset of ). The spaces DR (f),D(f),
/(f) are defined accordingly.

Spaces o" distributions. D’ is the dual space of D, namely, the space of the
linear and continuous functionals on D, so-called distributions. If e D and
[ e D’, we denote by (LO) the complex number which " assigns to . D’() is the
dual of D(). Let 1)1 and ’2 be two open sets in R such that fl c f2. Hence
D(I) c D(2). Let " be in D’()2). We restrict " to the testing functions of
and get a member of D’(I). It will be called the restriction to fl of a distribution
on 2. A distribution on R is said to vanish on an open set of R if its restriction
to is the zero distribution. The support of a distribution is a closed set which is
the complement of the largest open set for which the distribution vanishes. D
denotes the space of right-sided distributions, i.e., distributions whose supports
are bounded on the left. It is not the dual of DR. In fact, it is the dual of DL.
Similarly D/ is the dual of DR. E’ denotes the dual of/, and it consists of the
distributions with compact support. The topologies assigned to the various spaces
of distributions are the weak dual topologies. Let {fn} be a sequence of distribu-
tions in one of the above mentioned spaces. The sequence is said to converge to
zero if the sequence of complex numbers (fn, q) converges to zero for every q in
the corresponding testing space. Equality in D’, between two distributions fl and
f2 means that (fl,O)= (f2,lt) for every e D. Two distributions, fl and f2, can be
equal on an open subset f of R. This means that their restrictions to D() are
equal.

The operators. Let N denote an operator, nonlinear in general, mapping D
into D’. We assume that it is continuous with respect to the testing function
topology of D and the weak dual topology of D’. This is a fairly weak assumption
in view of the topologies involved. For linear operators, the continuity implies
boundedness. This is not the case, in general, for nonlinear operators. However,
we will show that, in view of the particular domain space, this holds for the
operators at hand.

THEOREM 1. Let N be an operator mapping D into D’. IN is continuous, it is
also bounded.

Proof. Let A be a bounded set in D. We have to show that N(A) is bounded in
D’. Indeed, since D is a Montel space, all its bounded sets are relatively compact.
Since N is continuous, N(A) is relatively compact too. But this implies that N(A)
is bounded, which completes the proof.

This result allows us to consider only the continuity of the operator and to be
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assured that its boundedness holds too. We will consider now the question of
extending the domain of the definition of the operator.

Let N denote a continuous operator (not necessarily linear) from D into D’.
Let A be a space of testing functions which contains D and which has a weaker
topology than D. N is said to be extendible onto A if an operator exists which is
continuous from A into D’ and which coincides with N when restricted to D. We
will not distinguish notationwise between the operator and its extension. Since the
main subject at hand is extending the domain of definition of operators, we will
state some well-known theorems regarding this. The operator is extendible from
D onto A, if and only if it is continuous with respect to the relative topology
induced on D by A. Since this topology is, by assumption, weaker than the initial
topology, this is a stronger continuity requirement. The extension is unique if and
only if D is dense in A.

3. Causality and the extendibility oi the domain.
DEFINITION. Let N be an operator mapping D into D’. N is said to be causal

on D if, for every to R, we have that Nq Nq. (in the sense of equality of
distributions) on the open interval (-o, to) whenever q, qe D and q q on
(-c, to).

By the definition, the causality of the operator implies its being single-valued.
Hence we will always assume that the operators are single-valued. Also, no
generality is lost if we assume that N(0) 0 where the zero on the left-hand side is
the zero testing function in D and on the right-hand side, the zero distribution in
D’. Indeed, let N’ be an operator such that N’(0)= f0 : 0. Then, define a shifted
operator N-- N’-f0. N has the same continuity property as N’, but its reponse to
the zero input function is zero. It should be noted that for linear operators, N(0)
must be always zero.

Based on this assumption, we get a necessary condition for the causality of
the operator. It is only for linear operators that this condition is also sufficient.

LEMMA. Let N be a causal operator from D into D’ (such that N(O)= 0). If
q D such that supp q [to, o), then supp NO [to, c).

We are now in a position to state the main extendibility theorem.
THEOREM 2. LetNbe a continuous operatorfrom D into D’. IfN is causal, it is

extendible as a continuous and causal operator mapping DR into D.
The rule of extension. Let q(t) be a testing function in DR. We wish to define

N(q). Choose t R and a testingfunction A(t) which is equal to unity over the
interval (-c, t) and vanishes on the closed interval [t + 6, ), 8 > 0. By the
partition of unity (e.g.,.see [4]), such a function can be found. Consider A(t)tO(t). It
is a testing function of compact support. Hence, we can apply the operator N to it,
and f(i) N(.it) is a distribution in D’. Consider its restriction to the open interval
tq (-, ti). In view of the causality of N, this restriction is independent of the
different possible choices of A. Assume now that ti traverses R. A family of
distributions {f(i)[f(i) N(tOA), R} is obtained. The family is pairwise consistent

() ()in the following sense" Let [, f be two members of the family with and O,,

their respective open sets, i.e., 2 (-c, t), t)j (-, tj). Then f() and f/
coincide on t2 012j. This pairwise consistency follows directly from the causality
of N. We now invoke a theorem ([4, Thm. 24.1]). It follows from this theorem that,
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in view of the pairwise consistency of {fi)}, there exists a unique distribution f on
R, such that f, when restricted to each Oi, coincides with the respective fi). By
setting f N6, the requested rule for extending the domain is established.

Proof of Theorem 2. That the above rule applies to all members of DR is
obvious. The uniqueness of the extended operator is clear from the construction
of the extension rule. It remains to prove the continuity of the extended operator.
Let {} be a sequence converging to , in DR. (It will not be sufficient to assume
that q, 0 in view of the possible nonlinearity of the operator). We have to show
that N, (where N denotes here the extended operator) converges in D’ to Nq,.
Let t R and ,(t) be a testing function with properties as above. By hypothesis,
{qn} converges in DR. This means that all supports of qn are bounded from the left
by, say T, and that for every t R, the sequence and all its derivatives converge
uniformly on the compact set IT, t +6], 6>0 (and ti is defined in the rule of
extension). Hence the sequence {t(t)Ai(t)} converges in D to dj(t)&(t), and
{f(n/)} {N(nli)} converges in D’ to fi)__ N(Ai). Again, consider ti traversing R.
A family of sequences {f)} and a family of distributions {f)}, R, is obtained.
For each n, the family of distributions {f)} is pairwise consistent. Hence, there
exists a sequence of distributions {fn} such that their restrictions to 12 (-0o, ti)
coincide withf and a distribution f whose restriction to fi is equal to fi). By the
extension rule, f, Nq, and f NtO, and since {f)} converges to f(i), we have that
{f,} converges to f, which establishes the continuity of N on Dn.

Based on the extension rule, it is easy to verify that the extended operator is
causal on its extended domain.

Having dealt with the domain, we will now consider the range space. By the
causality, it is clear that N, e D for every q e Dn. D, which is a subspace of D’,
carries a topology stronger than the relative topology induced by D’. We claim
that N is actually continuous with respect to this topology. Indeed, let {q,,} be a
sequence converging to q, in DR. Then {Nq,,} is contained in D and converges to
Nq, with respect to each testing function of compact support. We have to show that
the convergence holds also for testing functions whose supports are not bounded
on the left. Let q denote such a testing function in DL. Since the supports of all O,
are bounded by a fixed number, say T, on the left, Nq,, have their supports
bounded by T as well. Choose AT(t) to be a testing function equal to one over the
interval (T, 0o) and vanishing on (-0o, T-a), a>0. Then, cbeDL, (Nq,, 4))
(Nq,, 4,r) for each n. But since the right-hand side converges, so does the left,
which completes the proof.

There are other postulates similar in nature to causality. These are the
concepts of finite lag, finite memory, localness and memorylessness.

DErINITION. Let N be an operator mapping D into D’. N is said to be offinite
lag, if there exists T R, T>= 0, such that the composite operator o’rN is causal,
where rr denotes the shifting operator in D’, namely, rrf(t) f(t- T). Clearly, a
causal operator is a finite lag operator with zero lag time, T 0.

DEVINITION. Let N be an operator mapping D into D’. N is said to have a

finite memory T on D if, for every to 6 R, we have that Nqq N2 on the open
interval (to, 0o) whenever q,, i//2 D and q,, I//2 on (to-T, 0o).

DEFINITION. Let N be an operator from D into D’. N is said to be a local
operator if there exist T, T2 _-> 0 such that for every t < t2 in R and 0(t), q’z(t) in D
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with ffl(t)--2(t) on (t-Tl, t2+ T2), we have that N--N2 on (fi, t2). If
T- T2- 0, we say that the operator is memoryless. Clearly, a local operator is
both of finite lag and of finite memory.

The physical motivation of these postulates is clear. There may be applica-
tions where a noncausal operation is requested. However, should this be an
operation of finite lag, it can be made causal by a finite delay. There may be
operators, especially those simulated by a digital computer, which are restricted
by their memory. All these postulates may be related via the operation of time
reversal. Le, 3/denote the operation of time reversal, i.e., yq(t) y(-t). Then y is
an isomorphism in all the spaces of testing functions and distributions under
consideration. 3’ also defines an isomorphism between the class of finite lag
operators and the class of finite memory operators. In view of this, the extension
theorems for these operators are clear.

THFOIFM 3. Let N be an operator continuous from D into D’. Then,
(i) ifN is offinite lag, it is extendible as a continuous operator offinite lagffom

D into D "
(ii) if N is of finite memory, it is extendible as a continuous finite memory

operator from D into D[;
(iii) ifN is local, it is extendible as a continuous and local operatorffom E into

D" The rules of extension are similar to the one given for the causal operator, and
the proof of the theorem follows along the same lines.

4. Converse theorems. Let N be an operator from D into D’ which has a
continuous extension onto E. Can one draw a conclusion with regard to the
localness of the operator? We will give a positive answer to this question, but not
before generalizations of the concept .of localness are introduced. Some of the
difficulties encountered when dealing with nonlinear operators will come to light
in the process. Without loss of generality, only the case of local operators will be
pursued. The other cases follow along similar lines.

One of the powers of linear operators stems from the fact that local properties
are actually global. This is not the case for nonlinear operators. The following can
serve as an example.

DEFINITION. Let f be a continuous functional on a countably normed space
X, and y, (q), 6 X, denote a sequence of nondecreasing seminorms generating
the topology of X. f is said to be locally finite order continuous of order m if the
following holds: For every qt0 6 X, there exists an integer m such that for every
e >0, there exists a 6:>0, such that y,,(q- qo) < 6 implies [f(O)-f(tOo)[<e. f is
(globally) finite order continuous of order m if a uniform m can be found
independent of qo.

It is a standard result of functional analysis that linear operators on countably
normed spaces are globally of finite order. The following lemma will establish that
for nonlinear operators we do have a finite order continuity, but only in a local
sense; i.e., the order can, in general, change as a function of o in X.

LEMMA. Letfbe a continuousfunctional on dcountably normed space X. Then
f is locally finite order continuous.

Proof. As before, let {7,,} denote a generating sequence of nondecreasing
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seminorms. The lemma will be proved by contradiction. Suppose that for some
such a finite integer does not exist. Then a sequence {qn} in X can be found such
that /n (q, qo) < 1 /n and f(q,) f(qo) >= e for some e > 0. {q,} obviously con-
verges to qo in X, but {/(q,)} does not converge to f(qo). This contradicts the
assumed continuity of f, hence completing the proof.

The above exhibits the fact that the property of localness of the operator
should be considered in a local sense depending both on the time and on the
function qo X.

DEFINITION. Let N be an operator from E into D’. Let qo be in E and tl < t2
be two real numbers. N is said to be of a local variable localness if there exist
nonnegative numbers Tl(qo, tl, t2) and T2(qo, t, t2), such that any q in E with
q qo on (t T1, t2 + T2) implies Nq Nqo on (t, t2). If T and T2 do not depend
on qo, we say that N is of a variable localness. Similarly, if T1, T2 do not depend on
t, t2, then N is of a local localness. Finally, if T1, T2 are fixed, N is local.

THEOREM 4. LetNbe extendible as a continuous operatorfromE into D’. Then
Nis ofa local variable localness. If, in addition, Nis finite order continuous, then it is

of a variable localness. IfN is time invariant, then it is ofa local localness. Finally, if
N is both finite order continuous and time invariant, then N is local.

Proof. Let qo be in E and fix t and t2, t < t2. Let K denote the compact set [tl,
t2] and D(K) the set of testing functions with support contained in K. Consider the
form (Nq, 0), q 6 E and 0 D(K). It is a separately continuoug functional on the
Cartesian product space E D(K). It is, in fact, (jointly) continuous on the
product space. This follows as a consequence of the Banach-Steinhauss theorem.
(We quote Theorem 34.1 of [4] as a direct reference.) Moreover, since both spaces
E and D(K) are countably normed spaces, (Nq, 0) is locally finite order continu-
ous on E, and in view of its linearity on D(K), finite order continuous on D(K).
Let 3’m(/3,,, respectively) denote the sequence of nondecreasing seminorms on E
(D(K), respectively). Then we have the following: For every qo E, there exists a
compact set K1 of R and an integer m such that for every e > 0, a 6 > 0 can be
found such that

and

3’,,,(q- qo) sup sup ID’[q(t)- q,o(t)]l < a
tK km

(2) /3,.(0) sup sup ID*O(t)l < a
tK k<=m

imply that

(3) I(N No, 0)l < e.

Now consider the convex hull of KUK. It is a closed interval, say
It1- T1, t2 + T2]. This defines two positive numbers T and T2. Let be in E such
that o on the open interval (tl T, 2 -t- T2). By the continuity of $ and $o, we
have that = o also on the closed interval Its-T, te+T2], consequently,
3’,($-o) of (1)is equal to zero. It follows that for every 0 D(K), (3) holds for



480 REUVEN MEIDAN

arbitrary e. Hence Nl N2 on (tl,/2). This completes the proof. The other
special cases of the theorem are straightforward consequences.

It should be noted that a slight weakening of the assumption of the finite
order continuity of N can be considered in the previous theorem. It is sufficient
that the finite order continuity holds with respect to the compact sets of the real
line on which the supremum is taken. There is no necessity to have a finite order
continuity with respect to the order of the derivatives.

Examples. We consider a few examples:
(I) Let g(t) be an integrable function and define

(4) NqI g(t) qt(-) d’, qJ D.

N is linear time-varying, but does not meet any of the postulates considered.
As is well known, it is extendible onto L 1, but it cannot be extended onto E, whose
elements can grow at infinity without restriction.

(II) Consider,

(5) N6 g(t) q(’) d’, 6 D.

It is causal and thus extendible onto Da. Indeed, q Da is integrable over (-oo, t]
for every R. The continuity of N on Da is easily verified.

(III) Let
a(O,t)

(6) N6 g(t)
-,,,,)

6(’r) d’r, q E,

where

a(, t)= Itl max I(t)l.
Itll

It is a nonlinear time-varying operator. It exhibits a local finite continuity on E.
Indeed, fix qJo E and 4 D. The functional (NO, oh) is continuous at too with
respect to the seminorm,

where

sup
tK

K supp 4.
Also, in view of the finite limits of the integration of (6), we have that N exhibits a
local and variable localness.
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THE RESOLVENT KERNEL OF AN INTEGRODIFFERENTIAL
EQUATION IN HILBERT SPACE*

KENNETH B. HANNSGEN’

Abstract. Let y(t,x,f) denote the solution ofy’(t) + j’ a(t s)Ly(s)ds fit), y(0) x,

_
0, where

L is a self-adjoint densely defined operator on a Hilbert space H, with L

_
# > 0. Let U(t)x y(t, x, 0).

It is shown that if a(t) is continuous (t

_
0) and completely monotonic (t > 0), but not constant, then

U(t) is a bounded operator on H with IU(t)[ -< w/, U(t)[ 0 (t ), and J’ U(t) dt < z. This
result is useful when the representation y(t, x, f)= U(t)x + j’ U(t s)f(s)ds holds. The proof starts
with the inequality U(t)[[ <- supx_ [u(t, A)[, where u,(t, 2) + 2 j’ a(t s)u(s, 2) ds 0, u(0, 2) 1.

1. Introduction. Let H be a Hilbert space and L a self-adjoint operator
with domain D dense in H and spectral decomposition Lx j’ 2 dEzx(x D)
with # > 0. We consider the integrodifferential equation

(1.1) y’(t) + a(t- s)Ly(s)ds f(t), y(0)= Yo

where a:R / R / and f:R / H are continuous (R/= [0, )) and yoH.
A solution of (1.1) is a continuously differentiable function y:R / H such that
y(t) D, Ly(t) is continuous, and (1.1) holds on R /. Generalized solutions, such
as solutions of an integrated form of (1.1), may also be of interest.

A solution or generalized solution of (1.1) is often given by the resolvent
formula

(1.2) y(t) U(t)yo + U(t- s)f(s)ds,

where U(t) H --, H (defined precisely in (1.7) below) is the solution operator for
the homogeneous version of (1.1).

THEOREM 1. Suppose a(t) is continuous on R + and completely monotonic on
(0, o ), but not constant. Then

(i) U(t) belongs to the space (H) of bounded linear operators on H, and
IlU(t)[[ =< l(t R+); U(t) maps D into D; and t--. U(t) is continuous on
(0, o) in the strong operator topology.

(ii) [IU(t) --, 0(t --, oe), j.o IlU(t)ll dt < oc, and U(t)x dt L-ax/ a(t)
dt(x H).

(In this paper (j.o a(t) dr)- is interpreted as zero when a(t)
The first two relations of conclusion (ii) constitute our main result. The

remaining conclusions of Theorem 1 hold if a(t) is merely assumed to be non-
negative, nonincreasing, convex, and locally integrable, but not piecewise linear
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[12]; indeed, conclusions of the latter ("strong") type hold in some cases when the
kernel a(t)L is replaced by a(t, L) j’ff a(t, 2)dE (see [13], [14]).

The next theorem gives sufficient conditions for the representation (1.2) and
thus exhibits one case where Theorem 1 applies to (1.1).

THEOREM 2. Under the assumptions of Theorem 1, suppose Yo and f(t) belong
to D(t R +) and - Lf(t) is (strongly) continuous on R +. Then (1.2) gives the unique
solution of (1.1).

Our proof of Theorem 2 follows the procedure used by Krein [15, p. 135] for
an ordinary differential equation in Banach space. See [19] for more extensive
discussion of the validity of (1.2).

With a(t) as above, consider the scalar problem

(1.3) u’(t, 2) + 2 a(t s)u(s, 2) ds 0, u(0, 2)
0

for p =< 2 < . It is a consequence of J. J. Levin’s results [16] (see [10, Thm. 2]),
together with the general theory of Volterra equations 18], that (1.3) has a unique
solution, differentiable in on R + and continuous in 2, with

(1.4) lu(t, X)l 5 1, lim u(t, 3) O.
t--

A recent result of Shea and Wainger [20] implies, moreover, that

(1.5) lu(t, 2)1 dt < oo,

and we have shown in [8] that

(1.6) u(t, 2) dt 2 a(t) dt

We define

(1.7) U(t) u(t, 2) dE, 0 _< < oo.

(See [5] for the operational calculus of self-adjoint operators on H.) Then
U(t) M(H) with

(1.8) IIU(t)ll =< sup lu(t,2)l.
tt_<2<

Conclusion (i) of Theorem follows immediately from (1.4) and (1.7), and con-
clusion (ii) is a direct consequence of (1.6), (1.8) and the following result for (1.3).

THEOREM 3. Let p > O. If a(t) is continuous on R + and completely monotonic
on (0, ) but not constant, then

(1.9) t-.oolim Lu
-<<ooUsup lu(t,2).] 0,

(1.10) sup lu(t,)l dt < o.
_<2<oo
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The change of variables r x/t transforms (1.3) into

d
v(r 2)+ b(r- s 2)v(s 2)ds 0

dr

with v(r, 2) u(r/@, 2), b(r, 2) a(r/). As 2 oe, b(r, 2) --* a(0) uniformly on
compact subsets of {0 =< r < oe}.

Thus for T > 0,

max lu(t, 2) cos /a(o)2tl O,
O <_t <_ T/4r’

It follows easily that U(t) is not continuous in the operator norm topology
at 0 if L is unbounded. We have been unable to determine whether U(t) is
continuous in the norm topology on (0, ).

The problem

y,(x, t) a(t s)y,,(x, s) ds + f(x, t)

with prescribed data

y(x, o) yo(x) (o <__ x _< rt), y(O, t)= y(rt, t)= o (t >__ o),

provides an example for our results. Here L -t02/Ox2 and (1.2) becomes

y(t) sin nx[u(t, n)y( + u(t s, n)f(s) ds],

where y and f,(s) are the Fourier sine coefficients of Yo and f(., s), respectively.
If Yo andfare in C and vanish at x 0, re, and if, for example, f(x, t) dx 0
(t --, oe), Theorem shows that y(x, t) dx ---, 0 (t --, oe). The spectrum of L is
discrete in this example, but this property is not required in Theorems 1 and 2.

C. M. Dafermos [1] and J. S. W. Wong [21], motivated by problems in
viscoelasticity theory, have recently obtained results on asymptotic behavior for
abstract equations similar to (1.1). Generally these results are less restrictive than
ours in requirements on the form of(1.1); thus Dafermos discusses operator-valued
kernels G(t, s), while Wong obtains results for certain nonlinear equations. In
return for our restrictions on the form of(1.1) and for our requirement of complete
monotonicity, we obtain results on the operator norm of the resolvent; this
permits less restrictive conditions on the forcing term in the applications. The
papers [10], [11], [12] give related results without the requirement of complete
monotonicity.

R. K. Miller [19] has begun to investigate questions of existence, uniqueness,
and continuous dependence (in the spirit of [15]) for wide classes of integro-
differential equations in abstract spaces. The possible applicability of such
equations is indicated, for example, by recent work of P. L. Davis [2], [3], [4] on
hyperbolic" integro-partial differential equations arising in electromagnetics and
heat conduction problems.

The transform methods we use go back to the work [17] of Levin and Nohel,
where some discussion of parameter dependence can also be found. A. Friedman
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and M. Shinbrot [7] introduced spectral decomposition methods for Volterra
equations in Banach space; Friedman [6] uses a decomposition like (1.7) for the
self-adjoint case.

2. A transform representation for u, Since a(t) is completely monotonic and
not constant, there is a nondecreasing function e" R + --, R / such that

a(t) e -x’ de(x)

with 0 e(0) =< e(0 + < e(oc) a(0) < oc. Denote by d(z) the Laplace transform
of a:

gt(z) e-Zta(t) dr, Re z >_ 0, z 4: 0.

Then

d(x)
(2.1) gt(iz) A(’c) =- "c # O.

x+ir’

The representation

ei. i/2 + A’(r)
(2.2) nu(t, 2)= Re /- [ir/2 + A(z)] 2 dr > 0,

is an immediate consequence of [9, Thm. 1]. Since (2.2) is the key to our proof of
Theorem 3, we recall briefly its derivation. Taking Laplace transforms in (1.3)
and using the complex inversion formula, one sees that

d
2nu(t) et eirt

a+ iz+ 2d(a+ iz)
t>O,

where a is a suitable positive number. A contour shift moves a to 0, where ci(ir)
becomes A(r); finally, we factor 2-1, integrate by parts and change the integration
variable on (-oe, 0) to get (2.2).

For convenience of notation we shall assume in 2 and 3 that/z 1; this is
no restriction, since a can be replaced by a/lt.

We next state a sequence of inequalities for A(r) and its real and imaginary
parts, which we write, respectively, as

f x cl.(x)
-O(z) -0()

with

O(’r,)
.x, 2 .-ll- "6

2.
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For > 0 we have

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

Similarly,

,o do(x) a(O)
Jor#()

x/r + r/x
<

2r

y do(x)
0(v)

(x/r)2 +
a(0)

f 2x’c d(x) a(O)
Iq’()l--

(x2 + ,C2)2 <- 0(qT) .2

d(x)
10’()1 2r

(x 2)2 --< 2a(0)

O’(r)l 10(:)+ r0’(r)[ =< 3a(0)fl: 2.

(2.8) Iq0"()l + 10"()1 24a(0)/r3 r > 0.

In [9, Lem. 2.1] we use the representation (2.1) to show that

(2.9) [A’(r)[ + [rA"(r)[ _< 341d’()[ <= 34d(z)/r

when r > 0; from the same lemma we conclude that there is a p, 0 < p =< x/-(0),
such that

(2.10) IA(r) + i,/l d()/4, 0 < r =< p, < 2 __< oc.

In fact, the proof of [9, Lem. 2.1] shows that A() > d(r)/2,,f, so such a p surely
exists. Note also that d’(r) __< 0 and

(2.11) 0 =< [d’(:)/d2(r)] d: < d-l(p) < o.

It is a consequence of(2.10) when d(0+) oe and of continuity when ci(0+) <
that

(2.12) A(r) --, ci(0+ a(t) dr,

When (0+) oe, (2.9) shows that

zO+.

(2.13) rA’()/A2(r) --, O, -+ O.

When oe > d(0 +) .fo da(x)/x,

[-o __2X2Z.2 + i[,c3X_ ,CX3] do(x)
Jo (X2 -- 52)2 X

so (2.13) holds in all cases.
Finally, note that

(2.14) f &z(x) >0(Z’) (X/g)2 + 1
C2(p)
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Similarly

1 f,o xd(x) M

Jo > p<z<oo(2.15) qg(r)
(x/r)2 + 1= z2,

The positive constant

c c(p)=
[ + (x/p)]

(for which (2.14) holds) will be held fixed through the remainder of this paper.
M will denote generically a positive a priori constant, independent of and 2; its
value may change from line to line.

3. Proof of Theorem 3. Write (2.2) as

(3.1) nu(t 2), Re o’
Re [Ix(t, 2) + I2(t, 2)].

We shall show that there is a function P(t) such that

(3.2) [I2(t, 2)1 =< Mt-2,

(3.3) II1(t,2)- 2-P(t)l =< Mt-2

when 0 < < oo, =< 2 < oo. From (1.4) and (1.5) it follows that Re P(t)--. 0
(t--, oo)and .fo IRe P(t)l dt < oo; since lu(t, 2)1 =< (from (1.4)), (1.9) and (1.10)
must hold.

(It need not be the case that u(t,2)= O(t -2) (t---, oo). For example, if
a(t) (1 + t) -1

positive d).
We write

[9, Cor. 3.4] shows that u(t, 1) It log2 (t/d)] -x for a certain

(3.4)

Note that if(r) < 0, so 0 $ 0 as z T . There is thus at most one point e) 09(2) on
[p, ) such that 0(oa) 2-1. If no such point exists, we set 09(2) p. Equations
(2.4) and (2.14) imply that

(3.5) C2 x/2 _< 09(2) =< [a(0)2] 1/2.

(This is true even when co p, since we chose /9
2 < a(0).) The main technical

difficulty in the analysis of I2(t, 2) is that the imaginary part of the denominator
in the integrand may vanish at : 09(2). To deal with this, we divide [p, ) into
four subsets depending on 2):

E [/9, ct3) [0, o3() C/1/3/2],
E2 {[p, 0(3) 1"] [(.O()- C/],1/3/2, (.o()- C/2]} U [09(2) + C/2, e)(2) + CX/3/2],
E3 [/9, 0(3) f"] EO,)(/],) C/2, 09(2) + C/2],

E4 [09(2) + C)X/3/2, oo).
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Since

d 2 fo doffx) > 2C2/77 3d--[2 -x 0()] -3 I1 + x2/z2] 2 _->p,

and 2-1 0(77) can vanish only at 77 66(2), integration from 09(2) to 77 reveals that

(3.6) > 77>p.
772662()

Using (3.4) and (3.5), we find that

(3.7)
C32-1/6

>
277v/a(0)’

77E

(3.8) => C21co(2)- l/a(O)2,

(3.9)
C3

> 77E,.
2a(0)22/3

On E3 we use (2.15) and (3.4) to deduce that

(3.10) >= M77-2 77 E3

Finally, we shall need the estimate

(3.11) >--- 77
2 > 2a(0)2,

a consequence of (2.4) and (3.4).
To obtain (3.2), we integrate 12 by parts. Using (2.3), (2.4), (2.5), and (2.7), we

see easily that

i/2 +
lim 0.
,-+ [i77/2 +

Thus

(3.12)

-ei’t i/2 + A’(p)
I2(t,2)-

2t2 lip + A(p)] 2

fE ei,, A"(77)- -- 1L)E2t,.)E3L)E [i77/1 T (77)]2
[i/2 + A’(77)] 2 }+ A-F; 

The modulus of the integrated term is clearly less than M/,t2. Now (2.8) shows
that 1A"(77)1 __< M/773, while (2.5) and (2.7) imply IA’(77)1 <- M/772. Using (3.7) through
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(3.11) and (3.5), we can estimate (3.12)"

Using (3.5) and the definitions of the sets Ej, we estimate these integrals directly
and obtain (3.2).

Observe that

iz/2
iz/)c + A(z) A(z) [iz/2 + A(z)]A(z)"

Therefore,

i/), + A’(z) A’(z)
[i’r/2 + A(z)] 2 A2(z) ,A2(z)

[i/2 + A’(z)] [_ 2iz/2
A2(z) L [iz/2 + A(z)]

272//2 1
[iz/ - (-t-)]2._J

Set

fo’ A’(z)
eitP(t) - A2(Z.

Integration by parts (using (2.13)) and direct (but laborious) use of estimates (2.9)
and (2.10) show that

M fo’l + IA’(z) + IzA"(z)IIl(t, 2) - 1p(t)l __<
d3(z

Now (2.9) and (2.11) yield (3.3). This completes the proof of Theorem 3.

4. Proof of Theorem 2. Given Yo and fit) as in the theorem and U(t) defined
by (1.7), note that the function

a(s- r)LU(r)yo a(s- r)U(r)Lyo

from {0 =< r _< s =< t} to H is continuous (t >= 0). Set h(t) ’oa(s)ds. Then
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Y0 a(s- r)LU(r)yo dr ds Yo

Yo

(4.1) Yo

h(t r)LU(r)yo dr

h(t r) 2u(r, 2) dExyo dr

-f;[2flh(t-r)u(r,2)drldE.Yo
=Yo + f,

U(t)yo.

Differentiating both sides [14, p. 6], we see that

[u(t, 2) 1] dEyo

(4.2)
dt

U(t)yo] + a(t s)LU(s)yo ds O.

(The change of order of integration at line (4.1) uses the fact that the vector integral
converges uniformly (0 =< r =< t) in the H-norm; this follows from (1.4).)

Since Lf(t) is continuous, the function a(t- s)LU(s r)f(r) is jointly con-
tinuous on{0=<r=<s__<t},t=>0, so

a(t- s)L U(s- r)f(r)dr ds a(t- s)LU(s- r)f(r)dr ds

(4.3) [a(t r s)LU(s)f(r) ds dr

[U(t r)f(r)] dr,

where the last step uses (4.2) with Yo replaced by f(r). This last step also shows
that the integrand in (4.3) is jointly continuous, so the formula

d
U(t- r)f(r)dr f(t) + [U(t- r)f(r)] dr(4.4) d-

is valid. Then (4.4), together with (4.2) and the calculation leading to expression
(4.3), shows that the function y(t) of (1.2) solves the initial value problem (1.1).

For uniqueness, note that the difference (t) between two solutions of (1.1)
must satisfy the weak," integrated, homogeneous version of (1.1),

z(t) + L h(t s)z(s) ds O.

Then for#__<2< ,
IlEz(t)ll _-< 2 h(t s)IEz(s)l[ ds <= 2h(t) IlEz(s)ll ds.

Thus Ezz(t) 0, so z(t) 0. (This argument appeared in [11].)
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OSCILLATION AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
THIRD ORDER DIFFERENTIAL DELAY EQUATIONS*

L. ERBEf

Abstract. In this paper we introduce comparison techniques for studying the oscillatory and
asymptotic behavior of solutions of third order differential equations with retarded argument. This
allows the use of "Kneser-type", as well as integral, criteria for deciding the behavior of the solutions.

1. Introduction. The primary purpose of this paper is to investigate the
oscillatory and asymptotic behavior of the solutions of the linear third order
differential equation with a retarded argument of the form

(1.1) y’"(t) + p(t)y(g(t)) + q(t)y(t) O,

where p(t), q(t) and g(t) are assumed to be continuous on the half-line [0, +)
with g(t) -<_ and limt_, g(t) +. We assume that under the initial condition

(1.2) y(t) b(t), t_-< t0 and y(k)(to) Yk, k 1, 2,

(1.1) has a solution which exists for all t-> to (i.e., there exists a function
y(t)6 ca[t0, ) which satisfies (1.1) for all t>-to. A complete discussion of the
initial value problem for differential equations with retarded argument may be
found in [3]. A solution of (1.1) is said to be oscillatory in case for each tl > to,
there exists t2>h with y(t2)-0 and y(t)0 does not hold on any subinterval
(tl, eo) [0, a3). A solution of (1.1) is said to be nonoscillatory if there exists tl to
such that y(t) 0 for _-> t or if y(t)-= 0 for _-> tl.

There have been numerous recent papers discussing the oscillatory and
asymptotic behavior of solutions of higher order linear and nonlinear differential
equations with retarded argument and we refer the reader to [8], [9], [10],
[ 12]-[16] and the references therein. Most of the.oscillation criteria in the above
references have been obtained through appropriate integral conditions. Our
technique here, on the other hand, involves comparison theorems using known
properties of linear differential equations without delays and allows the use of
"Kneser-type" rather than integral criteria for deciding the oscillatory or asymp-
totic behavior of solutions of (1.1). Section 2 is devoted to equation (1.1) under the
assumption that the coefficients p(t), q(t) are nonnegative. In 3 we discuss the
case p(t)<-0, q(t)_-<0, and in 4 some extensions are considered for third order
nonlinear equations with delays. We also discuss examples which are not covered
by previous investigations for both the linear and nonlinear case.

2. Nonnegative coefficients. We begin with a preliminary lemma which
concerns the relation between solutions of the general third order linear.ordinary
differential equation

(2.1) L3y y’"+ a(t)y"+ b(t)y’+ c(t)y 0

* Received by the editors January 30, 1975.

" Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada. This research
was supported by National Research Council of Canada under Grant A-7673 and by the Alexander
von Humboldt Foundation.
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and the corresponding Riccati equation

(2.2) u" +f(t, u, u’) O,

where f(t, u, u’) 3uu’ + a(t)u’ + u + a(t)u 2 + b(t)u + c(t). Recall that an nth
order linear differential equation is said to be disconjugate on an interval I in case
no nontrivial solution has more than n- 1 zeros on L

LEMMA 2.1. Equation (2.1) is disconjugate on the interval I iff there exists a(t),
/3(t) C2(I) with a(t) < (t) and

"(t)+f(t,(t),’(t))>=O, "(t)+f(t, fl(t),fl’(t))<=O, t6I.

A proof of this result may be found, for example in [4] (see [2] for higher
order analogues of this lemma). Functions a(t), (t) as in the previous lemma are
called lower and upper solutions, respectively, for (2.2) (see [7]).

THEOREM 2.2. Let p(t)>=O, q(t)>=O, p(t)+q(t)>O, t>=to and let y(t) be a
solution of (1.1) which exists on [to, c) with y(t)0 on any subinterval of[to, c).
Assume there exists a real number ,, 0 < , <, such that the equation

(g2(/) )(2.3) y’"(t) + A t2 p(t) + q(t) y 0

is not disconugate on any hal]:-line [fi, c) of [to, ). Then either
(a) there exists M>0 with ly(t)l<Mfor all t>=to or
(b) y(t) changes sign on [fi, ) for all t > to.
Proo]:. We assume that (b) does not hold and will show that y(t)y’(t) -<_ 0 for all

large t, so that ly(t)l is eventually nonincreasing. To be specific, assume that
y(t) -> 0 and y(g(t)) -> 0 on [fi, c) for some > to. Therefore y’"(t) =< 0 for -> t so
that y"(t) => 0, => t. In fact, y"(t) > 0, => t, by our assumptions. Now if (a) does
not hold, then there exists t2 > t with y’(t2) > 0 so that on It2, c), we have y(t) > 0,
y’(t)>0, y"(t)>0, y’"(t)<=0. We claim now that for any 0</x<1/2 there exists
T, > t2 with

(2.4)
y(g(t)) > > T..y(t) = t=

To see this, merely note that we may write

(2.5) y(g(/))__ .y(g(t)) y’(g(t)), y’(t)
y(t) y’(g(t)) y’(t) y(t)

By a result of Lazer [11, Lemma 3.2], we have

(2.6) liminf
y(g(t)) >-

,)- g(t)y’(g(t)) =2"

By Lemma 2.1 of [5], since V(t)=y’(t) satisfies V(t)>0, V’(t)>0, V"(t)<=O,
=> t2, given 0 < k < 1, there exists Tk >= tz with

(2.7) y’(g(t)) kg(t),>_ t> T,.
y’(t)
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The mean value theorem and the fact that y’(t) is increasing for _-> t2 imply

ty’(t)
(2.8) lim,_inf y(t) --> 1.

Hence, (2.4) follows from (2.6), (2.7) and (2.8), so that with/ A a calculation
shows that/3(t) y’(t)/y(t) >0 satisfies

(2.9) fl"+3flfl +3+p(t)\---f-/ +q(t)<-O.

With a()-- 0, it now follows from Lemma 2.1 that (2.3) is disconjugate and this
contradiction proves the result.

Our next result is similar to the previous theorem and uses a second order
comparison equation.

THEOREM 2.3. Let p(t)>--_O, q(t)-->0, p(t)+q(t)>O, t>--to and let y(t) be a
solution of (1.1) which exists on [to, o) with y(t)0 on any subinterval of [to, o).
Assume there exists a real number A, 0 < A < 1/2, such that the equation

)(2.10) y"+At \--7-/ p(t)+q(t) y=0

is oscillatory on It1, ) forsome tl >-_ to. Then the conclusion of Theorem 2.2 holds.
Proof. We proceed as in Theorem 2.2, but instead of (2.4) we obtain from

(2.6) and (2.7) the inequality

(g(t))2
(2.11) y(g(t)) => /x y’(t), t=> T,, 0</x <,

and again from Lemma 3.2 of [11],

(2.12) y(t) _>-/ty’(t), _-> T.
Therefore, with u(t)= y’(t), we obtain from (1.1)

(2.13) u"+lxt p(t)+q(t) u_<0;

but with x I, (2.13) implies that (2.10) is disconjugate on ITs, oo) (see [6, Thm.
7.2, p. 362]). This proves the theorem.

We shall next establish conditions under which bounded solutions of (1.1) are
either oscillatory or tend monotonically to zero, along with their derivatives.

THEORE 2.4. Let p(t) >--_0, q(t) >--0, p(t)+ q(t) >0, and let y(t) be a solution
of (1.1) which exists on [to, ) and satisfies Jy(t)l<Mfor some M>O. Assume

(2.14) lim inf t3(p(t)+q(t)) >0

and that the equation

(2.15) y’"(t) +(p(t)+ q(t))y 0
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is not disconjugate on any half-line [tl, 00) of ]-to, c). Then either y(t) is oscillatory
or y(t) tends monotonically to zero along with its first two derivatives.

Proof. We assume, to be specific, that y(t) _-> 6 > 0 and y(g(t)) _-> 6 > 0 for _-> tl
and for some 6 > 0, and we shall show that this leads to a contradiction. Since
y’"(t)_-<0 it follows that y"(t)>0 on [tl, 0o), and since y(t)_-<M, we must have
y’(t) < 0 on [tl, 00). Let u(t) y’(t)/y(t) 0 and let e > 0 be given. Choose T_-> tl
so that y(T) <= 6(1 4- e). Then on (T, 0o), the mean value theorem and the fact that
y’(t) is increasing imply

(2.16) u(t)>

Let c(t)=-e/(t-T). Then we have

(2.17) t"+3tt’+a3+p(t)+q(t) -(t- T)-3(e3+3e2+2e)+p(t)+q(t).
Now the right-hand side of (2.17) is nonnegative for sufficiently small e because of
(2.14), and hence a(t) is a lower solution of the Riccati equation corresponding to
(2.15). Since y(g(t)) _-> y(t) for _-> T, it follows that u(t) is an upper solution of the
same Riccati equation, and hence Lemma 2.1 shows that (2.15) is disconjugate on
IT, 0o). This contradiction shows that y(t)- 0. The fact that y’(t)- 0 and y"(t)- 0
is clear so the theorem is proved.

The next two results give additional conditions under which the conclusion of
Theorem 2.4 is valid.

THEOREM 2.5. Let p(t)>--0, q(t)>--0, p(t)+ q(t) > 0, and let y(t) be a solution
of (1.1) which exists on [to, 0o) and satisfies ly(t)[<-M for some M>0. Let there
exist Ix, 0 < Ix < such that the equation

(2.18) y’"(t) + Ix (g(t))ep(t) y"(t) + q t) y t) 0

is not disconjugate on any half-line [h, 0o). Assume either condition (a) or (b) below
holds:

(a) lim inft_oo taq(t) > 0,
(b) lim inft_,oo Ixt(g(t))2p(t) > 2.
Then the conclusion of Theorem 2.4 holds.
THEOREM 2.6. Let p(t) >-- 0, q(t) >-- 0, p(t) + q(t) > 0, and let y(t) be a solution

of (1.1) which exists on [to, 0o) and satisfies ly(t)[<-_M for some M>0. Assume
(2.14) holds and that the equation

(2.19) y’"(t) + (g(t)--t)z
p(t)y"(t) + (g(t)- t)p(t)y’(t) + (p(t) + q(t))y 0

is not disconjugate on any half-line [tl, 0o). Then the conclusion of Theorem 2.4
holds.

Proof of Theorem 2.5. We apply a lemma of Sficas [12, Lemma 3]. If y(t) is
as in Theorem 2.4 and y(t) does not tend to zero, then for any k > 1,

(2.20) y(g(t)) >- (g(t))2y"(t)
32k
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for all large t. Hence, u(t) y’(t)/y(t) is an upper solution of the Riccati equation
corresponding to (2.18) with k 1/32/x and u(t)>-e/t-T for t_-> T, as in
Theorem 2.4. Condition (a) or (b) implies that a(t) -e/(t- T) is a lower solution
of the corresponding Riccati equation, for sufficiently small e > 0, so by Lemma
2.1, we obtain a contradiction. Therefore, we conclude y(t) --> 0.

Proof of Theorem 2.6. The proof is similar to Theorems 2.4 and 2.5. Here we
use the mean value theorem to write

(2.21) y(g(t)) _>- y(t)+ y’(t)(g(t)- t)+ y"(t) (g(t)- t) 2_
2

and the remainder of the proof is the same. Condition (2.14) insures that
a(t)=-e/(t-T) is a lower solution of the Riccati equation corresponding to
(2.19) for small enough e > 0.

Examples. If p(t)>-_O, q(t)>-O, p(t)+q(t)>O and if liminf ta(A(g(t)/t)2.
p(t)+q(t))>2/(3x/3) for some 0<A <1/2, then (2.3) and (2.15) are oscillatory by
comparison with the third order Euler equation (see [18, p. 163] for example).
Hence any solution of (1.1) is either oscillatory or tends monotonically to zero
along with its derivatives. For example, suppose that q(t)= IXl -, (g(t)/t)2p(t)=

-3
/x2l where ItZ1, itS2 ) 0. If 2/(34< 1/2/-1 nt- ii-2 < [Z1 "- -/’2 < 1/2, then Theorems 2.2
and 2.4 (but not Theorem 2.3) show that any nonoscillatory solution tends
monotonically to zero. If 1/2 tx+z<2/(34<1/2<tx1+/x2, then we may use
Theorems 2.3 and 2.4 (but not Theorem 2.2). This asymptotic behavior may not
be concluded from any of the references. Additional examples may be constructed
similarly using other known oscillation criteria for (2.3) or (2.15). It is clear that
the previous theorems have analogues for the linear equation with several delays

(2.22) y’"(t) + p(t)y(g(t)) + q(t)y(t) O,
i=1

and their formulation is left to the interested reader.
Remark. By a theorem of ;vec [17] (see also [19]), if the equation y"’(t)+

r(t)y(t) O, r(t) > 0, has an oscillatory solution, then any nonoscillatory solution
tends to zero. Theorems 2.2 and 2.4 may be viewed as an analogue of this result. In
fact, if p(t) 0, then they yield an alternate proof of the vec theorem in all cases
except when lim inft__,oo t3q(t) 0 and lim supt--,oo 3q(t) >- 2/3x/-.

3. Nonpositive coefficients. In this section, we discuss solutions of (1.1)
under the assumption p(t) <=0, q(t) <-0, t<= to; with these assumptions, (1.1) will
always have nonoscillatory solutions satisfying sgn y(t)= sgn y’(t)- sgn y"(t)# 0
and lim,_ooly(t)l=limt_ooly’(t)l=+oo (e.g., if y(t)=b(t)>-0, t<-to, y’(to).>_-0,
y"(to) > 0). The following theorem gives a criterion under which this is the only
type of nonoscillatory solution possible.

THEOREM 3.1. Let p(t)<--_O, q(t)<=O, t>--to and let y(t) be a nonoscillatory
solution of (1.1). Let there exist k, 0 < k < 1, such that the equation

(3.1) y’"(t) + (kp(t)-+ q(t))y(t) 0
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is not disconjugate on any hall-line [tl, x3). Then there exists t2 >- to such that

sgn y(t) sgn y’(t) sgn y"(t) O, _-> t2,

and limt_, ]y(t)] limt_o ]y’(t)] oo.
Proof. To be specific, assume y(t), y(g(t)) -0, -T to, so that y’"(t)0 for

T. If the result is not true, then y"(t) 0 for T and hence y’(t) 0 for - T.
Therefore, by Lemma 2.1 of [5], there exists Tk T with y(g(t)) k(g(t)/t)y(t)
for - Tk and so with u(t) y’(t)/y(t) 0 we have

g(t)
0, > Tk.(3.2) u"+ 3uu’ + u 3 31-- q(t) + kp(t)----

That is, u(t) is a lower solution of the Riccati equation for (3.1). Since y’(t) is
decreasing, the mean value theorem implies that u(t)< 1/(t-T), >- Tk. Letting
(t) 1/(t- T), a calculation shows that/3(t) is an upper solution of the Riccati
equation for (3.1). Hence, by Lemma 2.1 equation (3.1) is disconjugate on
Tk, c), and this contradiction proves the theorem.

Examples. If p(t)<=O, q(t)<-O and if

2
(3.3) lim inf 3 g(t)p(t) +q(t) >

t-o 3x/-’
then equation (3.1) will be oscillatory for k sufficiently close to 1. We recall that
the third order equation

(3.4) y’"(t) / r(t)y(t) 0, r(t) O,

is oscillatory iff its adjoint equation

(3.5) y’"(t)- r(t)y(t) 0

is oscillatory 18]. A sufficient condition for the existence of an oscillatory solution
of (3.4) is the existence of A, 0 (,X (1/2, such that the second order equation

(3.6) u" + tr(t)u O

is oscillatory [11, Thm. 3.1]. Now if to tl+r(t) dt for some 0 < 6 < 1, then
(3.6) is oscillatory [6, p. 368], and hence (3.4) has an oscillatory solution. Thus, if
,o t+l(q(t)+ kp(t)(g(t)/t))dt= -c for some 0< k < 1, then any nonoscillatory
solution of (1.1) satisfies the conclusion of Theorem 3.1.

4. Nonlinear equations. In this section we shall discuss the application of the
previous techniques to some nonlinear equations. For simplicity we shall consider
only equations of the form

(4.1) y’"(t) + p(t)y(g(t)) O,

where a > 0 is the quotient of odd positive integers.
THEOREM 4.1. Let p( t) > O, > ! and assume that the equation

(4.2) y’"(t) + Ap(t)(g(t))2t--y(t) 0

has an oscillatory solution ]’or all A > O. Then for any nonoscillatory solution y(t) of
(4.1), ly(t)l is eventually nonincreasing.
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Proo[. To be specific, we assume that y(t) is a solution of (4.1) with y(t) >_-0,
y(g(t)) _->0 for t-> tl. If y(t) is not nonincreasing, then as in Theorem 2.2, we get
y(t) >0, y’(t) >0, y"(t) >0, y’"(t)-<0 for > T>-tl and for any 0</x <1/2we have
y(g(t)) => ix(g(t)/t)2y(t) for => T, >- T. Therefore, for _-> T,, y(t) satisfies

(g(t))2y(4.3) y’"(t)+txp(t)\-7/ (t)<-O.

Now the mean value theorem implies

(4.4) y(t)>-mt,

where m > 0 is a suitable constant. From (4.3) and (4.4) we obtain

(4.5) y’"(t) + Aop(t)(g(t))2t--ly(t) <= O,

where /x Therefore, u y’/y is an upper solution for the Riccati
equation corresponding to (4.2) with A Ao, and since a(t) =- 0 is a lower solution,
(4.2) is disconjugate. This proves the theorem.

In the next theorem we use a necessary and sufficient condition in the theory
of second order nonlinear oscillations to show that for a > 1 any nonoscillatory
solution of (4.1) must be bounded if a certain integral diverges.

THEOREM 4.2. Let p(t)>--O, a > 1 with

(4.6) p(t)(g(t))t- dt +oo.

Then any nonoscillatory solution o" (4.1) is nonincreasing in absolute value.
Proof. We proceed as in Theorem 4.1 and Theorem 2.3 to obtain the

inequality (2.11). Then from (2.11) and (4.1) with u y’ we get

(4.7) u"(t) + Ix(g(t))2"t-p(t)(u(t)) <-- O, >-- T,.
Therefore u > 0 is an upper solution of the equation

(4.8) y"(t)+tx(g(t))2"t-p(t)(y(t)) =0,

and since a(t) 0 is a lower solution, we conclude (see [7], for example) that there
exists a nonoscillatory solution V(t) of (4.8) with 0< V(t) <- u(t) on [T,, oo). But
then by a well-known theorem of Atkinson [ 1], we have

(4.9) p(t)(g(t))t- dt < +oo.

This proves the theorem.
We next establish a result for the sublinear case.
TEOEM 4.3. Let p(t) > 0 and 0 < o < 1. Assume

(4.10)

and that the equation

lim inf t3p(t) > 0
too

(4.11) y’"(t) + Ap(t)y 0
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is not disconjugate on any half-line [tl, oo) for all A > O. Then any bounded solution
y(t) of (4.1) which exists on [to, oo) is either oscillatory or tends to zero monotonically
along with its derivatives.

Proof. If y(t) is a bounded nonoscillatory solution of (4.1) which does not tend
to zero, then there exists 6 > 0 and T-> to such that

(4.12) y(g(t))>y(t)>6, y’(t)<O, y"(t)>O, y’"(t)<O

for all _-> T. Hence, for >- T, y(t) satisfies

(4.13) y"(t) + A0p(t)y(t) =< 0,

where A0 y(g(7))-1. We may now argue as in Theorem 2.4 to show that
u y’/y is an upper solution for the Riccati equation corresponding to (4.11) with
A Ao and that u(t)>-e/(t-T) for t> T= T. Condition (4.10) insures that
a(t)=-e/(t-T) is a lower solution of the Riccati equation corresponding to
(4.11) with A )to for sufficiently small e >0. This contradiction proves the
theorem.

Remark. Theorem 4.3 is true, as stated, for a > 1 also, but in this case
condition (4.10) guarantees that Jt t2p(t) dt= +oo so that any nonoscillatory
solution tends to zero monotonically by a theorem of Sficas and Staikos 16] (see
also [8]). Likewise, a theorem similar to Theorem 4.1 and 4.2 is valid for 0 < a < 1
but the results in this case are again well known.

Examples. (i) If 0 < a < 1 and Yl Y2 0 with 2a + Yl 2 and if k2tv-3 -<
p(t)<-klt-3 from some ka, k2>0, then the conditions of Theorem 4.3 are
satisfied. Since It’d (g(t))p(t) dt < +co, there will also exist nonoscillatory solu-
tions y(t) with lim,_,oo y(t)/t= 0 (see [9]).

(ii) If (4.6) holds and a > 1, then any nonoscillatory solution of (4.1) is
bounded and lY(t)l is monotone decreasing. However, It’d t2p(t) dt +co may fail
to hold so that the results of the references will not apply and lim_oo ly(t)l 0 is
possible. For example, if g(t)=t, 1/2<6<1 and p(t)=6t"/t4(l+t), then

t: t2p(t) dt < +do. If a ->_ 2/(26 1), then to p(t)(g(t))2,tl_ dt +oo and y(t)
1 + 1/t is a solution of (4.1) which does not tend to zero.

For the case p(t)<=0, one can also obtain results similar to Theorem 3.1
guaranteeing that all nonoscillatory solutions y(t) satisfy

(4.14) sgn y(t) sgn y’(t) sgn y"(t) 0, large t,

and

(4.15) lim ly(t)l lim ly’(t)l +oo.
t-->

THEOREM 4.4. Let p(t) <--_ O, a > 1 and assume that the equation

(4.16) y’"(t)+Ip(t) y(t)=O

has an oscillatory solution for all A > O. Then any nonoscillatory solution of (4.1)
satisfies (4.14), (4.15).
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THEOREM 4.5. Let p(t) <-- O, 0 < a < 1. I]’ (a) (4.16) is oscillatory ]’or all A > O,
then any bounded solution of (4.1) is oscillatory. If (b) the equation

(4.17) y"’(t)+Ap(t)(g(t))t-y(t)=O
is oscillatory ]’or all )t > 0, then any nonoscillatory solution of (4.1) satisfies (4.14),
(4.15).

Proofo[ Theorem 4.4. We argue as in Theorem 3.1 and obtain the inequality

(4.18) u"+3uu’+u3+k p(t)(y(t))-l>=o, t>=Tk,

where u y’/y and y(t) satisfies y(t)>0, y’(t)>0, y"(t) < 0 and y’"(t)-> 0 for t_-> T.
Hence, since u (t) < 1 /(t T), it follows, as in Theorem 3.1, that (4.10) is disconju-
gate on [Tk, OO) with A=k(y(Tk))-, and this contradiction proves the
theorem.

Proojo]’ Theorem 4.5. If y(t) is a bounded nonoscillatory solution of (4.1) with
0 _-< y(t), y(g(t)) -< M, y’(t) > 0, y"(t) < 0, y’"(t) _-> 0 for _-> T, then we argue as in
Theorem 4.4 to show that (4.16) is disconjugate with kM-1.

If y (t) is unbounded, then we use the fact that 0 < y (t) <- ct for some c > 0, and
hence in (4.18) we use (y(t))- >=c-lt- to show that (4.17) with kc- is
disconjugate on Tk, oo). This contradiction proves the theorem.

Example. If either

(4.19) lim t3-p(t)(g(t))

or

(4.20) p(t)(g(t))t+- dt -eo, some 0 < 6 < 1,

then (4.16) is oscillatory for all >0 and all a >0. Hence, for all a >0,
any bounded solution of (4.1) is oscillatory and for a _-> 1 any nonoscillatory
solution satisfies (4.14), (4.15). If 0<a < 1 and instead of (4.20) we have

o P(t)(g(t))t dt=-oo, then (4.17) is oscillatory for all A >0, and hence any
nonoscillatory solution of (4.1) satisfies (4.14), (4.15).
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ORTHOGONAL POLYNOMIALS IN TWO VARIABLES. A FURTHER
ANALYSIS OF THE POLYNOMIALS ORTHOGONAL OVER A REGION

BOUNDED BY TWO LINES AND A PARABOLA*

I. G. SPRINKHUIZEN-KUYPER

Abstract. Some new results are obtained for the polynomials P,,,k’t’V(U, V), introduced by Koorn-
winder [4] which are orthogonal over a region bounded by two straight lines and a parabola. The most
important results are a Rodrigues-type formula and the recurrence relations for up,,k U, V) and
vp,,,k"t’V(U, V). These recurrence relations contain 5 and 9 terms, respectively. Furthermore, the
quadratic norm of p’V(u, v) and the value of P,,,k (2, 1) are explicitly given.

1. Introduction. In this paper, the analysis of the polynomials P n,k U,
introduced by T. H. Koornwinder [4] will be continued.

In many respects, this class of orthogonal polynomials in two variables can be
compared with the important class of Jacobi polynomials. In this analysis, some
properties of the Jacobi polynomials are generalized to the polynomials

n,k )"
The polynomials e,, v) form an orthogonal set over a region bounded by

two perpendicular straight lines, 1 u + v 0, 1 + u + v 0 and by the parabola
ue-4v 0 touching these lines, with respect to the weight function (1-u +
v)(1 + u +v)(ue-4v) which is singular at the boundary of the orthogonality
region. For reasons of convergence, it is required that ,,T > 1 and + T + 3/2,
+ T + 3/2 > 0.emain results of Koornwinder’s paper are summarized in 2.

In the subsequent sections, a further analysis is given, using as the main tools
a number of partial differential operators. In [4] it is proved that the polynomials
p’’v" v) are eigenfunctions of a second order operatorD;’v and a fourth ordern,k

operator D’’r, which are algebraically independent. Furthermore, two second
order operators D! and D;’’v are derived with the property that D_e,, v)
const, p+’+"(,_,k_ u, v) and D’’Vp,_,,_"(u, v) const, e,, t-, v). Then
is given by D’’v=

In 4 of this paper, another pair of differential operators is derived: these
operators E’ and E’’v have the property that E’-’’VZu v)=Pn,k

’’v+ "’’VZu v) Then anotherconst, e"’",-,azu, v) and E’’Vp,_, (u, v) const, e,,
’’vz v) as eigenfunctions,fourth order operator, which h the polynomials p,, u,

can be defined by D’’v= E’’VoE’. This operator is explicitly expressed as a
polynomial inD’’v andD’’v. The operators D! andE’ together play a similar

’’v v) to that played by the operator d/dx for therole for the polynomials p,, u,
Jacobi polynomials.

One of the first problems which arise is to find an explicit expression for
’’z v). We have succeeded in finding an explicit expression of the Rodrigues-Pn,

type by using the second order operators D+ and E+. Expressing D+ and E+ in
(D_)* and (E_)* respectively, we obtain a formula for e,, v) which is similar
to the Rodrigues formula for the Jacobi polynomials, but with the two second

* Received by the editors December 27, 1974, and in revised form June 16, 1975.
5 Stichting Mathematisch Centrum, 2 Boerhaavestraat 49, Amsterdam (Oost), the Netherlands.
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order operators (D_)* and (E_)* instead of d/dx ( 5). However, the expression
derived by us is rather complicated, and so we have tried to find other expressions
for "’t’Wu v). If -1/2t,n.k 3, and 3, +1/2, the polynomials can be expressed as
symmetric ([4], 2) or antisymmetric ( 3) products of Jacobi polynomials. In

10, the polynomials with a,/3 +/-1/2 are expressed in terms of Jacobi polynomials.
The case 3’ + is comparable with the determinants of orthogonal polynomials
treated by Karlin and McGregor [3]. The orthogonal set of 2 2 determinants of

na,fl,+l/2(XJacobi polynomials gives e,,,k + y, Xy) after dividing by (x y).
In 6, the explicit value of the quadratic norm for the polynomials ,,, v)

is given. The quadratic norm is important for finding coefficients in Fourier
"’’Wu v) and will be used for theexpansions with respect to the polynomials e,,

computation of some of the coefficients in the recurrence relations ( 9).
..,a,,3’[ uWithout knowing an explicit expression for t,,, v), it is possible to find

’’w2 1) by using the operators D/ and E/ ( 7). The pointthe value of p,
(u, v)=(2, 1) is a vertex of the orthogonality region, which probably plays a

"’’Wu v) to that played by the point x 1 for thesimilar role for the polynomials t,,,,
,t,w- 1) is theJacobi plynomials P(2’)(x). The (unproved) hypothesis is that P,,k

"’t’WU V) if a > =- and y_-> For y -1/2, thisabsolute maximum of IJn, k = > __1/2.
a,/3,--(1/2)maximum property follows directly from the explicit expression of P,,,k (U, V)

and the maximum property of the Jacobi polynomials.
The analysis of these polynomials suggests that not all powers -<(n, k) of u

and v appear in t,,,k ,v). This is proved in 8 and it has a number of
consequences. An immediate consequence is that some theorems which give
alternative definitions for e,,k"’t’Wu, v) can be derived. Another is that the number
of terms in the recurrence relations is uniformly bounded, while for general
polynomials in more than one variable this number depends on the degree of the
polynomial. In 9, the recurrence relations are explicitly given. For tln,k

and vp,,,k (U, V), we obtain a five-term and a nine-term recurrence relation,
"’’Vtu v) using the recurrence relations we need therespectively. To build up t,,,k

formula for vp,,,k (U, V) only if n k, and then six terms remain.
Finally, in 10, two quadratic transformation formulas are given for the case

a =/3. These formulas, together with the explicit expressions for 3’ +1/2, 3" =-1/2
yield explicit expressions for the cases that c and/3 are +1/2 or -1/2.

2. Preliminaries. In this section, the main results obtained by Koornwinder
[4] are summarized.

Let W" be the set of pairs of integers (n, k), n -> k => 0, with a lexicographic
ordering defined by

(2.1) (m, 1) <= (n, k)Cz>{m < n v (m n ^ <- k)}.

A polynomial q(u, v) is said to have degree (n, k) if

q(u, v) Y, Cm,lum-ll) l, with c,,k 0.
(m,l)<=(n,k)

The region with the properties 1 u + v > 0, 1 + u + v > 0 and U
2 4v > 0, is
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denoted by R (cf. Fig. 1). In the region R the weight function/x’’V(u, v) is defined
by

(2.2) /x’’V(u, v) (1- u + v)(1 + u + v)t3(u2-4v)L

(-2,1)

(o,-1)

FIG.

DEFINITION 2.1 For (n, k)ec and c,/3,3,>-1, a +3,+-,/3+3,+->0 the
polynomials t’,,k"’t’W’t-, V) are given by

(i) p?k’v(U, V)= U"-’V k + a polynomial of degree lower than (n, k).
(ii) R ..,,W. m-ll

t,,,k -, v) u v /x’t’V(u, v) du dv 0 if (m, l) < (n, k).

Then ..,,vt v) satisfiesl] n,k ,1,,

(2.3) D’’t’v’’t’w v) -[n(n + + fl + 23, a ,t,v v),en,k I.U, Ol "Jr- 2)+ k(k + + fl + 1)]Pn,k (U,

(2.4) D’’v’’’’w v) k(k+ +fl+l)(n+ +1/2)(n+ +/3+ +)p,,,,w v),l n,k U, 191.

ix c+l,/3+l,v( 1)) if k > O,
Dr ,,w k(n +T+-)Pn_l,k_l

(2.5) -P,,,k tU, V)=
0 if k=0,

ct,/3,y_a + ,/3+l,y/,(2.6) D+ t,,,-,,- ,,,,v) (k+a+[3+l)(n+o+[3+y+-)p’’t’w
n.k tl, 1))

if k>0.
The operators are defined by

D’’=(-u2+2v+2) -2u(v- 1)
01) 2

(2.7)
0

+[- (c +/3 + 23,+ 3)u +(2/3 2a)]-2--

+[(/3- c)u (2a + 2/3 + 2y+ 5)v (2y + 1)]v
02 02 02

(2 8) D3 -u2+ Uau OV + +(y+_})_..01)01) 2 01)’

D_’’v= (1 u + v)-(1 + u + v)-tDV__ (1 u + v)+l(1 + u + v)t+l

(1- u +1))(1 + u +1)) +u +1)
Ou Ov

+[(c -/3)(u2- 2v 2)+(c +/3 + 2)u(v 1)]_---0
OU
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(2.9) + [(a +/3 + 3’ + )(-u2 + 2v)+ (a )u(v 1) + (2a + 2/3 + 3" + t)v2

0
+ (3" +-)]-s- + (a -/3)(a +/3 + 3’ +)u +(c +/3 + 2)(a +/3 +-- (C --3)2 -Jr- (3’ -t- 1/2)(O: -4-- ]3 -t- 2),

(2.10) D’Z’V= D-’t’ D V--.

Consideration of (Dr_)*, the adjoint operator to D, yields

(2.11) (D)* D-v= (u2-4v)VDV__ (u2-4v)-v

Hence
+1,/3+1(2.12) D’’v= {/x’*’/3’V(U,/))}-I(D_)* /x ’V(u,

The operators DT_’’v and D_v are related bY

(2.13)
If (Df’Vp(u, v))q(u, v)lx’’t’V(u, v) du dv

R

f f P(U, v)(DV--q(u, v))tx’+l’3+l"/(u, v) du dv,
R

for any two polynomials p(u, v) and q(u, v).
Let

(2.14) p,2,t3(x) 2"n p,t)(x)
(n +a +/3 + 1),

where P’’t3)(x) denotes the Jacobi polynomial of order (a,/3) (for Jacobi polyno-
mials see Erd61yi [2] or Szeg/5 [6]). Then

’’t’-’/2(x + xy) P’t3(x)P’t(Y) + P’t3(x)P’(Y) if n > k,
(2.15) P"’’ Y’ =[p’2"t(x)p’t(y) if n k.

.,/,+l/2g. V) as an antisymmetric product of Jacobi3. The polynomials
polynomials. Consider the antisymmetric product of Jacobi polynomials"

f:k(X, Y)= P,,+ ,(x)P’t3(Y) P’t3(x)P"t3,+ l(Y),

where p’t(x) is defined by (2.14).
The polynomials f,&(x, y) form an orthogonal set of antisymmetric polyno-

mials over the simplex -1 <-y _<-x <_-1 with respect to the weight function
fa,[((1-x)(1-y))’*((l+x)(l+y)) (cf. [3]). Then (x-y) s,,kt, Y)is a symmetric

polynomial in x and y which can be uniquely expressed as a polynomial in
x + y u and xy v (see van der Waerden [7, 33]).

LEMMA 3.1. (X y)-lf:f(x, y)= p’:f’+l/2(x + y, xy).
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’’vz v) (Definition 2.1) yieldsProof. Application of the definition of Pn,k tU,
m+l /ym+lx y-x

(i) (x- y)-f:(x, y)= Y’. c.,, with c,,, 1
(m,)(n,) X- y

(X + y)"-(xy) + a polynomial in (x + y) and
xy of degree lower than (n, k).

(ii) {(x-y)-f’(x, y)} is an orthogonal set with respect to the measure

(x- y)2((1 -x)(1 y))’ ((1 + x)(1 + y))a dx dy

const. (1 u + v)(1 + u + v)(uZ-4v)+1/2 du dv.
Hence

(3.2) ’’+1/2(x + y, xy)=(x y)-’{pd,(x)p’’3(y)-p’’(x)p,+(y)}.l] n,k

4. A pair of differential operators which change n and % A pair of differen-
tial operators which change n and 3’ can be found by using (2.15) and (3.2) and the
differential operators for the Jacobi polynomials. Let us define

(4.1) xD/-- (1 x)-(1 +x)- (1 x)’+l(1 4- X)/+I OS
then

Hence

D() v. t* c.P’(x), where c, -n(n + a + t + 1).

(4.2)
a,/3 +1/2

(x y)-{D]3_ r,th,.,t,- (c,, C,)p,,-i,k tX + y, xy)
_(y) lln,k l/2(X 4- y, xy)

0

and

(4.3)
D(y) } (x + ,,k + y, xy)Y)P,,i,: tx y, xy) (Cn ck)p"l’-/2(X

ifn >k,
ifn k,

if n >k.

Formulas (4.2) and (4.3) now suggest the following definition:

(4.4)
E_’t (X y)-l{D] ’B-D(y)}

(92 02
+2(v +1)UOU2 Oil 030

02+ +(13-,)
a a

NOD2 vv +(a +/3 +2)uu
If (E_’)* is the adjoint operator to E_’, then

---,,,/3-, 02 02 02
+2(v+l)+ -(/3-a)

a a(4.5) UOU2 OU OD UOD2 G--(a + 2)--.
Ou

Note that

(4.6) (E_’)* E-’- (1 u 4- v)(14- u 4- v)3E’’3 (1 u 4- v)- (14- u 4- v)-.
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Now we can define the operator E_’’v as

o/3 /+1E’’={’’(u, v)}-’(E_’)* (., v)

=(u2-4v) u+2(v+l)auav
(4.7) +[(++4y+6)(u2-4v)+8(y+l)(v-1)]

+[(- )(u2-4v) +4(+ 1)u(v- 1)]
+ 2(v+ )( + +2+3)u- 4(e + )( ).

LEMMA 4.1. If
q,,(U, V) U"-% + a polynomial o[degree lower than (n, k)

and

qn_l,k(U, 1)) un-k-ll.) k + a polynomial o]’degree lower than (n- 1, k),

then

E’tq..k u, v)=

(n k)(n + k + a + + 1)un-k-ll) k 4c- a polynomial

degree lower than (n- 1, k) gn > k,

a polynomial of degree equal or lower than

(n- 1, n- 1) i]’n=k,

and

E’t’Vq,_l,k(U, V) (n k + 2y + 1)(n + k + a + + 2y + 2)u"-kv k + a polynomial
o]’degree lowerthan (n, k) gn > k.

Proof. Lemma 4.1 follows imrnediately from (4.4) and (4.7).
Koornwinder proved the following.
LEMMA 4.2. Let R be a bounded region in 2 such that certain polynomials

Wl(X, y), w2(x, y),’’’, Wk(X, y)arepositiveoverRandtheproductwl, w2," Wk
is zero at the boundary OR.

LetX’l’ k be a partial differential operator in x, and y, its coefficients being
polynomials in x, y, eel,..., k.

Let the operator Y"’k be defined by
Otk +iyO/1 ,Ok--..-WlOl,,, W"Ctk(XCgl Ok): wCl-t-il,,,Wk

for certain nonnegative integers l," ,
If this operator also has coefficients that are polynomials in x, y,

then
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for any two polynomials p and q, and for all real al, Olk such that

I I Otlwl Wk dxdy<oo.
R

Proo[. For sufficiently large al, a2," Olk the equality follows from partial
integration because the function Wl"" Wk and its partial derivatives up to a
certain order are zero at the boundary OR. By analytic continuation the equality
follows for all al,."", Ok such that

WT’’’’ W k dxdy<oe.
R

Rewriting this lemma for E_’t and E’t’ we obtain

(4.8) I I P(E-’3’Vq)lx"3’V(u’ v)du dv I I (E’3p)qlx’’3’v+l(u’ v)du dv,
R R

for any two polynomials p and q.
From Lemma 4.1, formula (4.8) and Definition 2.1 the following can be

proved.
COROLLARY.

o’/3"T+I (U,
,t,,/t v)

(n k)(n + k + a + fl + 1)t,,-.k
(4.9) E’tp,,,k tU,

0

and

(4.10) l’a’Cl’3’’c’/3’7+l(u, v)=(n-k +23/+ 1)+ n--1 ,k

(n+.k+a++2y+2)p,, (u,v) i[n>k
(cf. the proof of Theorem 5.4 in [4]).

Let us define the fourth order operator

(4.11) D,, E;,,r E,.
e polynomials ,,,w v) are eigenfunctions of D’’:Fn,k U,

(4.12) D’’Vp’’w,tu, v) (n k)(n k + 27 + 1)(n + k + a + + 1)
2" ’’V’u(n+k+++2y+ )p,,, ,v).

HenceD’’v can be uniquely expressed as a polynomial inD’’rand D’’-(cf. [4,
Thm. 6.5]). By considering the eigenvalues it is clear that

(4 13) n,,v 2
3 (D’’ 4D’’v- (2T + 1)(a + fl + 1)D’’v-

5. A Rodrigues-pe [ormMa. Using (2.6) and (4.10), e,, v) can be
expressed in terms of polynomials of lower degree.

In (2.6) and (4.10) we write D’’v and E’’v respectively as
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and

(4.7) E.’t’= {/z’’t’(u, t))}-l(Ea__’)*o t/,a’/3’/’t-l(IA, V).

An (n-k)-fold application of (4.10) and a k-fold application of (2.6) to
a+k,+k,v+n-k[
0,0 tu, v) -= 1 yields

3 n (n+k+a+(k+a+/3+l)k(n+a+/3+y+)k( --k+27+l)_k

+ 23, + 2), ,,t,,( v)-kPn, tt,

n-k

(1- u + V)+k(1 +U+V)t+k(u2--4V)v+’-k.

This is a Rodrigues-type formula for IJn,k’a’13"3[t/g /)). So far it is the only "explicit"
expression for ’,,k"’t’W’t-, V) in the case of general a,/3, y.

6. The quadratic norm of p,’’’(, v). The quadratic norm h’t’ of then,k,,w v) is defined bypolynomial pn,k tU,

(6.1) h’’t3’v-- fk lt2n, kl"a’’"/[k/.,/, D)}2l./,’fl’"/(IA, v)dudv.
R

The explicit value of h’’,,,k is important for calculating the coefficients in Fourier
expansions with respect to the polynomials ’,,k -, V) (cf. 9).

From (2 13) and (4.8) we obtain the following recurrence relations for ’’""tn,k

(6.2) hO,,t3,,,, k(n +y+1/2) +l,t+l,v,",’ (k+ot++l)(n+a++y+-) h’-,k-1

and

(6.3) h,,t3,,,, (n k)(n + k + a + + 1) hn-l,ka’/3’/+ 1.,,,k (n-k+23,+l)(n+k+a++2"y+2)

By repeated application of (6.2) and (6.3) we find

(6.4)
h,3,_

k!(n- k)!(n- k + y +-)k(2k + a +/3 + 2),-k
(k +a +/3 + 1)k(n +a+ +y+-)k(n--k +2y+ 1),,-k (n + k +a +/3 + 2y +2),,-k

hfk,t+k,v+’-k"
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(6.5)
LEMMA 6.1.

22+2/3+4v+3 r(tx + 1)r( + 1)r(v + 1) F( + y +)F(/3 +y+)
F(a+/3+y+25-) F(a+/3+2y+3)

Proof. _,,w v) 1, thusPo,o KU,

o,o (1-u+v)(l+u+v)(u2-4v)Vdudv.
R

This transforms under the substitution

u=x+y, v=xy
into

o,o (1-y)(l+y)(x-y)2v+a dy (1-x)(l+x)dx.
=-1 =-1

By making the substitution (1 + x)-(1 + y) and using

fo t-’(1-t)c--(1-tz) dt=F(b)F(c-b)2F(a, b" c" z)
r(c)

it follows that

,,v 2
F( + 1)F(2+2) f+l (1 x) (1 + x)2+2v+2,,o,o F( +2+ 3) J_

2

2:++,+3F( + )F(2 + 2) oF( +2y+3)
(1 s)s2+2v+2

2F (-, +1; +2+3; s) ds

2++,+r(a + )r( + )r(2e + 2)F(2# + 2e + 3)
F( +2+3)F( +2 +2+4)

3F2(-,+1,2+2+3; +2y+3, a+2+2y+4;1).

This 3F2 function is of type 3F2(a, b, c; 1 + a b, 1 + a c; 1) with a 2/3 + 2 3’ + 3,
b =/3 + 1 .and c -a and so the theorem of Dixon can be applied (see Bailey [ 1,
Chap. 3.1] or Slater I-5, (2.3.3)]). This proves the lemma. [-1

t,,,,t,v is equal toCOROLLARY. The quadratic norm

(6.6)
h,,,v_

24n+2a+23+4"/+3k !(’1 k !(n k + "y +)k (2k + a +/3 + 2).-k
x/-Mk +a +/3 + 1)k(n +a+ +y+-)k(n--k +27+ 1),,-k(n + k +a +/3 + 2y + 2),-k

F(k + a + 1)F(k +/3 + 1)F(n k + y+ 1)F(n + a + y +)F(n +/3 + y+)
r(n + k + a +/3 + y +)r(2n + a +/3 + 2 3’ + 3)
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’/3’W2 1) by7. The value of ,,,a,,t, 1) It is possible to find the value of P,,,kPn,k ’using the operators D_’/3’ and E_’/3’L It is of interest to know this value because of
the hypothesis that for a ->/3 =>-1/2 and 3" ->-1/2 the inequality

is valid This hypothesis was proved for 3" If 3’->-1/2, then it is true if
a/3 +1/2,,a =/3 -. Further it holds for the polynomials p,,;,,’ tu, v), p,,,,-i tu, v) and

+1/2,-- 1/2,"/(Pn,o U,

Considering (2.9) and (4.7) we obtain the following equalities:

and

3(D_’/3’Vp)(2, 1)=4(a + 1)(a+y+)p(2, 1)

(E-’/3’Vp)(2, 1)=8(3,+ 1)(a +3"+)p(2, 1),

for any polynomial p(u, v).
Hence

,t, 4(a + l)(a + y+) /1,/3/1(7.1) p,,kv(2, 1) (k+a/+l:’(n+a+A+y+3)p"-l’k-l"v(2’)la 1)

and

’’w2 1)=(7.2) P,,k
8(3’+ 1)(a + 3" +-) -,/3,v+1

(n_k+23"+l)(n+k+a+fl+23"+2)P,_l,k (2, 1).

From (7.1), (7.2) and po,o-’/3’Wtu, v) 1 it follows that

(7.3)
,/3,w 1)=Pn,k t/-,,

23"-k(a + 1)k(3" + 1),-k(a + 3’ +),
(k +a +/3 + 1)k(n +a + t +3"+-})k(n-k +23"+ 1),_k(n + k +a +/3 + 23" + 2),-k

Remark. The relation

,/3,w_-, 1)=(_l)--k.,/3,,,,wo 1) (equation (10.1))Pn,k ’, ln,k ,/-’,

’/3’vr 2,1)immediately gives the value of P,k t-

8. The coefficients in the power series of Pn,k l,l, V)o For the coefficients
a(n, k, o, , 3") in the expansion

(8 1) ,,,k t-, v)= Y ai,i(n, k, a,
(i,])<=(n,k)

the following theorem holds.
TI-mORZM 8.1. a4(n k, a, , 3") 0 if +] > n + k or > n.
At this point it is useful to define the following partial ordering for

{(n, k)ln >-_ k >= O, n, k e N}"

(8.2) (i,j)-<(n,k) iffi<=n and i+j<-n+k.
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Thus

(i, j)-< (n, k)((i, j) <=(n, k) ^ +j <- n + k).

Theorem 8.1 is equivalent to

(8.3) p,,k"’t3’WtU, V) Y, ai,i(n, k, a, fl, y)ui-Jvj.
(i,j)<(n,k)

Proof of Theorem 8.1. The second statement is a consequence of the defini-
tion of p;’v(u, v), because if i> n, then (i, j)>(n, k). The first statement is
trivially true for the polynomials _,,w v), because in that case, i+j > n + n
implies > n. It is clear from (4.7) that

E_,13,vblm-1131 Ci,jui-J13j,
(i,j)<(m+l,l)

for certain constants Ci,j. By repeated application of the operators E+ to t,n,,, u, v)
and by using (4.10) the theorem follows. [--1

Corollaries of Theorem 8.1 are the next two theorems.
THEOREM 8.2. Let

(i) p(u, v)-- Z Cm, um-lvl,
(m,l)<(n,k)

for certain constants c,,t, with Cn,k 1, and

(ii) I I p(u, 13)um-113t (U, v) du dv

R

Then

THEOREM 8.3. Let

p(u, v)= l, n,k t4, 13).

(i)
p(u,v)= Y,

(m,l)<(n,k)

for certain constants c,,l, with c,,k 1, and

(ii) D’’Vp(u, v)= Ap(u, v)

Then

and

if (m, l) < (n, k)

m--l
Cm, lbl V

for some A I.

",,T[ 13)p(u, v) p,,k u,

A -[n(n +a +/3 +2y+2)+ k(k +a+ + 1)].

Proof of Theorem 8.2. From (i) it follows that p(u, v) can be uniquely
expressed as

c,/3,T,’p(u, 13)= Cm,pm, tU, V) with c,,,k 1.
(m,l)<(n,k)
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Then (ii) yields

, )- p(u, u,V)Pm, V)IX’3’V(U, V) du dv 0 if (re, l) < (n, k).
R

This proves the theorem. 71
For the proof of Theorem 8.3 we need the following lemma.

LEMMA 8.1. If (m, l) < n, k), then A,, An,k, with

A,, -[m(m + a + + 2T+ 2)+ l(l + a + + 1)].

Proof. The parameters a,/3, ,/ satisfy a,/3, y > 1, a + y +, /3 + T + > 0.

Suppose that (m, l) < (n, k) and A,, An,k. Then

(n m)(n + m + a +[3 +,2y + 2) (l- k)(l + k + +[3 + 1)

and the factors n + m + a +/3 + 2, + 2 and + k + a +/3 + 1 are positive. Hence
n m > 0 and k > 0. Observe that n + m + a +/3 + 2y + 2 _->
21+l+a++2y+2>21+a++l>=l+k+a++l. Thus n-m<l-k,
contradicting the hypothesis (m, l)

Proof of Theorem 8.3. From (i) it follows that p(u, v) can be uniquely
expressed as

Then (ii) yields

p(u, v)= Cm,lPm, tu, v) with cn,k 1.
(m,l)<(n,k)

’’ v) E ;tm,C,,tpm, tU,E ;tC’,pm, U, ’’ V).
(m,l)<(n,k (m,l)<(n,k

From c n,k 1 it follows that

A A., -[n(n +a +/3 + 2.,, + 2) + (k +c +/3 + 1)],

and from An,kct,,= A..lC.,l and Lemma 8.1 it follows that c.,= 0 for (m, l)

(n, k).
Application of D’’v to (8.3) and comparison of the coefficients of equal

powers of u and v give the following explicit values for some of the coefficients
ai,j(n, k, a, , /) in (8.3), which will be used in 9 for the computation of the
coefficients in the recurrence relations:

(8.4a)

(8.4b)

(S.4c)

(8.4d)

an,k (n, k, a, fl, 3/)= 1,

an,k-l(n, k, a, [3, /)=-(13- a)k/(2k + +),

a,,k-e(n, k, a, , )=-k(k- 1)
{1-(-a)a/(2k + a + fl)I/(2k + a + fl- 1),

an-l,+l(n, k, , 3, T) -(n k)(n k 1)/(n k + T-),
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(8.4e)

(8.4f)

a,,-1,k(n, k, a, t, 3’)=

a,,,k-3(n, k, a, , 3") and a,,,k-a(n, k, a, [3, 3") do not depend on n and y.

9. The recurrence relations. For a further analysis of the polynomials
,,k t-, v), it is useful to have formulas for the series expansions of up,,,k (U, V)

’.’vt V). These formulas give -’’v v) andand vp ’’t’w,,,ku, v) in terms of p,, ,u, e,+,u,
p’’ v) as linear combinations of lower degree polynomials.n+l,k+l(/t

Case I. Expansion of up’;Ok "/( U, V). Consider the following equality:

U"a’!’3’[" S" m-l+l
I)

(m,l)<(n,k)

um-lDl(9.1) E am,
(m,l)<(n+l ,k)

y,
(m,l)<(n+l,k)

A .a,t,3’[ ub,.,(n, k, a, , -rw., v),

with

(9.2) bm,l(n, k, a, t, 3")={h’’t3’v/-111,,,,t s up,,ka’13’VZtU, l))Pm, l’t3’V(U, v)lx’’t’V(u, v) du dv.

R

From symmetry it follows that

(9.3) bm,l(n, k, a, n,k 1." m,l I b,,,k (m, l, a, , 3").

Hence bm,(n, k, a,/3, 3") 0 only if (m, l) > (n 1, k). And so the summation in
(9.1) at most runs through (m,/)e{(n + 1, k), (n + 1, k- 1), (n + 1, k-2),
(n, k + 1), (n, k), (n, k 1), (n 1, k + 2), (n 1, k + 1), (n 1, k)}. The coefficients
can be computed by means of (8.4), (9.1) and (9.3). The coefficients b,+l,k-1,
bn-l,k+l, bn+l,k-2 and bn-,k+2 turn out to be zero.

For the five remaining coefficients in (9.1) we obtain

(9.4a) b,+,k(n, k, a, fl, 3")= 1,

b,_l,k(n, k, a,/3, 3’)

4(n + 3" +1/2)(n + a + 3" +1/2)(n +/3 + 3" +1/2)(n + a + fl +3,+1/2)
(9.4b) (2n + a +/3 + 23")3(2n + a +/3 + 23"+ 1)

(n-k)(n-k + 23")(n + k +a +/3 + 1)(n + k +a +/3 + 23"+ 1)
(n-k +3"-1/2)(n-k + 3" +1/2)(n + k +a +/3 + 3" +1/2)(n + k +a +/3 + 3" +)’



514 I. G. SPRINKHUIZEN-KUYPER

(n-k)(n-k+2T)
(9.4c) b,,,k+l(n, k, a, , T)=(n_k +T-1/2)(n-k +T+1/2)

(9.4d)
b,,k-l(n, k, a, , 3’)

4k(k + a)(k + )(k + a + )(n + k + a + fl + 1)(n + k + a +/3 + 23,+ 1)

(9.4e)

(2k +a +/3- 1)3(2k +a +/3)(n + k +a +/3 + y +1/2)(n + k +a +/3 + T +-)’
b,,,k(n, k, a, , y) ( a)(a +)

.{(2n+++2+l)(2n+++2+3)
(2n + a + + 2)(2n + + + 4 + 2) ]

+
(2n + a + +2+ 1)(2n + a + + 2y+ 3)(2k + a + )(2k + a + + 2)"If we define

(9.5) ..,/3,w. v)=0 ifn<k or if k<0,IJ n, k ,
u..,/3,wu >- k >-then the following five-term formula holds for V.,k V) for all n 0:

,t3,v ,/3,v v)+bn k+lup., (u, v) p.+,au, (n, k, , , V)p.,+(u,’’ v)

(9.6) + b,,k(n, k, , , y)p,,w v)n,k ,
+ b,,k_(n, k, , fl, Y)P’’V,,k- (U, V)

+ b. ,(n, k, , , V)p ’’. ,au, v),

with bm,l(n, k, a, , T) given by (9.4).
It follows that

,,/3,v v)p.+,au, (n, k, , , ."’’ (u, v)

+(u--b.k(n, k, a, fl, ’/3’v))p., (u, v)
(9.7)

--b,,k-l(n, k, a, , T)P"’/3’v,,.k-, (u, v)

-b,_l,(n, k, a, , y)p,/3,v,_l,au, v)

if n=>k=>0.
Remark. By application of the quadratic transformation formulas (10.5) and

(10.6) to (9.6), repeated application of D and analytic continuation, it can be
proved that
(9.8)

a,[3 y
)

a/3+1, A a,/3 + ]7 a,/3 + T _a,/3+l,TP,,,k tU, =P,dk v( u, V)+V,,,k- v( u, V)+’-’V,,-1,k t", V)+Cp,,-1,k-ltU, V)
if n_>--k =>0,

with A, B and C being functions of n, k, a,/3 and y to be determined from the
coefficients of u"-tv t.

,/3,w v). Consider the equalityCase II. Expansion of vp ,,,k U,

(9.9) vp,,k (U, V)= , Cm,t(n, k, a, , y)p,q’V(u, v),
(m,l)<(n+l,k+l)
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with

(9.10) Cm,l(n, k, a, [3, 3’)= {hm, ,e.,, tu, v)p,,,, ’(u, v) u, v) du dv.

R

From symmetry it follows that

(9 11) Cm,l(gl, k, o, ,,,k ,,.,, C,,k (m, l, a, , 3").

Hence c,,,(n, k, a,/3, 3") # 0 only if (m, l) > (n 1, k 1). And so the summation
in (9.9) at most runs through (m, l)e {(n + 1, k + 1), (n + 1, k), (n + 1, k- 1),
(n + 1, k 2), (n + 1, k 3), (n, k + 2), (n, k + 1), (n, k), (n, k 1), (n, k 2), (n
1, k + 3), (n 1, k + 2), (n 1, k + 1), (n 1, k), (n 1, k 1)}. The coefficients
can be computed by means of (8.4), (9.9) and (9.10), and by comparison with the
case 3"=-. The coefficients Cn+l,k_2, Cn_l,k+2, Cn+l,k_3, Cn_l,k+3, Cn,k+2 and
C n,k_2 turn out to be zero.

For the nine remaining coefficients in (9.9) we obtain

(9.12a) C,+,k+l(n, k, a,/3, 3")= 1,

(9.12b)

c,_,k_(n, k, a,/3, 3")

24(n + 3" +1/2)(n + a + 3" + 1/2)(n + + 3" + 1/2)(n + a + +3"+1/2)
(2n +a +/3 + 23")3(2n +a +/3 +23"+ 1)

k(k + a)(k + )(k + a + )(n + k + a + ):z(n + k + a + + 23")2

c._ t,(n, k, c,/3, /)

4(/3 a)(a + fl)(n + 3’ + 1/2)(n + a + y + 1/2)(n + fl + 3" + 1/2)
(9.12d) (2k +a +/3)(2k +a +/3 + 2)(2n +a +/3 +23")3
n + a + + 3" + 1/2)(n k )(n k + 2 3")(n + k + a + /3 + l )(n + k + a + fl + 2 3" + l

(2n + a + + 23" + l)(n k + 3"-1/2)(n k + 3" + 1/2)(n + k + a + + 3" + 1/2)2

4k(k + a)(k + )(k + a + fl)
(9.12e) c,+l,k-l(n, k, a, [3, 3")=(2k +a + fl-1)3(2k +a + fl)’

(9.12f)

c,_,k+(n, k, a,/3, 3")

4(n + 3" +1/2)(n +a + 3" +1/2)(n +/3 + 3" +1/2)(n +a +/3 +3,+1/2)
(2n +a +/3 + 23")3(2n +a +/3 +23"+ 1)

(n- k -1)2(n- k + 23"- l)2
(n k + 3’- )3(n k + 3"-1/2)
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(9.12g)
Cn,k+l(n, k, o, [3, 3/)

( -a)(a +)(n- k)(n- k + 27)
(2n +a +/3 +23,+ 1)(2n +a +/3 + 23" + 3)(n- k +y-1/2)(n-k +y+1/2)’

4(/3 a)(a + )k(k + a)(k + )(k + a +)
(9.12h) (2n +a +/3 +23’+ 1)(2n +a +/3 + 23" + 3)(2k +a +/3-1)3(2k +a +/3)

(n + k + a + [3 + l)(n + k +a +/3 +23"+ l)
(n+k+a+3+y+1/2)2

(9.12i)

C,,,k(n, k, a, , 3’)
a,,-1,k-l(n, k, a, t, 3")-a,,,,(n + 1, k + 1, a, , 3’)

--Cn+l,k(rt, k, a, 3, 3’)a,,k(n + 1, k, a, 3, 3")-c,+,-1(n, k, a, , 3")

a,,k(n + 1, k- 1, a, , y)--C,,k+i(n, k, a, , 3,)a,,(n, k + 1, a,/3, 3’).
If 3" =-1/2, then C,,,k(n, k, a, ,-1/2) is given by

c.,(n, k, a, t,-1/2)
(9.12i)’ (a +/3)2(/3 a)2

(2n + a + fl)(2n + a +/3 + 2)(2k + a + 3)(2k + a +/3 + 2)"
Formula (9.9) holds, with the coefficients given by (9.12), for all n -> k =>0, where
the convention (9.5) is used again.

Formulas (9.6) and (9.9) together give an algorithm for calculating
u,,k v) If n k, then p,,--’’Wtu, v) can be expressed in terms of lower degree

polynomials by the five-term relation (9.6). If n k, then (9.9) provides a six-term
relation which expresses p,,, tu, v) in terms of lower degree polynomials.

I0. A quadratic transformation. The reflection u-->-u maps the region R
onto itself and transforms the weight function/x’t’(u, v) into/xo’’V(u, v). Hence,
in view of Definition 2.1, the following equality holds"

n-k,,a,/[(10.1) p.,-’’’-u, v) (-1) e., -,

If a =/3, then (10.1) becomes

(10.2) p., -u, v) (-1)"-.....’12n,k b,

2Formula (10.2) means that if (n k) is even, then Pn,k ,U, t)) is a polynomial in u
and v, and if (n- k) is odd, then u ,, t., v) is a polynomial in u and v.

Consider now the new variables

(10.3) u’ 2v, v’=uZ-2v-1.
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These variables satisfy the following properties:
(i) Each polynomial in u 2 and v is a polynomial in u’ and v’.
(ii) The half region R given by R f-I {(u, v)lu > 0} is mapped onto

/ {(u’, v’)l(1 +u’+v’)>O^(1-u’+v’)>O^((u’)2-4v’)>O}.
(iii) If (u, v)= (2, 1), then (u’, v’)= (2, 1).

(The transformation of variables u’= -2v and v’= u2- 2v 1 also satisfies (i) and
(ii)).

From (10.3) we obtain

u =’,/l + u’ + v’ 12=U

(10.4) (l+u+v)(1-u+v)=1/4((u’)2-4v’), u2-412 1-u’+v’,

du dv 1/4(1 + u’ + v’)-1/2 du’ dv ’.

If a =/3, the following quadratic transformation formulas hold.
THEOREM 10.1.

a,a, --n+k_ T,(10.5) P,+k,,-ktU, V) 2 p,,-1/2’(U, V

and
--1 ,a,ot,T(10.6) u t,,+k+l,,-k(U, V)= 2 +k-%+l/2’(U’, ’),P n,k 12

with u’ and v’ given by (10.3).
Proof.

,+k,,-k(U, V)= Z aijui-Jvj.
(i,])<(n+k,n-k)

If (i-j) is odd, then ai,j 0, so we can substitute i-j 21 and +j 2m. By (8.2),
(i, j) < (n + k, n k) iff (m, l) < (n, k). Hence

.... t(uZ)t m--ln+k,n-k(U, 12)= Y’, am, 12
(m,l)<(n,k)

(m,l)<(n,k)

tt 2 --1a,,,(u 2v 1) (2v)

am,U -l(v witha.,k 2
(m,l)<(n,k)

With respect to the orthogonality the following holds:

p,,+k,,,-ktU, V)(2V) (U --2v-1)//x ....V(u, v) du dv
d J

R

const, p,+,,_(u, V)(u’)m-(V’)tIZ%-/2’(U, V’) du’ dr",
R

if (m, l) < (n, k).
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Application of Theorem 8.2 proves (10.5). A similar proof can be given for
(10.6). ]

If (u, c)=(2, 1), then (u’, v’)=(2, 1); hence (10.5) and (10.6) can also be
written as

Pn+k,n_k(bl, D) .y-1
Pnlk /2’(2v, --2V 1)

(10.5)’ ..... .,/ ’" 1] .,%--1/2,a/,-) 1)P.+k,.-kt, p.,k ,
and ....v v,+1/2,(2 V, U

22u-lp,,+k+l,._k(U, V) P,,k 2V 1)
(10.6)’ p,,v k(2, 1) p.V:l/2’(2, 1)n+k+l,n-

Formulas (10.5) and (10.6) in combination with (2.15) and (3.2) give an explicit
,t,w v) if andare+or-"expression for the polynomials Pn,k U, a

pn/z,-1/z,v(2xy, X2+ y2_ 1)
n-k .-(Y) , ,2 {p.(x)p’ +p._(x)p.+(y)} if k > O,

(10.7) v,v v,v.2 p. (x)p. (y) if k=0,

+l/2,-1/2,V(2xy X
2 + y2 1)Pn,k

(10.8) 2-(x y)-,w++(x)p(y)- ’ ’p_(x)p++(y)},
--1/2,+1 2 2p.. /2’(2xy, x + y 1)

(lO.9) -2-k(x+y)-’ (x)p’(y)+ ’ ’w++ p_k(x)p++(y)),

p,k+i/2"+/2’(2xy, x 2 + y2 1)
(lO.lO) 2-(x y2)- . . .(p.++2(x)pk(y)-p._(x)p.++2(y))
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GROWTH AND UNIQUENESS THEOREMS FOR AN
ABSTRACT NONSTANDARD WAVE EQUATION*

BRIAN STRAUGHANf

Abstract. A uniqueness theorem is proved for a solution to an abstract, nonstandard wave
equation (see (1.1)). Growth estimates for a weighted norm of the solution and its kinetic energy are
also given. It is then shown that solutions to the linearized equations of Cauchy elasticity, which are a
special case of the abstract equation considered, are unstable for certain types of elasticities.

1. Introduction. It is our intention to study the asymptotic behavior of
solutions to the equation

(1.1) Au"(t)+B(t)u(t)=O, t(0,

for specified initial data u(0) u0, u’(0) v0. Here A and B(t) are linear operators
defined on a dense subdomain D, of a real Hilbert space H. The parameter is
conveniently regarded as time, and throughout the note a superscript prime
denotes the (strong) derivative with respect to t. The norm and inner product on H
are denoted by I1" and (.,.).

We assume that A is a symmetric, positive definite operator, while B(t)
satisfies

either

(1.2) (x, B(t)y)= -(B(t)x, y) V x, y 6 D,

(1.3) (x, B(t)x) <=0 V x D,

Or

(1.4) (x,B(t)x)<=-)t2(x, Ax) VxD,

for some real number A : 0. Observe that in (1.3) and (1.4), no symmetry is
imposed on B.

Since B satisfies (1.2), (1.3) or (1.4), we see that the classical wave equation
does not fall into the category of equations we propose for study. Hence, we refer
to the wave equation under consideration as nonstandard.

In 2, we state and prove uniqueness and growth theorems for (1.1). In 3,
we consider a particular example of (1.1), namely, the linear dynamical theory of
Cauchy elasticity. Using the results of 2, we show that when the elasticities are
governed by conditions corresponding to (1.2), (1.3) or (1.4), then the zero
solution to the equations of Cauchy elasticity is unstable.

2. Growth and uniqueness theorems. Let D’( @ D) be a dense subdomain of
H. Let zg(. ,. and 3(. ,. be the bilinear forms on D’ associated with the

* Received by the editors February 12, 1974, and in final revised form June 2, 1975.
Department of Mathematics, Heriot-Watt University, Edinburgh, United Kingdom. Now at

Department of Mathematics, The University, Glasgow, United Kingdom.
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operators A and B(t), respectively; i.e., if x, y D, then

M(x, y)= (Ax, y)= M(y, x),

t(x, y) (x, B(t)y).

M is a positive, symmetric bilinear form on D’, and according to (1.2)-(1.4),
satisfies

either

(2.1) ,(x, y) t(y, x) V x, y D’,

(2.2) ,(x, x)-< 0 lxD’,

OF

(2.3) ,(x, x) <= A 2sg(x, x) I x D’.

A solution u to (1.1), is a classical solution if u cZ([0, ); D), u satisfies
(1.1) identically for each in (0, ) and u satisfies the initial conditions u(0)= Uo,
u’(0) v0.

u is defined to be a weak solution to (1:1) if u C1([0, c); D’) and for each
b C1([0, ); D’) the following identity holds:

(2.4) sg(dp(t), u’(t))= (b(0), Vo)+ [(b’, u’)-3n(b, u)] drl.

When A is as stated in the text, B(t) satisfies (1.2), (1.3) or (1.4) (or when
and , are as above), the initial value problem defined by (1.1) together with the
Cauchy data u0, Vo, is denoted by .

The first initial data we consider is the choice such that Uo Vo 0. The proof
of the following theorem is motivated by the proof of a similar result in [8].

THZORrM 2.1. Let u be a weak solution to (1.1), with Uo Vo O. If either

3, satisfies (2.1) or (2.2) for each in (0, oo) and

(u(T),
lim

7--,coinf T2 0,

or

satisfies (2.3) for each in (0, o) and

sC(u(T), u(T))
lim inf XT O,
T->co e

then u 0 on [0, c).
Proof. Define F(t) by

F(t)= sg(u(t), u(t)), [0, ).

We may take b u in (2.4), and so obtain

F’(t)=F’(O)+2 [(u’, u’)-Jn(u u)]drl.
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Hence

(2.5) F"(t) 2(u’(t), u’(t))-2Jt(u, u).

Using this relation we may obtain the identity,

(2.6) FF’’-(F’)---2 2S2- 2Fl,(u, u),
2

where S2, which is nonnegative by the Cauchy-Schwarz inequality, is given by

(2.7) S2= sg(u, u)sg(u’, u’)-[ag(u, u’)]2.
Suppose , satisfies (2.1) or (2.2). Then (2.6) leads to

(2.8) 2FF"-(F’)2 _-> 0, e (0, oo).

In particular, F is a convex function of t. Furthermore, by hypothesis, F(0)=
F’(0) 0. Since F’ is nondecreasing, either F’ --- 0, from which it follows that u -= 0,
or F’(a) > 0 for some a > 0. Suppose the second alternative holds. Then F> 0 for
all > a. We fix/3 > a and from (2.8) deduce that

(F1/2(t))">=O, <=t<.(2.9)

Consequently,

so that

F(t) >= 1 [F’(fl)](t /3)2
4 F(fl)

F(t) l[F’(fl)]2
(2.10) lim inf t--- _--> > 0,

,_,oo 4 F(fl)

which contradicts the hypotheses of the theorem. We appeal to the positive-
definiteness of ag to conclude that u --0 on [0, oo).

To prove the second part, suppose t satisfies (2.3). Equation (2.6) now leads
to

(2 11) FF"
(F’)2->--2h2F2 t(0, )
2

Arguing as for (2:9) we now establish

(2.12) (F1/2)">-A2F 1/2, 3<t<oo.=

This inequality may now be integrated (see, e.g., [5]) to give

(2.13) F/z(t) >-_ sinh {A (t-/3)}{F’(fl)/F1/Z(fl)} + cosh (t [3)}F1/2(fl).
ZA

Under the hypotheses of the theorem, lim inf,+oo F(t)e-2at= 0 which is clearly
incompatible with (2.13) unless u --0 on [0, oo). The theorem is thus proved.

Based upon the previous computation, we may obtain in an obvious way the
following theorem.
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THEOREM 2.2. Let u be a weak solution to (1.1).
(i) Let Jt satisfy (2.1) or (2.2) for each (0, oo). If F’(O) >-_ O, then

( F’(O)q 2

F(t) >- F(O) 1 + 2--/
(ii) Let Nt satisfy (2.3) for each (0, ). IfF’(O) > 2AF(0) and Uo 0, then

F(t) is bounded below by an increasing exponential function of t.
The proof of (ii) proceeds along similar lines to the proof of an analogous

result of Knops and Payne in linear elasticity (see [5, p. 1240]).
Theorem 2.1 shows that any weak solution to is unique provided a suitable

growth condition is imposed at infinity. Theorem 2.2 shows that the zero solution
to is unstable, for arbitrary initial perturbations.

The bound in Theorem 2.2 is quadratic when N, satisfies (2.1) or (2.2). it is
possible to obtain better growth estimates, and this is done in the following
theorem. However, we find it necessary to impose stronger regularity assumptions
than those of Theorem 2.2, when B satisfies (1.2) or (1.3).

Motivated by physical situations, we define the kinetic energy K(t) of a
classical solution to (1.1), to be

(2.14) K(t) 1/2(u’(t), Au’(t)).

THEOREM 2.3. Let u be a classical solution to (1.1) with B independent of t,
such that Bu C1([0, c); H).

(i) Suppose B satisfies (1.2), (1.3) or (1.4). If (vo, Buo)<O, then K(t) and
F(t) (u(t), Au(t)) are bounded below on [0, c) by increasing polynomial func-
tions of time, of order three and five, respectively.

(ii) Suppose B satisfies (1.2). If (Vo, Bu0)< 0, then K(t) and F(t) are bounded
below on [0, ) by an increasing exponential function of time.

Proof. The proof follows from a modification of a technique due to Murray
and Protter [11] (see also Murray [10]).

Introduce the function v by

(2.15) v(t) f-l(t)u(t),
for a strictly positive twice continuously differentiable, real-valued function, f, to
be specified. Then by direct substitution, we see that

(2.16) A(f"v + 2[’v’ +fv")+fBv =0.

We now form the inner product with f-2(f"v +fv") and discard the resulting
nonnegative term, to obtain

r(2.17) 2-(f"v+fv ,av’)+\-v+v",Bv <=0.

The first choice of f(t) is

(2.18) f(t)=t+a,
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for an arbitrary positive number a. Relation (2.17) then becomes

(v", Av’)
2--+ < v", Bv > <= O.

(t+a)

Noting that under the hypotheses of part (i), (v’, By’)<=0, this inequality can be
integrated to give

(2.19) (v’ Av’)
’+(v’, By) -<(v’(0), Av’(O))a +(v’(0), By(O)).

(t+a)

The first term on the left of (2.19) is now discarded together with the term
-(u, Bu)/(t + a)3 which occurs when (2.19) is rewritten in terms of u. The result is

(2.20) -(u’, Bu) >= no(t + a)2,
where Ho is given by

a2Ho -(Vo, Buo) + [(u’ Bu)-(v’ Av)] + aAU)2
(2.21)

(Uo, Auo)
3a

The term Bu is now substituted from (1.1) in (2.20), to yield

K’(t) >=Ho(t + a)2,
and so

(2.22) K(t) >= K(O) + Ho(t3/3 + at2 + a2t).
If (Vo, Buo)< 0, then we choose a so large that Ho > 0 and the first part of (i)
follows.

To prove the second part, we observe that from (1.1),

(2.23) (u, Au")= -(u, Bu).

Hence

(2.24) F"(t) 4K(t)- 2(u, Bu).

Combining either (1.2), (1.3), or (1.4) with (2.22), in (2.24), we can obtain

2 ( tS at4 2 )(2.25) F(t) >=F(O)+ F’(O)t + 2K(O)t2 +-Ho --+--+ a 3

Again, if (v0, Buo) < 0, we can select a such that H0 > 0, and (i) follows.
To prove (ii), suppose B satisfies (1.2) and define f(t) by

(2.26) f(t)=ew

for a positive number % to be specified. From (2.17), we have

2T(v"+ T2v, Av’)+(v", By) <=0.
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Integrating this inequality and using the fact that B satisfies (1.2), we obtain

(2.27) T(u’-Tu, A(u’-yu))+T3(u, Au)+(u’,Bu)<=-e+2VIo,
where

(2.28) Io TZF’(O)-2TK(O)-2T3F(O)-(Vo, Buo).

We next use the inequality

T U’2TZ(u Au) <=2T3(u, Au)+- (,Au’)

in (2.27) and substitute for Bu from (1.1), to find

(u’, au")=> eZVt/o + (V/2)(u’, au’).

Hence, a further integration yields
-yt

(2.29) K(t)>-_eVtK(O)+Ioe" (e v’- 1).

If (Vo, BUo) < 0, we may choose y such that Io > 0, and the first part of (ii) follows
from (2.29).

A growth estimate for F(t) is immediately obtained from (2.24) and (2.29).
The result is

Io3 e2,, Io
F(t)>=-y + (K(0)---)’y-2y

err
(2.30)

+(F,(o)_K(O)+_z)t+F(o)_K(O2)_ 31o
Y Y 43/3.

Again, if (Vo, Buo)< 0, we can select y to ensure Io>0 and the proof of the
theorem is complete.

Theorems 2.2 and 2.3 obtain growth estimates for a measure of a solution to
when Uo 0. We now consider the case Uo 0, Vo 0.
TIZORZ 2.4. Let u be a weak solution to (1.1) and suppose ,satisfies (2.1),

(2.2) or (2.3). Suppose also thatA is a self-adoint linear operator bounded below by
a positive multiple of the identity and D’

_
D(A 1/2) (D(A 1/2) domain ofA 1/2). If

Uo O, Vo O, then

F(t) (A 1/2u(t), a /2u(t)) +c,
as tc.

Proo[. Employing (2.4), we see that

(2.31) F’(t) 2 [(A1/2 1/2u, A u’)-,(u, u)] drt.

Since A is self-adjoint and A ->/xI > 0 for some tz > 0, we may define a new norm,
I1" IIA, on D(A by

IIxlIA --IIA 1/2xll Vx D(A 1/2),
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where A 1/2 is the square root of A. Then, since u(t)= ’o u’(rl)drl, (in an inner
product sense),

Ilu(t)lla =< Ilu’(n)llA drl <- / Ilu’()ll, d

Hence

(2.32) Ilu’ll& d /-’llull&,

and so using (2.32) together with (2.1), (2.2) or (2.3) in (2.31) we see that

F’(t)>-(2/t)F(t), t>0,(2.33)

which leads to

(2.34)

Integrating (2.34),

>0, t>O.
dt

F(t) >- t21im [F(e)/e2].
e-O

Noting that F(0)= F’(0)= 0, we use L’H6pital’s rule to deduce that

F(t)>=2teK(O).
Since Vo 0, it follows that F(t) is bounded below by an increasing quadratic
function of time.

An interesting example of (1.1) with B satisfying (1.2), (1.3) or (1.4) occurs in
the linear dynamical theory of Cauchy elasticity. In the next section we present
this example explicitly.

3. Cauchy elastidty. Let f be a bounded domain of 3, with boundary O
smooth enough to admit applications of the divergence theorem. The standard
mixed initial boundary value problem for a linear Cauchy elastic material is then

02Ui__ 19 ( OUkp(X) -)’ OX--- aijkh-Xh]’ in f x (0, T),

u,(x, o) f,(x),

OUi "X(3.1) --0-7( O)= g(x),

ui(x, t) hi(x, t), x cgf*, [0, T),

Ouk
niaijkh(X)-Xh-(X, t)= li(x, t), X Oil*c, t6 [0, T),

where T is a positive real number, ui are the Cartesian components of displace-
ment, O is the density and aijkh are the elasticities of the material, 0)* and 0f* are
an arbitrary subset of 0O and its complement, and the standard summation
convention is employed.
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We are interested in the uniqueness and growth questions to (3.1), and
therefore we restrict attention to zero boundary data. It is easily seen that (3.1) is a
special case of (1.1), with the particular choices

H [L2(f)]3

OUkD= ulu E [C2(’) ’-) cl(fi)]3, u =Oon 012", ljaijkhox
h

and

0 on 0f*c },

OU____k 0 on 012"c }D’= ulu l[cl(fi)]3 u =0on 01)* njaiikhox
h

Conditions (1.2), (1.3) and (1.4) correspond to the elasticities satisfying
either

(3.2) aijkh akhi],

(3.3) fll ai]khi]kh dx <-_ 0 V ii,

or

(3.4) aqkhijkh dx <-_ Ix Pi]i dx,

for all ii, and some nonzero, real constant
Theorems 2.1-2.4 now give us the following corollaries.
COROLLARY 3.1. Let u be a weak solution to (3.1) (as defined by (2.4)) with

fi= gi= hi= li=O. If
either

the elasticities satisfy (3.2) and (3.3) and

(3.5) lim inf [It-,oo [ui(x’ t)ui(x,t)dx/t]=O,
or

the elasticities satisfy (3.4) and

(3.6) lim inf [It-
Oui(x’ t)ui(x’ t) dx/e2tt] :0’

then u =-0 on Ox[0, oo).
A uniqueness theorem for a classical solution to (3.1), under (3.2), was given

earlier by Murray [10]. She required the solution and certain of its derivatives to
be bounded, although she only required the bound to hold on compact subsets of
the real line, whereas we need a growth condition at infinity, of the form (3.5) or
(3.6). Another uniqueness theorem under a similar condition to (3.3) was given by
Hayes and Knops [3], the condition they required being

ai]khaia]bkbh < 0 V ai, bi = O.
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COROLLARY 3.2. Let u be a weak solution to (3.1) with hi li O.
(i) If either

the elasticities satisfy (3.2) or (3.3) and

F’(O) 2 In pfigi dx > O,

or

the elasticities satisfy (3.2), (3.3) or (3.4) with fi =-0 and gisO, then

fa pui(x, t)ui(x, t) dxF(t)

is bounded below by an increasing quadratic [unction of time.
(ii) If the elasticities satisfy (3.4), ]’ 0 and F’(0)>-2/F(0), then F(t) is

bounded below by an increasing exponential[unction oftime, [or large enough time.
Let u be a classical solution to (3.1) with hi l 0. Suppose (03ui)/(Ot Oxi Ox)

is continuous on f x [0, T) and

Then

Vo, Buo} Ia a ijkhgi,k,hdX < O.

(i) if the elasticities satisfy (3.3) or (3.4), F(t) and

1 (,, Oui OuK(t) =- O-(x, t)-(x, t) dx

are bounded below by increasing polynomial ]’unctions of time, of order three and
five, respectively;

(ii) if the elasticities satisfy (3.2), both F(t) and K(t) are bounded below by an
increasing exponential [unction of time.

4. Condnsions. The results given here may be compared with those for (1.1)
when B is symmetric (see, e.g., Knops and Payne [6], Levine [9]). The case when B
is symmetric corresponds to the theory of Green elasticity when it is well known
that extra restrictions can be placed on the linearized strain energy in order that
the material be Lyapunov stable in the measure n Ouu dx for any initial data.
However, in the two cases we have considered, of Cauchy elasticity, i.e., when aijkh
satisfy (3.2), (3.3) or (3.4), we can see no way of making the material stable for
arbitrary initial data by imposing additional restrictions on the aqkh.

It is of mathematical interest to note that Corollm:ies 3.1 and 3.2 still hold if
we replace condition (3.2) by the weaker, minor symmetry condition

(4. l) aqkh akjih,

provided the material is homogeneous. If the material is inhomogeneous, we
need, in addition to (4.1), the extra symmetries

(4.2)
3Xj

(aqkh)
3Xj

(aihk]).
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These results are analogous to the uniqueness theorem of Horgan [4], in Green
elasticity.

Some of the results in this note can be proved for (3.1) with the boundary
conditions replaced by "ambiguous" ones.

Such problems have attracted much recent attention, e.g., Knops and Payne
[7], Duvaut and Lions [ 1] and Fichera [2]. However, the details of this work will be
given in a future article.

Acknowledgments. I am indebted to Professor R. J. Knops for his encour-
agement and many valuable suggestions. I would also like to thank the referees for
several very helpful comments which led to improvements in the paper.
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ON HYPERGEOMETRIC SERIES WELL-POISED IN SU(n)*

W. J. HOLMAN, III,? L. C. BIEDENHARN:I: AND J. D. LOUCK

Abstract. By exploiting the known relationship between well-poised hypergeometric series and
the combinatorial aspects of the representation theory of SU(2), we define a generalization of the
well-poised concept for multidimensional series adapted to SU(n) symmetry. The analogue to

Whipple’s theorem is demonstrated for SU(3), and the analogue to the well-poised 4F3(- 1) theorem is
given for all SU(n).

1. Introduction. Hypergeometric series well-poised in SU(2). Well-poised
hypergeometric series, defined by the expression

(1.1)
1+a-b1 l+a-b2 l+a-bp_

have been the most extensively studied of all forms of hypergeometric series and
have provided the richest store of summation theorems. The earliest example of a
summation theorem for a well-poised series of the type (1.1), in fact, was found by
Kummer i9] in 1836:

(1.2) 2F,(a b ) r(l+a-b)r(l+1/2a)
forReb<l

l +a-b
-1 =F(l+a)F(l+1/2a-b)

Subsequently, Dixon [6] found the sum of well-poised 3F2 in the form

3F2 1 +a-b l +a-c
(1.)

F( +1/2a)F(1 +1/2a-b-c)F(1 + a b)F( +a-c)
F(1 + a)F(1 +a-b-c)F(1 +1/2a- b)F(1 +1/2a-c)

for Re (a-2b-2c) >-2, from which (1.2) may be obtained as the asymptotic
limit as c-. Dougall [7] then found the theorem that

7F6(a l+1/2a b c d e f )1a l+a-b l+a-c l+a-d l+a-e l+a-f
F(1 + a b)F(1 + a c)F(1 + a d)F(1 + a -f)F(1 + a b c d)

(1.4)
F(1 + a)F(1 + a-b-c)F(1 + a-b-d)F(1 + a-c-d)F(1 + a-b-f)

F(l+a-b-c-f)F(l+a-b-d-f)F(l+a-c-d-f)
F(l+a-c-f)F(l+a-d-f)F(l+a-b-c-d-f)

provided that the series terminates and that

l+2a=b+c+d+e+f.
* Received by the editors April 8, 1975.
"t" Physics Department, University of North Carolina, Chapel Hill, North Carolina 27514.
t Physics Department, Duke University, Durham, North Carolina 27706.
Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544.
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Whipple [13], [14] was the first to introduce the term "well-poised" for series
of the form (1.1) and to study them systematically. He obtained a considerable
number of theorems concerning such series, among them what is now known as
Whipple’s theorem which relates well-poised 7F6 and Saalschiitzian 4F3, which we
give in terminating form:

(1.6)

vF{ 1 1/2f +1/2 a, a2 d d2 -N
1/2f-1/2 f-a, f-a2 f-d f-d2 f+N

[’(g -}" N)F(g- dl- d2 + N)F(g- d)F(g- d2)
r(g)r(g- d- d2)r(g- d -- N)r(g- d2 + N)

4F(f-a,-a2 dl d2 -N[ 1),f-a, f-a2 g

1)

where

(1.7) g= 1 +d +d2-f-N,

and N is a positive integer. Dougall’s theorem (1.4) is merely a special case of (1.6)
which is realized when the Saalschiitzian 4E3 series on the right of (1.6) is restricted
to be a Saalschiitzian 3F2 series and hence can be summed to a monomial. Whipple
also found the relation

4F3(a. l+1/2a, b c

-a l +a-b l +a-c 1)
F(1/2 + 1/2a)r(1 + a b)F(1 + a c)r(1/2 + 1/2a b c)
F( +a)F(1/2+1/2a-b)F(1/2+1/2a-c)F(l +a-b-c)

as well as the summation theorems which can be found as the various asymptotic
limits of (1.6). Thus in the limit d2 cx3, we obtain

(1.9)

lf+6Fs f- 1 al a2 d
-f --1/2 f al f-a2

F(1 -[)F(1 + d, -f- N)
F(1 -/- N)F(1 + d,-f) 3F2(f-a-a2 dl -N

f-a, f-a2

We then take.a-> oo to get

sF4 (f- 1 1/2f-k- 1/2 dl a2 -NI )1/2f-1/2 f-d, f-a2 f+N
1

F(1 -f) F(1 +dl-f- N) (d, -N
[’(1-f-N) F(1 +d,-f) 2F1 f--a2
r(1 -f)

F(1 -f-N)
F(1 +d,-f-N) F(f-a2)F(f-a2-d, +N)
F(1 +d,-f) F(f-a2-dl)F(f-a2+N)’
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which holds also in the nonterminating case, when N is not a positive integer.
Then, in the limit d -->

4F3(f-, 1 1/2f+ a2 -N
(1 11) 1/2f-1/2 f-a2 f+N

F(f+ N)F(f- a2)
1 + N)"

In the limit a2 ---> oo we obtain a special case of (1.3); in the further limit -N-> oo we
find a special case of (1.2).

Bailey subsequently introduced a transform [ 1] for sums over two indices by
means of which further results on well-poised series have been obtained. These
results are summarized by L. J. Slater [11]. Bailey’s fundamental idea was a
transformation of a double sum from rectilinear summation in the two-
dimensional lattice of the indices to a summation carried out first over diagonal
lines in the lattice, then over an index labeling the diagonals. This idea, of course,
can be generalized to the Case of sums over an n-dimensional lattice, and it is
hoped that such multidimensional analogues of Bailey’s transform will eventually
contribute to our understanding of the multidimensional well-poised series which
we shall define in the present paper.

The study of well-poised hypergeometric series, then, was well established
before Wigner [16] and Racah [10] initiated the combinatorial theory of the
irreducible representations of the compact group SU(2), which has an intimate
connection with the well-poised hypergeometric series and which we shall now
briefly sketch.

The group SU(2) has the generators

(1.12) -(Ell-E22)-- 0 E21-: 1 0’ 0

and basis vectors for its irreducible representations can be given as the simultane-
ous eigenvectors of the operator 1/2 (EI-E22),

(1.13) (Ell-E22)ljm) mljm),

and the Casimir operator

(1.14) [1/4(Ell-E22)2 -1- 1/2E21E;2 +1/2E,2E2,]Ijm)= j(j + 1)1 jm).

They behave under the "raising" operator El2 and the "lowering" E21
in accordance with

E121jm) [(j + m + 1)(j- m)]l/2lj, m + 1),
E21[jm) [(j- m + 1)(j + m)]l/2lj, m 1),

and are normalized by

(1.16) (jm’ljm m’m"
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The invariants j are positive half-integers, and m varies in integral steps between
the limits -j =< m =< j. The relations (1.13) and (1.15) determine matrix elements of
finite transformations in the group in accordance with

(1.17)
(jm’l e(’/2)(’=-=’)ljm)= dJm,m(o) (_ 1)_m,](jr + + 1/2

(j-m)!(j-m’)!JL

(m+m’)!
2Fl(-j .-]- m, -j + m’lm + m’ + 11 -cot2

(COS ?)m+m’(sin) 2j-m’-m,

tensor products of which are reduced by the Wigner coefficients [8]"

+J2
(1.18) a,(O)a2(e) tr/2tr/3 tr/2W/3

which are given by:

1W/2/’3

(2j3 + 1)(j, + ml)!(j2- m2)!(j3 + m3)! -]
(j3-- m3)!(jl +j3--j2)[(j2+j3--jl)[

(j,-m)!(j2 + m2)!(j, +j2-jB)!(j, +j2 +j3 + 1)!

1/2

(r.19) 1
(jB-j,- m2)!(jB-j2 + m,)!

3F2(-jl + m,, -j2- m2, -j,-j2 +j3lj3-jl- m2 + 1, j3-j2 + m, + 111) m3,m,+m2"

The Wigner coefficient reduces to a monomial in all degenerate cases, i.e., if any of
the three numbers ji is equal to the sum of the other two or if any of the state labels

mi is equal to + j. In the limit O 0, (1.18) becomes the completeness relation for
the Wigner coefficients"

+J2
(1.18a) Y

j3=[jl--j21

J3 Jl J2 J3 mim2 mm2"lmm3 Cmlm2m3

When we introduce a degeneracy m m +j or m2 m2 + ]’2, then (1.18a)
becomes an example of the summation theorem for well-poised 4F3(-1). When
the degeneracy is removed, (1.18a) provides us with a generalization of this
theorem.

The Racah, or (6-j) coefficients of SU(2) are defined by the relation

(1.20)
[(2j,2 + 1)(2j32 + 1)]/2(--1)2Jj’f ja

j, j

J2 J12 ("J3 J2 J32 /"J32 JllJZ CJttlm2rrt12 m3m2m32 --’m32m
mira2

j12} ’J2 J3
--’ml2m3m

]32
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and have been given by Racah [10] in terms of Saalschiitzian 4F3 (1) series:

d c

A(abe)A(ac.f)ZX(cde)A(bd.f)(a + b + c + d + 1)!(- 1)+//
(1.21)-

(c+d-e)!(b+d-)!(a+b-e)!(a+c-)!(e+[-b-c)!(e+C’-a-d)!

a b
(1.25)

4F3(e-c-d,f-b-d,e-a-b,f-a-cle+f-b-c+l
e+f-a-d+l,-a-b-c-lll),

where the invariant triangle function A(abc) is given by

(1.22) A(abc)= (a+b-c)!(a-b+c)!(-a+b+c)!] /2

The symmetries of 3F2(1) and of Saalschiitzian 4/73(1) have been studied by
Thomae [12] and Whipple [13], [14], [15] and summarized by Slater [11]. The
series (1.21) becomes degenerate and reduces to a monomial whenever at least
one of the triples of numbers (abe), (act’), (cde), (bd.f) contains a member which is
equal to the sum of the other two, viz., a+b=e or b+d=[. The (6-)
coefficients satisfy the completeness relation [ 10]

){a b e}{a b ex’}=6ee,(1.23) Y(2e+l)(2x+l
d c x d c

which becomes a realization of the summation theorem for well-poised 5F4 in the
degenerate cases e e’= a + b or e e’= c + d. They also satisfy the Racah sum
rule [ 10]

(1.24) Y(2x+l)(--1)x+e+e’{ a b e}{a d ’}= {a b e},d c x b c c d e’
which illustrates the summation theorem for well-poised 4F3(-1) in the degener-
ate case a + b e, a + d e’, and the sum rule [2-1, [8]

o /3 / o /3 Z (2x + 1)(- 1)x++t+v+’+’+c+’’+’’+c’
b’c a’ b’ y b

c’ c c a’ /3 a

When we introduce a three-fold degeneracy into one of the (6-j) symbols on the
left, e.g.,

(1.26) a’+b’=y, b’+c’= o, a’+c’=,

while the other remains nondegenerate, we find that all three (6- ]) coefficients in
the summand on the right become monomials. Equation (1.25) then relates a
Saalschiitzian 4F3(1) series on the left to a well-poised 7F6(1) on the right, i.e.,
provides an example of Whipple’s theorem.

It will be noted that all of these examples involve degenerate forms of the
Wigner and Racah coefficients of SU(2). The combinatorial theory of SU(2),
then, is itself a rich source of information on how the hypergeometric theorems
can be generalized. Thus, removal of the degeneracies which we have imposed on
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(1.23), (1.24) and (1.25) provide immediate generalizations of the theorems (1.6),
(1.10) and (1.11).

We note that well-poised hypergeometric series appear in the above relations
since they all involve summation over terms weighted by the dimension factor of
the irreducible representation of SU(2) whose invariant label is the index of
summation; i.e., sums of the familiar form

(1.27) Y, (2J+ 1)F(J),
J

where the summand F(J) contains only factors occurring in pairs of the sort

(J+M)!
(1.28)

(J-M)!
or [(A-J)!(A +J+ I)!]+1,

which are invariant (except for a phase) under the symmetry

(1.29) J-. -J-1.

The occurrence of the dimension factor (2J+ 1) indicates that we are dealing only
with the special cases of (1.1) in which one of the parameters bi is equal to 1 + 1/2a.
These special cases are, in fact, those for which summation theorems are most
plentiful, and it is for such special cases that we shall seek multidimensional
analogues in the representation theory of SU(n). We shall call such cases special
well-poised hypergeometric series in SU(2) and shall define their analogues in this
paper for SU(n).

From the foregoing account of the relation between well-poised
hypergeometric series and the combinatorial theory of SU(2), we may conjecture
that the combinatorial theory of SU(n) will indeed provide us both with the
definition of multidimensional series analogous to the well-poised hypergeomet-
ric series of SU(2) theory and with a body of theorems on such series. We shall find
that such is the case; unfortunately the combinatorial theory of SU(n) is not yet
sufficiently advanced to provide us with analogues to all the known theorems on
well-poised series. We may surmise that our generalized well-poised series will
involve summation over terms weighted by the Weyl dimension factor for the
irreducible representations of SU(n), i.e., just as the special well-poised series in
$U(2) has the form (1.27), so we expect the analogous special well-poised series in
SU(n) to have the form

(1.30) r=Y, (Aq + x,- xj) F(Xk),
ixi=q j=i+l

where q is some nonnegative integer and

(1.31) Ai1- Aik Akj, < k <].

With the condition (1.31) the factor in curly brackets in (1.30) becomes propor-
tional to the dimension of the irreducible representation of SU(n) whose Young
frame has rows of length (Aln+xl-xn-n+l), (A2n+x2-x,-n+2),’",
(An-1, +x,_-xn-1). We find by inspection of the available cases of special
well-poised hypergeometric series in SU(n) that the condition analogous to (1.28)
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is that the summand F(Xk) in (1.30) contain factors in n-tuplets of the form

1
(1.32) fiF(ali+X,) or

l= l= F(bu +xl)’

where

(1.33) aii ali A, bji bki.
We may also understand this result in the following manner. The symmetry

(1.29) in the SU(2) case is the interchange of the "partial hooks" P12 <--> P22, where
the partial hook is defined by

(1.34) Pi,, m,, + n i.

Here m, denotes the length of the ith row of the Young frame in an irreducible
representation of U(n). In the case of U(2), we have P2-P22 2J+ 1, and the
symmetry (1.29) corresponds to the reflection which generates the Weyl group $2.
In the general U(n) case, then, we expect the corresponding symmetries to be
described by the transformations of the Weyl group S,, i.e., the symmetries
p, <--> pi,, which are just the permutations of the set of n partial hooks. The factors
(1.32) exhibit these symmetries when we express the partial hooks in the form

(1.35) p,,=A,,+xi, lj-<n-1,

and define
n-1

(1.36) p,, -= x, q- Z xi.
il

We shall find analogues to the special well-poised 4F3(-1) theorem for all
SU(n), but of Whipple’s theorem (1.6), only for SU(3). We shall not treat the case
of hypergeometric series well-poised in SU(1, 1) and other noncompact exten-
sions of the SU(n) groups, but shall merely remark that such a program could be
expected to give us theorems on nonterminating series and on hypergeometric
integrals, whereas series well-poised in SU(n) will realize only the cases which
involve terminating series.

In 2 we define series well-poised in SU(3) and give an analogue of
Whipple’s theorem (1.6). In 3 we define series well-poised in SU(n) and give
analogues of the 4F3(- 1) series for all SU(n).

2. Hypergeometric series well-poised in SU(3). We define the series"

W(q3)i A12A3 A23

all alk

a21 a2k

a31 a3k

bl blj
b21"" b2j
b31 b3j

Z2

Z3

(2.1)

yl+y2+y3=q

(A2+y-y2) (A13+y-y3)(A23+Y2-y3)
A12 A13 A23

i----II1 /=1I F(ali+Yl)’.i.,.ai ,I =1’ -I F(bli) ’z,z22z
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to be well-poised in SU(n) if q is a positive integer or zero and

j->3,

A12+A23 A13,
(2.2)

a,-a=A, r>l, 1--<i=<k,

bli-bri=Alr, r>l, 1 <-i <=j,

bu 1, 1-< -< 3.
Similarly, we introduce the corresponding notation for "ordinary"

hypergeometric series, which we term well-poised in SU(2):

( al,’’’atk bll""blj :z,)W(q2) A12
a21’’ a2k be b2j z2

y,+y2=q -; l=l r(a,,)

(2.3) i=I=-I, l=I r(//T/),]z lYl,2y2

q! Y
F(ali)F(a).i)y =0 A12

(____I1 F(bli)r(b2i) )(z22)Ylzt,
where q is a positive integer or zero, and

ali--a2i A12, 1 i k,

(2.4) bl-b2 A12, 1 i j,

bl b22= 1.

Note that this series is related to the usual definition of well-poised series by

a-.-a b...b z

i:l i:3

(2.5) r(l+Az-q) /Az-q l+1/2(Az-q) -q
r(A,. + 1) l+k+]Fk+]" 1/2(A,2 q) A 1-2 -- 1

all alk

1 +A12-q-a11 1 +A12--q--alk

l+A12-q-b13
hi3

1 +A12-q-blj k+j Z1

blj
(-1) (2))

In this case we have an ambiguity in the labelling process, since we may consider a
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given factor
F(a +y) F(1-a)(2.6) =(-1)y =(-1)

r(a) F(1-a-y)
r(-a)

F(1-a-q +y2)
as contributing a numerator parameter in the index Yi,

all a,

or a denominator parameter in the index Y2,

b2i 1 a q.

This ambiguity is not present in the definition (2.1) of series well-poised in SU(3).
We may give immediately an analogue of Whipple’s theorem (1.6) for the

series (2.1). Let q be a nonnegative integer or zero and A1, A2, A3, Xl, x2 any
complex numbers. Also, let X3 ----X1- X2. Then

W(q3)( x3+A1-A2
-x2+A1-A3 Xl +A2--A3

--x2 + A A3 + 1 A q + 1
X q- A2 A3 "}" 1 --x3 -- A2 q + 1

1 X2 + A3 q + 1

1
--X3 A q- A2 q- 1
X2 A + A3 q- 1

X3 "}" A1 q + 1
A-q+l

--X q-A3-- q + 1

F(A1 + A2 + A3- k- k.- k3 q- 1)
F(A1+AE+A3 +l)(q kl k2 k3)kl,kE,k3 --q

X3 q- A A2 q- 1
1

--X A2 q- A3 q- 1

--X2 " A1-q + 1
x + A.- q + 1
Aa-q+l 1)

(2.7)

F(A2+xl-q + 1)F(A3-x- q + 1)F(A- q + 1)

kl !F(A2 + Xl- kk + 1)F(A3- Xl- kl + 1)F(A1- q + kl + 1)

F(A3 +x2-q + 1)F(A-x2-q+ 1)F(A2- q + 1)

k2 !F(A3+ x2- k2 + 1)F(A-x2- k2 + 1)F(A2- q + k2 + 1)

F(Al +xa-q+ 1)r(A2-x3- q + 1)F(A3- q + l)
k3!F(A + x3- k3 + 1)F(A2- x3- k3 + 1)F(A3- q + k3 + 1)

_=(-1)q F(A-q + 1)F(A2+xl-q + 1)F(A3-Xl- q + 1)
F(A + 1)F(A2 +x + 1)F(A3-x + 1)

F(A2- q + 1)F(A3 +x2- q + 1)F(A-x2- q + 1)
F(A2 + 1)F(A3 + x2 q-- 1)F(A-x2 q- 1)

I-’(A3- q + 1)F(A +x3--q + 1)1-’(A2-- x3-- q + 1)
IP(A3 + 1)F(A1 q- x3 q- 1)lP(A2- x3 + 1)

A1 A3--Xl A2q-Xl)Gq A2 Al-X2 Aa+x2
\A3 A2 x3 A1 q- x3
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We observe that (2.7) relates the series Wq3 well-poised in SU(3) to a polynomial
expressed in terms of three overlapping series, each of which is Saalschiitzian
3F2(1), and hence summable by Saalschiitz’ theorem. When any one of these
summations is performed, the polynomial on the right of (2.7) is then expressed in
terms of two overlapping Saalschiitzian 4F3(1) series. Hence, the theorem (2.7) is a
multidimensional analogue of Whipple’s theorem (1.6) in that it relates well-poised
and Saalschiitzian forms. It does not contain (1.6), however, as a degenerate case
or as an asymptotic limit. Ifwe take the lim A1 , we obtain the relation (1.9).

The symmetries of the series on the left of (2.7) can be read from those of the
Gq polynomial, which is invariant under all permutations of rows and columns and
under transposition of rows and columns. The well-poised form of this expression
can be obtained by inductive construction of the solution to the recursion relation

(X1 -+- m2-- m3)(x2 -- m3- ml)(X3 -- ml- m2) Gq(ml, m2, m3; Xl, x2, x3)

A1A2(x3 q- a -A2)(A2 q-- x1)(A1- x2)(A1 + x3)(A2 x3)

Gq_l(m 1, m2 1, A3; x, X2, X3)

(2.8) -+- A2A3(x -’}" A2 A3)(A3 -- x2)(A2 x3)(a2 -}- x 1)(A3 x 1)

Gq_I(A1, A2 1, A3 1; xl, X2, X3)

-k- A3A1 (x2 -I-- A3 A1)(A + x3)(A3 xI)(A3 + x2)(A1 x2)

Gq_I(A1- 1, A2, A3 1; x, X2, X3)

which defines the polynomial Gq in (2.7) along with the boundary condition
Go 1.

This recursion relation was established in [3] as the defining relation for the
invariant normalization factor of a class of tensor operators belonging to the
irreducible representation [p, q, 0] of SU(3), and was derived from the expression
for this tensor operator in terms of a coupling of elementary tensor operators with
those belonging to [p-1, q- 1, 0]. By changing the order of the coupling we
obtain the equivalent recursion relation

XIX2X3Gq(A1, A2, A3; XlX2X3) AIA2x3(A3-X1)(A3+X2)(AI+x3)(A2-x3)

Gq-I(A1- 1, A2 1, A3; Xl + 1, X2 1, x3)-- A2A3x1 (A1 X2)(A q- x3)(A2 q- x1)(A3 Xl)

Gq_I(A1, A2 1, A3-1; Xl, X2 + 1, X3 1)- A3Alx2(A2 x3)(A2 -[- Xl)(A3 @ x2)(A x2)

Gq_(A1-1, A2, A3 1; x- 1, X2, X3 -- 1).

Other forms of the recursion relation can be derived by application of the
symmetries of the Gq polynomial to (2.8) and (2.9).

The "natural" solution to (2.8), i.e., the one obtained by direct inductive
construction, is then proportional to the well-poised form given on the left of
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(2.7). If we construct the solution for q 1 and q 2, however, a more symmetri-
cal form suggests itself, the right side of (2.7). That this form actually constitutes a
solution to the recursion relations was conjectured in [3] and proved in [4]. The
proof was established from the symmetry properties of Go and the location of its
zeros; we have found no proof which gives the Saalchiitzian form of (2.7) directly
from the well-poised form by known transformations of hypergeometric series.

3. Hypergeometric series well-poised in SU(n). The extension of the defini-
tions (2.1) and (2.3) to the case of series well-poised in SU(n) is now straight-
forward. We define

A12
A13 A23

(qn)

Atn A2n" An-t

al alk bl b

bn bn

Z1

i=1 xi=q I fi Aij l- xi xj -I -Zi ]j=i+l Aij i=:1/=1

(-Ii=l ll-II= F(bli -lXl) i=l

to be well-poised in SU(n) if q is a positive integer or zero and

(3.2)

jtl,

Aq- Aik Akj k < j,

aq akj Aik, < k,

bq bki Aik, < k,

bii 1, 1 <- <-_ n.

We have one example of a summation theorem for a general W(q") series,
which is analogous to the 4F3(-1) theorem (1.11) in the sense that this theorem
expresses the completeness property of matrix elements of totally symmetric
tensor operators in SU(n) on maximal initial states just as the 4F3(-1) theorem
expresses the same property of the corresponding structure in SU(2), as men-
tioned above in connection with (1.18a). The matrix elements of totally symmetric
tensor operators in SU(n) have been constructed in [5]; these matrix elements can
easily be seen to reduce to monomials in the case that the initial state is maximal.
We can then write down a theorem on hypergeometric series well-poised in SU(n)
directly from the completeness relation

..h, p 0 0
(3 3) 2

/h’

hn-1 q 0 "0
5i= hi P +}’.i hi h[" ql" qn-1
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which, of course, may be generalized by removal of the degeneracy. The relation
(3.3) leads directly to the theorem

(n

(3.4)

zl-z2+l
Zl--Z3+2

Zl--Zn+n--1

zl-o+l

Z2--z3+l

z2--z+n--2 Zn-- --Z. + 1

Zl--to2+2 Zl--Wn +n
ZZ--Wl Z2-(.O2-1-1 Z2-(.0n-l-/’/-1

Zn Wl n + 2 z. W2 n + 3 z. w. + 1

1 Zl--Z2+2 Z1--Z3+3 Z--zn+n
--Z --Z2 1 Z2-- Z3 +2 Z2--Z +n--1

-Zl+Z3-1 -Zz+Z3 1 z3-z,+n-2

-z+z,-n+2 -Zz+Z,-n+3 -z3+z,-n+4 1

1

=1, n=>3.

Here q is a nonnegative integer; hence the series on the left of (3.4) terminates,
and the relation (3.4) can immediately be extended to hold for all complex zi,

Note that (3.4) becomes (1.11) in the case n 2 if we define the right side of (3.4)
in accordance with

(3.5) W2)(z1- z2 + 1
1 Zl-Z2+2

-Zlq-Z2 1
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A NEW APPROACH TO THE H-EQUATION OF CHANDRASEKHAR*

RICHARD W. LEGGETT

Abstract. We combine a new, constructive fixed-point technique for order-reversing maps with
standard constructive techniques of real analysis to give a new, complete, elementary discussion of the
number and location of solutions of Chandrasekhar’s H-equation. Our methods provide different
viewpoints of known results as well as new information concerning the H-functions.

1. The work of Chandrasekhar (see [3], [4]) has demonstrated the impor-
tance of nonlinear integral equations of the form

H(x) 1 + H(x) -(t)H(t) dt

to the theory of radiative transfer in semi-infinite atmospheres. The known
function q is assumed to be nonnegative, bounded, and measurable on [0, 1], and
a positive, continuous solution H of (1) is sought.

In Chandrasekhar’s introductory papers (which are summarized in [4]) the
treatment of (1) was not rigorous. The first proof of the existence of a solution of
(1) was given later by M. M. Crum [5], who considered the equation in the
complex plane and, employing rather involved techniques of complex analysis,
derived a solution H which is analytic in the half-plane Re z > 0 and bounded in
[0, 1]. Crum also showed that if q(t) dt <= 1/2, then (1) has at most two solutions
which are bounded in [0, 1], and in case O(t)dt= 1/2, there is only one such
solution. Busbridge [ 1 ], recognizing the need for a less formidable treatment of (1)
than that of Crum, simplified Crum’s arguments slightly by considering only
certain holomorphic functions . Fox [6] attempted to prove the existence of a
solution of (1) by appealing to a simpler equation, but it was later demonstrated
(see [2]) that solutions of Fox’s equation were not necessarily solutions of (1).
Recently C. A. Stuart [7] applied the Leray-Schauder degree theory to give a
nonconstructive existence proof for (1); Stuart did not discuss the number or
location of solutions.

In this article we apply only elementary tools of real analysis to give a new
proof that (1) has a positive solution whenever 1 q(t) dt<= 1/2, and we establish
iterative methods of approximating the minimal solution H. Our existence proofs
could be shortened somewhat by appealing to Schauder’s fixed-point theorem.
However, we choose to avoid powerful tools and use instead constructive argu-
ments, which, we feel, will be illuminating to scientists working with problems in
which the "H-functions" arise. For completeness, we prove a comparison
theorem for (1) and establish the number of solutions of (1) for arbitrary q.

2. We denote by C[0, 1 the Banach space (with the usual supremum norm)
of continuous, real-valued functions on [0, 1 ]. By a solution of (1) we shall mean a
function H C[0, 1 ] satisfying (1) for each x [0, 1 ]. Note that if H is a solution of

* Received by the editors December 18, 1974.
Mathematics Department, University of Tennessee, Knoxville, Tennessee 37916.
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(1), then H(0)= 1 and H can have no zeros. It follows that H(x)>= 1 for each
x [0, 1], that is, any solution of (1) is positive.

We begin by listing some known integral properties which a solution of (1)
must satisfy. The proofs are simple; they can be found in [3, pp. 106-107].

LEMMA 1. IfH is a solution of (1), then either

(2) O(t)H(t) dt 1- 1- 2 O(t) dt

or

(3) f3o d/(t)H(t) dt 1 + 1- 2 d/(t) dt

A necessary condition that (1) have a solution is that

(4) q(t) dt <= -;
A function H C[0, 1] satisfies the equation

(5) [H(x)]-= 1-2 O(t) dt + O(t)H(t) dt
x+t

if and only ifH satisfies (1) and (2).
Remark. In [3], after proving that a solution Hof (1) satisfies either (2) or (3),

Chandrasekhar claims that, in fact, H must satisfy (2). This assertion is (at least,
mathematically) incorrect. As we later show, there always exists a solution H
satisfying (2), but in many cases there exists a second solution H satisfying (3) and
not (2).

We let be the natural partial ordering on C[0, 1 ], that is, if h, h2 G C[0, 1 ],
then h h2 if and only if h(x)hz(x) for all x [0, 1]. Let A be a subset of
0, 1]. A map T A C[0, 1] is said to be isotone if T preserves order (that is,
h h2 implies 2), and T is said to be antitone if T reverses order
(h ha implies 2 1).

Set p =[1-2 o $(t) dt]/2 and let a ={h C[0, 1][h(x)p, x [0, 1]}. Note
that p > 0 if and only if inequality holds in (4); otherwise p 0 (assuming that (4)
holds). Define S A C[0, 1] by

Sh(x)= l + h(x)
x

x + 6(t)h(t) at, h A,

and for the case p > 0, define T A C[0, 1] by

(x) 0 + (t)(h(t))- dr, h e A.

Clearly S and T are both continuous maps, S is isotone, T is antitone, and H is a
solution of (1) if and only if SH H. Furthermore, it follows from Lemma 1 that

h if and only if h- satisfies (1) and (2).
In what follows we denote by 1 (respectively, 0) the function with constant

value 1 (respectively, 0).
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THEOREM 1. Equation (1) has exactly one solution H satisfying (2) if and
only if (4) holds. Furthermore, the increasing sequence {S"(1)}=o converges to H,
and if inequality holds in (4), the sequence { T"(p)}=o converges toH-1. In the latter
case a bound for H-l(x) T"(p)(x), n 1, 2, 3,. , is given by

(6) In-l(x) T"(p)(x)l<=lT"(o)(x) T"+l(p)(x)[, x [0, 1].

Pro4 Step 1. If (1) has a solution, then by Lemma 1, Io 0(t)dt -<- 1/2. We
assume first that Io t0(t) dt < 1/2, so that p is positive. Clearly p < Tp and p < T2p,
and since T is antitone, p < T2p <- Tp. Applying T repeatedly we find that

P < T2p < T4p < T6p < < T7 3p’’= p<=TSp<=T <Tp.

It is easy to verify that the bounded set

{Thlo <-_ h <- To}

is equicontinuous (compare the proof for the set R (E) in Lemma 2). It follows that
the sequences of functions {T"o}=={T(T"--O)}= and {T"+0},=0-

z2n{ T( P)b,=o have convergent subsequences which converge to functions u and v,
respectively. It then follows from the monotonicity of the sequences {TZnp} and
{TZn+lp} and from the continuity of T that TZn
Tu= v, and Tv= u.

Now u has a minimum value greater than zero, so that there exists a largest
number a, 0 < a _-< 1, with av <- u. If a 1, then v -< u =< v, that is, u v. Assume
a < 1. Define T1 (on the domain of T) by T1 h Th- t9. Then

u=19+ Tlv>-_p+ T(a-u)=p+aTlU
(1 a)19 + a(19 + T1 u) (1 a)19 + av >- by + av (a + b)v

for some constant b >0. But this contradicts the maximality of a. Therefore
Tu u v, H-- u is a solution of (1) (satisfying (2)), and 19’,=0 converges to
H-1. Inequality (6) follows from the fact that T19 =<H- =<Tz+119 for k
1,2,3,-...

Remark. The existence of a fixed point of T could have been proved more
quickly (but with the loss of additional information) by appealing to Schauder’s
fixed-point theorem.

Step 2. Now assume that I q(t) dt= 1/2. Let {kn}n_-i be a strictly increasing
sequence of positive numbers converging to 1, and consider the functions k,O, n
1, 2, 3,.... Since I) k,O(t) dt=(1/2)k, < 1/2, it follows from Step 1 that the
equation

H(x) 1 + g(x) k,O(t)H(t) dt

has a solution H, for n 1, 2, 3,.... Then for each x el0, 1], H,(x)>= 1 and

II tll/2 Il(g.(x))-= -2 .0() a +

>--- k. -t q d k, -t dt.
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Therefore there exists a >0 such that (Hn(X))-1 >’ol. for each x [0, 1] and each
n= 1,2,3,.... Set B={hC[O, 1]la <= h(x) <= l, x[0, 1]}. Note that H-B
for each n. Define T" B - C[0, 1] by

IoTh(x)
x + t(t)(h(t))- dr, h t3.

It is easy to verify that the set T(B) is bounded and equicontinuous. Set
h, H1, n 1, 2, 3, Then for each n,

h,(x)= 1-2 kO(t) d + --kO(t)(h(t))- dt

1-2 k,tO(t) dt +kn(Thn)(x).

Since Th, e T(B) for each n, some subsequence {Th,}= of { Th,},__ converges in
C[0, 1] to some point ho. But

(7) hn, 1 2 kn,4(t) d + k,,Th,,,,

and the right side of (7) converges to ho, so that h - h0. Then {Th} converges
to both Tho and h0; that is, Tho ho. Then h satisfies (1) and (2) (and also (3),
since I O(t) dt 1/2). Therefore there exists a positive function H satisfying (1)
and (2) whenever 4’ satisfies (4).

Step 3. Assume (4) holds, and suppose H satisfies (1) and (2). Since 1 _-< H
and I_-<S(1), it follows from the fact that S is isotone that 1_-< S(1) _-< $2(1) <
$3(1)_-< NH. Now the sequence {Sn(1)}_- is uniformly bounded and
equicontinuous. (The proof of the equicontinuity is not immediate; we sav.e it until
later.) Therefore there is a convergent subsequence, say S(1)- h(<-_H), and,
since {S"(1)},,_-0 is nondecreasing, the entire sequence converges to h. It follows
from the continuity of S that Sh h. Now h must satisfy either (2) or (3), and since
0 _-< h _-< H, h must satisfy (2). Therefore, for x [0, 1 ],

[I ll/2ffollh-l(x) 1-2 @(t) dt + ---tO(t)h(t) dt

_-< 1-2 4(t) d + -X-@(t)H(t) dt= H-(x),

that is, h-1 _< H-. Together with the inequality h _-< H, this implies that h H. We
have proved that H is the only function satisfying both (1) and (2), and that the
increasing sequence {S(1)}__0 converges to H. This completes the proof of
Theorem 1, except for the verification of the following statement.

LEMMA 2. The sequence {S (1)}= is equicontinuous.
Proof. Set E {h C[0, 1]11 -< h <- H} (H is a solution satisfying (1) ald (2)).

Define R E C[0, 1] by

X
Rh(x)

x + O(t)h(t) dr, x [0, 1], h e E.
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For x, y [0, 1],

Ieh(x)- Rh(y)l
x +

Y )d/(t)h(t) dt
y+t

Given e > 0, there exists y, 0 < y < 1, such that I q(t)H(t) dt < e/4 and
q(t)H(t) dt > 0. Then for x, y e [0, 1 ],

(xx Y q(t)h(t) dt <
x y

., +t y+t X+-t + t qt(t)H(t)dt

<-2 O(t)g(t) dt < el2.

Thus, if Ix- yl < ’--(e/2)’/(’l, q,(t)g(t) dt)-, we find that

iRh(x)_Rh(y)[<e_ x y
=2 + x+t y+t

b(t)H(t) dt

+ t)(y + t)
@(t)H(t) dt

<=-+ b(t)H(t) dt

<+=.
We have proved that the set R (E) is equicontinuous.

Now if h E and x e [0, 1],

Rh(x)= Io x
x+t

X
d/(t)h(t) dt<-_ -d/(t)H(t) dt

1/2

< I, q(t)H(t) dt l [1- 2 Io (t) dt] <1

Therefore there exists/3, 0</3 < 1, such that Rh(x) </3 for all h E and x 6 [0, 1].
Let eo > 0 be fixed. Since R(E) is equicontinuous, we can choose 6o > 0 such

that for every g R(E), [g(x)- g(Y)l < IIHII-I( a t)o whenever Ix Yl < 60. Now
the function S 1 is continuous and hence uniformly continuous on [0, 1], so that we
can find 6a, 0< 6a -< 60, such that Ix y[ < 6 implies ISl(x)- Sl(y)[ < eo. Suppose
for all positive integers k up to and including n, skl(x)--skl(y)l< eo whenever
ix- yl< 6. We shall show that the same 6a works for eo and S"+11. Set h Snl,
and assume Ix Yl < 6. Then

lab(x)- Sh(y)[ Ih(x)Rh(x)- h(y)Rh(y)l
<-Ih(x)Rh(x) h(x)Rh(y) + [h(x)Rh(y) h(y)Rh(y)]
h(x)lRh(x)- Rh(y)[ + Rh(y)lh(x)- h(y)l
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that is, [S"+l(x)-S"+ll(y)l<eo whenever Ix-yl<a. Therefore {S"I}=I is
equicontinuous, since the same 61 can be chosen for fixed e0 and for each n.

The following corollary is a comparison result gained from our iterative
procedure.

COROLLARY 1. Suppose that 8/1 and q2 are nonnegative, bounded, measurable
functions on [0, ] such that l(t) =< qe(t) almost everywhere in [0, 1] and such that
1o qi(t) dt=< 1/2, i= 1, 2. Let Hi be the unique solution of equations (1)-(2) corres-
ponding to qi, 1, 2. Then HI <-He.

Proof. Define Si: C[0, 1] C[0, 1], i= 1, 2, by

I01 x
X-I-f

Sih(x) 1 + h(x) ---77qi(t)h(t) dr, h C[0, 1].

If h and h2 are nonnegative functions in C[0, 1] with hi =<he, then Shl <$2h2.
Hence $11<821, S21 <S1, and in general, S’I<-SI. Since the increasing
sequence S. 1 converges to Hi, 1, 2, it follows that H1 =< H2.

3. If Jq(t) dr= 1/2, it follows from our results in 2 that the function H
satisfying (1) and (2) is the unique solution of (1), since, in this case, (2) and (3)
reduce to the same equation. However, if 0 q(t) dt < 1/2, equation (1) may have
two distinct solutions.

THEOREM 2. Suppose 1o d/(t) dt < 1/2 and let H be the unique solution of
(1)-(2). Then equation (1) has a solution Hi satisfying (3) if and only if

(8) f @(t)
H(t) dt > 1

(The le[t side of (8) may be +oo.) I]" (8) holds, then H1 is the only solution of (1)-(3)
and is given by

l+kx
(9) Hl(X)=H(x), x [0, 1],

1 kx

where k is the unique number in (0, 1) for which

H(t) dt= 1
d/( t)(10)
1-kt

Proof. Note that by the monotone convergence theorem

fo’ d/( t) fo #/( t)
H(t)11 lim H(t) dt dt-,- 1- kt --since (1- kt)-1 increases monotonically with k, 0< k < 1. Assume first that (8)

holds. Since

O(t___) H(t) dt=l- 1-2 (t) d <1
1-O.t

and since the function : (0, 1) N defined by

1 (ttH(t[() t
1-
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is strictly increasing, there exists a unique k (0, 1) for which (10) holds. LetH be
defined as in (9). Applying a trick used in [5], we find that for each x [0, 1],

--O(t)Hl(t) dt= -d/(t) H(t) dt

1- kX lol x
1 + kx -q(t)H(t) dt +

1- kx lo x
l + kx -t O(t)g(t) dt+

1 + kx
O(t) dt

2kx
l+kx

1-kx[ 1 ] 2kx
=1

1
1 + k-- 1 -H(x) +1 + k- -HI(X---’

that is, H1 satisfies (1). Since H1 must satisfy either (2) or (3) and since Hi(x)>
H(x), x (0, 1], H1 satisfies (3).

Now suppose that H1 C[0, 1] satisfies (1) and (3). Since lo O(t)Hl(t) dt > 1
and

@(t) 1
-i-Hl(t) dt= 1 -HI(1------< 1,

there exists a unique k, 0 < k < 1, such that

(t)
i + kt H1 (t) dt 1.

Define H2 C[O, 1 by

H:(x)
1 kx
l+kx

Hi(x), xe[O, ].

If x [0, 1],

x
x+t

H2(t)q(t) dt= I x 1-kt
x+t l+kt

l+kx IO X

1-kx x+t

Hl(t)b(t) dt

Hl(t)d/(t) dt-
2kx fo Hi(t)
1- kx ] + kt O (t) dt

=1
Ha(x)"

2kx
1 kx

1 +kx 11-(l_kx/Hix
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Therefore H2 satisfies (1), and since H2 must satisfy either (2) or (3) and
H2(x) < Hi(x), x (0, 1], He satisfies (2). It follows that H2 H. Furthermore,

Io I O(t)1-kt(t)
H(t) dt

1- kt 1- kt l + ktHl(t) dt= l"

We have proved that (1) has a solution HI satisfying (3) if and only if (8) holds.
In the process we have proved that H1 is of the form (9)..Since there is at most one
k (0, 1) for which (10) holds, HI is the only solution of (1) satisfying (3).

We know from Theorem 2 that if 0 q(t)dt< 1/2, (1) has either a unique
solution or exactly two solutions. Our final result is a necessary and sufficient
condition for two distinct solutions to exist.

THEOREM 3. Suppose th(t) dt < 1/2. Then (1) has exactly two solutions if
and only if

[1 @(t) 1
(12) i-t:dt>-"
(The left side of (12) may be +oo.)

Proof. For fixed @ satisfying q(t) dt < 1/2, let H be the unique solution of
(1)-(2). Suppose first that (1) has two solutions. Then there exists a unique
k (0, 1) for which (10) holds. Then applying a technique used in [3] and [5], we
find that

f01 0(t fol [Il b(S)
H(s) ds] d/(t)

H(t) dti+ H(t) dt
1-ks l + kt

1 s=I, IoH(t)O(t)H(s)d/(s)[-(1---+]-ks)ldsdt
ds

]I, Li +
(t)

H(t) fo -t O(s)H(s) ] dt

+ Irp(s)Llks H(s)f01 s
--O(t)H(t) dt ds

I01 O(t)
H(t) (1- 1 )I01 0(s)

l+kt H(t)
dt+ i ks

I0 I0’ f01 0(S)d/(t)
H(t) dt

(t)
dt +

1 + kt 1 + kt 1 ks

_Io 4,(s)
ds

1- ks

H(s) ds

Io l+kt
*(t)

H(t) dt + 1 2 Io 1 __t_dt.,(t),
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Therefore,

1 il @(t) fO @(t)dr.- 1 k2t2 dt <
1 "

Conversely, assume that (1) has only one solution. Then for fixed k (0, 1),

H(t) dt < 1d/(t)
1-kt

and a computation similar to the one above shows that J0 (t)/(1- kt) dt < 1/2.
It follows that O(t)/(1- 2) dt <-_ 1/2, and the theorem is proved.
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SOME NONLINEAR BOUNDARY VALUE PROBLEMS*
HENDRIK J. KUIPERt

Abstract. Let 12 c R" be a bounded domain and L a second order uniformly strongly elliptic
partial differential operator. Let B be a linear boundary operator. Suppose f(’x, u) and g(x, u) are
functions on fx R which are nonincreasing with respect to u for sufficiently large values of
Conditions are found under which the problem Lu f(x, u(x)), x l-, with Bu g(x, u(x)), x
has a generalized solution in the Sobolev space Hl(fl). This is followed by a brief discussion of stability
of positive solutions.

1. Introduction. We shall be interested in the existence and uniqueness of
solutions to nonlinear elliptic boundary value problems of the type

Lu -Di(aij(x)Djtt + bi(x)Diu + a(x)u f(x, u(x)) in

(1) Ou/ON+o(x)u= g(x, u(x)) ona0a,

u(x)=O(x) on A’=0-A,

where L is a uniformly elliptic differential operator, A is measurable, N(x)-
(Nl(X), Ne(x), , N(x)) is the unit outer normal at x 0f and Ou/ON denotes
the conormal derivative

ou/o= ,(x)a,(x)Du.

In a nonlinear problem of this type one is quite naturally tempted to impose
instead the less restrictive boundary condition

(2) Bu =- z(x) Ou/ON+ o’(x)u(x) g(x, u(x)), x OfL
where 0

-2 -[" ,/.2 > 0 on 0f. However, letting A be that part of 0f where z(x) : 0 we
see that the condition o(x)u(x)= g(x, u(x)) has to be satisfied on A’. Therefore if
we wish the problem to have a solution we must certainly require that this
functional equation have a solution 0 on A’. Thus after some minor technicalities
we are led to the conclusion that, in effect, the boundary condition must indeed be
of the form given in (1). Nevertheless (2) does provide a convenient notation
which we shall employ with the understanding that "r(x)= 1 on A, ’(x)=0 on
A’, o-(x)= 1 on A’ and g(x, u)--O(x) on A’.

For some results we assume that for fixed x, f(x, u) and g(x, u) are nonin-
creasing functions of u. Such a monotonicity condition was assumed by D. Cohen
in connection with a radiative heat transfer problem [1]. Cohen’s work deals with
classical solutions; in this article we will be interested in generalized solutions.
However in many cases available regularity results lead us to conclude that the
generalized solutions are in fact also solutions in the classical sense. Without, at
this point, detailing exactly what is meant by a solution, let us suppose that the

* Received by the editors July 2, 1974, and in final revised form June 26, 1975.

" Department of Mathematics, Arizona State University, Tempe, Arizona 85281.
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linear problem

Lv f(x, u(x)) in fl,
(3)

By g(x, u(x)) on 01)

has a unique solution v for each u chosen from some set S (u S), and suppose
that v S. We then define a map S - S by saying that O(u) v whenever v is a
solution of (3). If f(x, u) and g(x, u) are nondecreasing with respect to u, then
will be an order reversing map, that is to say that if ul(x) >-_ u2(x) a.e. in fl (more
simply denoted Ul _-> u2), then O(ul) _-< O(u2). Problem (1) now consists of finding a
fixed point for . If f. and g. exist and f,(x, u)>=-M, gu(X, u)>=-M for some
positive constant M, then we can add a term Mu on both sides of the equations (1)
and obtain the problem

L* u f *(x, u(x)) in ,
B*u g*(x, u(x)) on 0fl,

where f*(x, u) and g*(x, u) are nondecreasing functions with respect to u. We can,
as above, define a corresponding map * which now will be order preserving, or
what is usually called monotone. The latter approach to problem (1) has been
taken by several authors including H. Amann, T. Laetsch, and D. H. Sattinger
[2]-[4].

In this paper we shall not try to use such monotonicity methods but instead
use the order reversing property. This allows us to treat problems which cannot be
transformed to a type which has an order preserving type of monotonicity.

2. Preliminaries. In this section we shall state the hypotheses, explain the
notation and give the definition of a (generalized) solution.

Let 1 denote a bounded domain in R", tn-> 1, whose boundary, 0, is
sufficiently well behaved. For example, it may be assumed that the boundary is of
class C2+. However, unless we are dealing with the Neumann problem, this may
be weakened to requiring the following hypothesis.

I-Ill 0- is of class C or, more generally, 0f is ptecewtse smooth with nonzero
interior angles.

This last phrase means (see [7]) that fi U_- fi, where the are mutually
disjoint open subsets of 1) and each fli can be mapped homeomorphically onto the
unit ball or cube by means of a Lipschitz continuous map whose Jacobian (in the
distributional sense) is bounded from below by a positive constant.

Let x (x 1, x2, , Xm) represent a point in R m. All functions, vector spaces,
numbers, etc., shall be assumed to be real.

We also assume the following hypothesis.
’2: f(x, u) f x R - R and g(x, u) A x R - R satisfy the Caratheodory

conditions (measurable in x for each u, continuous in u for almost all x) and are
bounded on bounded sets in fix R and 0x R respectively.

For any set Xwe use (., )x to denote the inner product on L2(X). Let H(f)
denote the Sobolev space of Schwartz distributions on f which have derivatives of
order _-<j in H(fl) L2(-). The norm on this space is ][u[[i ={(Du, Du)n}1/2
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where we sum over the multi-index a. In other words D D’D2.2 D’, and
the summation is over all a with a + a2 + + a, _-< ]. We assume the following.

1-13: ao.Loo(f), biLq() and aLq/2(), with q>m, q=>2.

Corresponding to L we have a bilinear functional !o on H(f)x H(f)
defined by

Io(u, v) (aqDiu, Div)a +(biDiu, v)a +(au, v)a.

The above hypotheses on the coefficients and the Sobolev embedding theorem
(see, e.g., [7]) lead us to conclude that !o is a continuous bilinear functional on
H’(a) x H

The results which follow apply to ordinary nonlinear Sturm-Liouville equa-
tions provided we interpret the boundary conditions appropriately. It is left to the
reader to make the slight modifications in case m 1. We assume

H4: L is uniformly strongly elliptic, i.e., there is a number v > 0 so that

for all : (1, 2," rn) E R and x E

Recall that for elements in certain Sobolev spaces one can, unambiguously
define their boundary values by means of the so-called trace map. For domains
whose boundary is a C-manifold much information on such maps can be found in
the work of J. Lions and E. Magenes [8]. The C boundary requirement can often
be weakened. In fact if Ofl satisfies H1 and j <= m/2, <2(m-1)/(m-2j), then
there is a compact continuous linear map 3/ Hi(12)- Lt(Ol’) such that yu
whenever u Hi(fD fq C() ([5], [6], [7] and further references in [7]). If j > m/2,
then it follows from the Sobolev embedding theorem ([7]) that Hi(fl) c C((I) is a
compact continuous injection and hence /" Hi(l))- C(0D,) is obviously defined
and compact continuous. It can be shown (see [7, p. 41] for discussion and further
references) that under our hypothesis H we have a Green’s identity, i.e., for any
v, w 6 H (1") we have

Ia vD’w dx Ia wD’v dx + Ia (yv)(yW)Nk dS, m>=2,

and the analogous result for m 1. We shall often dispense with the symbol 3’. The
above formula may, for example, be more concisely written as

Let A c OD, and

(v, Dw)a (-Dv, w)a +(v, wN)oa.

Va {’q C HI([-)I supp Yn = A}.

This is easily seen to be a subspace of H(fl). Hypothesis I-I implies that

V6 H(l)), the closure in HI(-) of the C(I) functions which have compact
support in 12 (see [7]).

We assume either of the following sets of hypotheses.
H5-1: Dirichlet problem. A , or(x) 1, 0 nl([) I"] L(fl).
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Hs-II: Neumann and Robin problems. In this case we assume that A 0O and
01q is of class c2+ a > 0. Also cr Lp(01) with p > m 1, and cr -_> 0.

Hs-III: Mixed problem. We assume A is a nonempty measurable subset of
Of, a(x) _-> 6 > 0 and or(x) _-> 6 > 0 for some positive number 6, and cr 6 Lp(A)
where p > m 1. We also assume that 0 H (12) fq Loo().

Corresponding to the differential operator L and the space Va, there is
bilinear functional on H (fD H1(12) given by

i(u, v) 10(u, v) + (u, v)a.

From the Sobolev embedding result quoted above it is immediate that (tru, v)a is a
continuous bilinear functional on Hi(12) H(f), and hence is a continuous
bilinear functional on H (l)) H (). From now on A only refers to the support of

" on
We shall also assume the following hypothesis.
1-16: is Va-coercive, i.e., there is a positive number C so that

u)_-> cIl ll for all u e Va.

Consider the linear nonhomogeneous problem.

Lu=4 inf,,

(4) au=O onA,

u 0 on A’,

where we assume e L2(fl), e L2(,,_)/n (012), 0 H1(12). We say that u is a
solution of (4) if u- 0 Va and

(5) l(u, r/)= (b, r/)a +(0, r/)a for all r/e Va.

The reason, of course, is that any classical solution satisfies (5) and has T(u 0) 0
on A’. Solutions as defined above are also called generalized solutions.

LEMMA 1. If TU IA’ >- O, then w =- max (-u, 0) Va.
Proof. We first note that if unCl() and unu in HI(Iq), then

max (-u,, 0) max (-u, 0)in HI(f) (see [7, p. 50]). Hence if u, u in Hl(),
then, by continuity of T H1(12) L2(012),

max (-u, 0) 3’ lim max (-u., 0) lim max (-3,u., 0) max (-Tu, 0),

where the first limit is taken in HI(I) and the second in L2(0). Since max (-u, 0)
vanishes on A’ the result follows.

3. Results. Throughout this section we assume that hypotheses I’Ii-I-I6 are
satisfied. The spaces Hi(12) are endowed with a natural partial order as follows: we
say that u >- v if u v => 0 a.e. If u and u2 are elements of H(f), then the function
max (Ul, u2) defined by max (ul, u2)(x)= max (u(x), u2(x)) also is a member of
H (fD. This follows from a fact proved in [7] that this statement is true if u2(x) k,
a constant function, and the simple observation that max (ul, u:)
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ul+max(u2--Ul, O). It also follows from Lemma 3.2 of [7, p. 51] that
Di max (u, k)(x)= 0 a.e. on the set {x E l)lu(x <-k}. We define

K {u E H(II)lu >--O}.

We shall say that u is a Va-subsolution if u e H(fl) and l(u, v)_-<0 for all
v E VA f3 K1.

THEOREM (Stampacchia). Let a be a continuous real bilinear functional on a
real Hilbert space Y with inner product (., ). Let U be a closed convex subset of Y
and suppose a is coercive on U-U, i.e., them is a positive constant c such that
a(y, y) _-> c(y, y) for all y E Y which are of the form Yl Y2, with Yl, Y2 E U. Let

Vy ={z E Yl::le >0: y + ez E U}.

Then, for each f E Y, them exists exactly one element y E U such that

a(y, z) >-(f, z) for all z E Vy.
The proof of this theorem is rather lengthy and can be found in [9]. Although

Stampacchia assumes a is coercive on all of Y, a careful examination of the proof
reveals we only need this property on U- U. In fact, the proof requires only one
minor change, namely, where it is shown that the functional a(u, u)-2(f, u) is
uniformly bounded from below for all u E U. To show this, one merely notes that,
for some fixed Uo E U, a(u, u)-2(/, u) can be written instead as

a(u-Uo, U-Uo)+a(u, Uo)+a(uo, u)-a(uo, Uo)-2(f, u)
>__ uo, u

_-> cllull C31IUI[-- C4 e--(C4 "]- c/4c),
where c1, 2, 3 and 4 are constants.

LEMMA 2. Suppose that u and u2 are two VA-sUbsolutions; then w
max (ul, u2) is also a Va-subsolution.

Proof. Let U be the collection of all u E H1(1) which satisfy u w and
u- w EVA. Certainly U is closed and convex, U- U VA, and for any /E U,

Vn {t E HI([-)I:IE >0: n-t-eve U}.

Note that V, c VA. Pick r/to be the unique element of U for which i(r/, z) _-> 0 for
all z in V,. Note that -K f-) Va c V, and hence r is a Va-subsolution and r/-< w.
Let : max (Ul, rt); then -r/E VnVIK1. Therefore

while, by the above remarks,

l(,-n)=l(u,,-n)<-O

since Ul is a subsolution and (x) Ul(X whenever :(x) -> r/(x). Combining these
two inequalities and using the facts that is Va-coercive and j-rt E Va we have

I1 - nil, --< c-11(sc- n, :’-- rt) =< 0,

and therefore : r/and consequently U T/. Similarly we obtain U2 T and so
w rl, a subsolution.
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LEMMA 3. If U is a (generalized) solution of (4) with _--- 0, _-> 0, 0 _-> 0, then
u>=O.

Proof. Both -u and 0 are Va-subsolutions and therefore so is max (-u, 0).
But also max (-u, 0) K Va and therefore |(max (-u, 0), max (-u, 0)) =< 0,
which, due to the fact that is Va-coercive, means max (-u, 0)- 0.

We shall need the fact that the solution of the linear problem is bounded
whenever the nonhomogeneous terms 4), q and/9 are bounded. The above lemma
plays an important role in the proof of this result. First we need another definition"
we say that a distribution F is a member of W-l(fl), 1 < s, if F F0 + DiF where
F 6L(I) and Foe L(I) with t--sm/(m +s). Using the Sobolev embedding
theorem one easily verifies such distributions are continuous linear functionals on
W]*(f) where 1/s + 1/s* 1.

LEMMA 4. Suppose 0 H() f3 L(I)), ck L(f) and 0 L(OI)), then
every solution of (4) is a member of L(I)).

Proof. In the one-dimensional case there is nothing to prove since by
definition a solution is in H(fl) and by the Sobolev embedding theorem H (1))
Loo(l). Let us therefore proceed to the multidimensional cases. In case I, the
Dirichlet problem, it is known (e.g., [7]) that the solution is in L(12) if b
Wq (-), q > m, and 0 6 L(OI). Since L(I)) W-q () these conditions are
satisfied. Next consider case II, the Neumann and Robin problems. We use a
regularity result of Stampacchia ([ 10]) which states that the generalized solution
of LU= 4, OU/ON 0, is in L() provided b Wq(11). Let SCR be the classical
solution of AsC 0 in f with O/ON= R on 011 and let UR be the generalized
solution of Lu 4 in 11 with Ou/ON R on 011 (see [7]). Letting UR UR R we
obtain

LU=ch-L W-’(fl) inO,

0UNION 0 on Ofl.

By Stampacchia’s result UR Lo(f) and hence UR L(12). Next choose R =>
IIqll and M >= IlURI[ + I1011. We see that

L(UR +M- u) aM>= 0 in ,
O(un +M-u)/ON+o-(un +M-u)>-_R-q+o-(un +M)>-O onA,

UR + M-- u >--O onA’.

Hence by Lemma 3, UR +M- U >-- 0 and thus u <= UR + M. Similarly u >- U-R M
and therefore u 6 L(fl). Finally, in case IiI, we note that for a sufficiently large
positive number M,

L(u +M)-->0, B(u+M) O,

so that, by Lemma 3, lul--<M almost everywhere.
We now turn our attention to the existence of solutions to the linear problem.

In settings such as these this is often based on the Lax-Milgram theorem. However
we need a more general result, namely, the above theorem of Stampacchia, or,
more accurately, the following corollary.
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COROLLARY 5. Suppose a(u, v) is a continuous real bilinear functional on a
real Hilbert space Y with inner product (., ). Suppose X is a subspace of Yand a is
X-coercive. Then for each continuous real functional Y* and each y Y there
exists exactly one element x y +X st)ch that

a(x, z) =/(z) for all z X.

Proof. Let U y + X. In this case V, X for all u 6 U. Certainly there is an
element f, Y so that/x(z) (f,, z) for all z 6 Y. Applying the theorem we find a
unique x X for which

a(x, z) _-> (f, z) for all z X.

However if z 6 X, then since X is a subspace, -z 6 X and hence we must in fact
have

a(x, z) (f,, z) =/(z), for all z X.

LEMMA 6. Suppose ch L(f), O 6 L2(,,_)/,,(Of) and 0 HI(l)). Then (4)
has a unique solution in HI(). There exists a number J> 0, independent of
and O, such that IlUlI1 J([llloo / 114,11, / II011,), where II" II, is the L2(m-1)/m(O-) norm.

Proof. Let us examine the various terms in (5). On the left-hand side we have
a continuous VA-coercive bilinear functional.On the right-hand side we have a
continuous linear functional acting on r/. To see this we first note that r/ (b, )a
is obviously continuous and linear. Applying the Sobolev embedding theorem I-7]
we have yr L2(m-1)/m-2(O[).), a function space into which HI(-) is continuously
mapped via 3’. Therefore r/-->(q,, r/)a is a continuous linear functional. We
therefore have to solve

l(u, r/)= (d, rt) for all

where d is a continuous real linear functional on H(I)). Applying the above
corollary with X VA and y 0 we are done. The last part follows from H6:

Cl[u Oll <-_(u O, u-0)= (, u O)+ (e/, u O)- (o, u-O),

where the right-hand side is a continuous linear functional acting on (u-O)e
H’(O).

We denote the unique solution of (4) by G(4, 4’, 0), or, suppressing 0, by
G(4,, 6).

Finding a (generalized) solution of (1) clearly amounts to finding a fixed

point:

(6) u G(f(x, u), g(x, 3’u), 0) A(u).

LEMMA 7. Suppose 0 H(f) fq

(i) A maps H(f) f-] L(I)) into itself.
(ii) Iff(x, u) and g(x, u) are nonincreasing with respect to u, then A is order

reversing.
(iii) Let B c H(12) fq Lo(l)) be bounded with respect to the norm I[’11 and

suppose that A(B) B. Then A is a compact continuous map on B with
respect to the relative topology from Hl(f).

Proof. (i) follows immediately from H2 and Lemma 4.
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(ii) Suppose that ul >= U2; then f(x, Ul) =<f(x,/’/2) and g(x, Ul) =< g(x, U2).
Then by the linearity of G and Lemma 3 we have

t(U2)--t(Ul)--I(f(X, U2)--f(X, Ul), g(x, U2)--g(x, Ul), 0)0.

(iii) Let {Ul} be a sequence in B which is bounded with respect to the norm
1]" II1 and let Vl A(ul). Lemma 6 implies that {Vl} is also bounded in that norm.
By Sobolev’s embedding theorem the sequences {u} and {vl} are precompact
with respect to the L2() topology, so we may assume ul u and vl v in L2(’).
In fact we may also assume that {3,ul} and {3,vl} converge in L2(0-). We have

(v,, n)= ([(x, u,), n). +(g(x, u,),

for all rt in Va, in particular for rt vl- v,. Hence

I1,-vll <-(v, ,.., Vl Vm)

{(f(x, ut)-f(x, Urn), Vt--V)a +(g(x, Ul)--g(x, U), Vl

where k is some constant and the norms are the L2(O) and L2() norms
respectively. It follows that {v} is a Cauchy sequence in H (), which proves A is a
compact map on B. Furthermore, since f and g satisfy the Caratheodory condi-
tions it follows that the Nemytskii operators defined through them are continuous
on B and yB respectively in their L2 topologies [13]. As above we can obtain the
following inequality:

IIA(u)-A(u*)II N{(/(x, u)-f(x, u*), A(u)-A(u*)).

+ (g(x, u)- g(x, u*), A(u)- A(u*))}

N{llf(x, u)-f(x, u*)lallA(u)-A(u*)[la

for some continuous function k, k(0)= 0. This proves continuity of A.
We now prove our first existence result for (1).
Tnoz 8. Suppose fix, u) and g(x, u) are monotone nonincreasing with

respect m u. Suppose there exists a [unction Uo L(O) such that either

6) (Uo) Uo ((Uo))

(ii) A(uo) uo N A(A(Uo));

then (6), and hence (1), has a unique solution in Hi(a).
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Proof. Let us suppose (i) is the case. We have f(x, Uo(X))eLoo() and
g(x, Uo(X)) L(), so by Lemma 4, A(Uo) e L() 71HI(). Let us define

If A(u0) <_- u <- u0, then A(Uo) _<- A(u) <_- A(A(u0)) -<_ Uo; hence A maps the closed (in
HI(fl)) convex set (A(Uo), Uo) into itself. Therefore we can apply Schauder’s
theorem. To show uniqueness suppose u and u2 are both solutions. Then

L(u,- u)=/(x, u,)-(x, u),

B(Ul u2) g(x, ul)- g(x, u2)

or

0 |(Ul U2, Ul U2)

--(f(X, Ul)--f(X, U2), Ul--U2)+(g(x, Ul)--g(x, U2), Ul-- U2)A0.

Since is assumed to be VA-coercive U 1t2.
The hypotheses (i) or (ii) in the above theorem may not be easy to verify. In the

results below we use more practical hypotheses. The monotonicity condition can
also be removed as one might expect. Schauder’s principle is used to show
existence of a fixed point and therefore the monotonicity is not essential; it is used
only to obtain a convex set which is left invariant by A.

COROLLARY 9. Iff and g are uniformly bounded on x R 1, then (1) has a
solution in Loo(l)) f3 Hl(f).

Proof. Suppose a number M is chosen so that -M<-f(x, u), g(x, u), 0 =<M
for all (x, u). Let Uo- G(M, M, M). A takes (-Uo, u0) into itself, and the result
follows from Schauder’s principle.

THEOREM 10. Suppose f(x, u) and g(x, u) are uniformly boundedfrom below
for all (x, u). Suppose there exist arbitrarily large positive numbers Nsuch thatfor all
numbers u and ue with U <- -N <- u2 we have f(x, u2) --<jr(x, Ul) and g(x, u2) -<
g(x, u 1). Then (1) has a solution in L(f)

Before proving this we note that the hypothesis is satisfied if, for example,
]’(x, u) and g(x, u) are monotone in the region where u <--N for some number N,
and that these functions assume values no greater than f(x,-N) and g(x,-N)
respectively in the region u _->-N.

Proof. Let M be a number so that -M is a lower bound for the values ]:(x, u)
and g(x, u). Choose a number N_->max(llA(0)ll, IIG(-M, -M)II)which satisfies
the condition stated in the hypothesis of the theorem. Then -N=< A(0) -< A(-N).
Now suppose -N <- u <= A(-N), then A(u -<_ A(-N) and also A(u)=
G(f(x, u), g(x, u))-> G(-M, -M)=>-N. Therefore A maps (-N, A(-N)) into
itself and we can again apply Schauder’s principle. Of course a similar proof yields
the following theorem.

THEOREM 11. Suppose f(x, u) and g(x, u) are uniformly boundedfrom above
for all (x, u). Suppose there exist arbitrarily large positive numbersNsuch thatfor all
numbers u and u2 with Ul<=N<= u2 we have f(x, u2)<=f(x, ul) and g(x, u2)=<
g(x, ul). Then (1) has a solution in

We do not need f and g to be bounded either from below or from above
provided we put some restriction on their growth as u +o. More specifically we
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will need the following:

3"1 -- if u 0,
(7) /(x, g(x, u) -->-y, / wlul’ if u _-> 0,

with 0< st < 1. In this case we allow the functions f(x, u) and g(x, u) to be
nonmonotone in u in some bounded interval and require them to be nonincreas-
ing outside of this interval.

THEOREM 12. Suppose f and g satisfy (7) with st < 1, and suppose there are
numbers Uo < Vo such that whenever u <= Uo and u <= ul then f(x, u) >=f(x, Ul) and
g(x, u) >= g(x, Ul), and whenever u >- Vo and u >- Ul then f(x, u) <= f(x, Ul) and
g(x, u)<=g(x, u). Then (1) has a solution in Lo(l’) VI HI(I).

Proof. Without loss of generality 3"1, 3’2 -> 1. We note that if a > 1, then
G(a, a, 0) -< G(a, a, aloI) <= ak where k IIG(1, 1,101)ll. Choose M so large that
-M <- Uo and 3"1 + 72M >= v0. Also, since st < 1 it is possible to choose M so large
that 3’1 -/-3"2(3"1 +3"2MS) <--Mk-l(k’+ 1)-1. We claim that (-M, (3"1 -I-3"2MS) k) is
mapped into itself by A. Let -M<= u(x)<-_ (3" + 3"2MS)k; then

and

A(u(x)) <= A(-M) _-< G(T -t- 3"2Ms, 3"1.4- 3,2Ms)

A(u(x)) _-> A((3", + 3"2MS)k)
>- G(-3", 3"2(3", + 3"2MS)tk ’, -3",- 3"2(3"1 + 3"2M’)tk t)

=>-(1 + kt)(3"1 + 3"2(3", + 3"2M)t)k >--M.
The result follows again by Schauders theorem.

4. Coerciveness, positivity and stability. Throughout this section we assume

H-H5. In all of the above results it is assumed that l(u, v) is Va-coercive. Consider
however the very simple heat radiation problem

(8) Au=0 inl2,

(9) Ou/ON= a- bu4 on 0-,

where a and b are positive numbers and where Stefan’s "fourth power law" is

used. This problem lacks H(l))-coerciveness. But if we rewrite the boundary
condition as

O_u + u a bu4 + u on 012,(101
0N

the associated bilinear form can be seen to be H (O)-coercive. More generally, we
can say that a problem which initially does not possess the coerciveness may, by
adding zero order terms to either or both the equation and the boundary
condition, be transformed to a problem which does have the property. In fact it is
well known that if L is uniformly elliptic and if o- -> 0, then the bilinear functional
l(u, v)+ A (u, v) associated with L+ A is Hl(l))-coercive for A sufficiently large.
We shall see how coerciveness may be obtained by adding a zero order term to B
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instead. Of course whenever we modify L or B in.this manner the nonhomogene-
ous terms ]’(x, u) and g(x, u) are also modified and so, if we wish to apply one of
the above existence theorems, we must check if the modified nonhomogeneous
terms satisfy the hypotheses.

In problems (8) and (10) we have two more difficulties. First of all, the modi-
fied (as well as the original) nonhomogeneous term does not satisfy any of the
hypotheses of the above existence theorems. Secondly, only positive (more
accurately nonnegative) solutions are of physical significance. These difficulties
are simultaneously overcome by redefining the nonhomogeneous term for nega-
tive u so that it satisfies the hypothesis in theorem and then showing that the new
problem has a positive solution. The nonhomogeneous term may for example be
redefined to be a for u < 0.

For the sake of simplicity we shall from now on assume that ]’(x, u) and g(x, u)
are continuous on 1) [0, oo) and that the coefficients of the first order terms of L
are zero. To emphasize this we shall use L =-Diaij(x)Dj + a(x).

We have the associated bilinear form

i(u, v)=(aqDu, Div)a+(au, v)a+(ru, v)a.

THEOREM 13. Suppose thatC’(x, t) >-0 and g(x, t) >-_0 whenevert < 0. Suppose
either[(x, t) > 0 a.e. in f [or each < 0 or g(x, t) + r(x) > 0 a.e. on A [or each < O.
I[ a >- 0 and u Ha, u 0 e Va[or some 0 > 0, and

ll(u, v)=(f(x, u), v)a+(g(x, u), v)a forallv Va,

then u >- O.
Pro@ Let u* min (0, u); then u* e Hl(f). By Lemma 1 and the remarks at

the beginning of 3, u*e Va and Du Du* a.e. on the set where u*(x)< 0.
Since yu* =rain (0, yu) (see proof of Lemma 1) we have

(aqDu*, Diu*)a+(au*, u*)a+(o’u*, u*)a (f(x, u), u*)a+(g(x, u), u*)a.

Since L is uniformly elliptic, a >_-0, o- >-0 and since on the support of u* we have
f(x, u) _>- 0 and g(x, u) >-_ O, we may conclude that both (f(x, u), u*)a and (g(x, u)
ru, u*)a are zero. In case f(x, t)> 0 whenever < 0 it follows immediately that
u*--0. In case g(x,t)+r>O whenever t<0 we have g(x,u)-ru*=
g(x, u*)-o’u*>0 whenever u*<0. But since (g(x, u*)-ru*, u*)>-O, we see
that u* 0 on 0f (i.e. 3,u* 0). This means [7] that u* e H(O). There is a positive
number k, independent of u, such that [7]

Ilull <- k [(O,u)(O,u) dx for all u e H(I)).

Hence

Ilu*lll k Ja(O,u*)(Ou*) dx k/,(aDu*, Du*)a

k/,(aqDju, Diu*)a-<-0.

We now state the following existence and uniqueness result which, in
particular, is applicable to problem (8)-(9).
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THEOREM 14. Suppose that a >- 0, 0 _-> 0, f(x, u) and g(x, u) are continuous on
1) [0, o) with f(x, O) >= 0 and g(x, O) >-_ O, and that there is a > 0 and arbitrarily
large positive numbers N such that either

(11)

or

f(x, u2)+6u2 <=f(x, ua)+,Su,
g(x, u2) g(x, ul)

in ,
on A

u=O>-O on A’--- 01- A,

has a positive solution. If, in addition, f(x, u) and g(x, u) are nonincreasing with
respect to u and either is Va-coercive or at least one of thefunction f(x, u) or g(x, u)
is strictly decreasing with respect to u, then there is a unique positive solution.

Proof. First we note the operator L1 + 6 with boundary operator B1 leads to
the corresponding bilinear form

(aqDiu, Div)a +(au, v)a+ (tru, v)a + 6(u, v)a

which is clearly Va-coercive. Next we note that the operator L with boundary
condition B + 6 leads to the bilinear form

(aqDiu, Div)a + (au, v)a + (o’u, v)a + 6(u,

We claim this form, which we shall denote by 12, is also VA-coercive. For suppose it
is not. Then there exists a sequence {u} c VA such that Ilu /ll- a for each k and
lz(u, u) tend to zero as k - co. From uniform ellipticity it follows that DUk 0 in
L2(I)) as k eo. Clearly yu - 0 in L2(A). Since yu 0 on A’ this means yu 0 in
L2(0f). It is known (e.g., [5, p. 354]) that the norm Ilwilx is equivalent to the norm

Ilwll- E IID,wll, +llvwllo, ,
i=1

where the norms on the right-hand side are the Le(II)- and L.(81I)-norms
respectively. Therefore u0 in HI(’), a contradiction. It follows that the
hypotheses of Theorem 11 can be satisfied either by modifying L1 and f(x, u) by
the term 8u or by modifying B and g(x, u) by the term 6u and redefinining these
nonhomogenous terms to be f(x, 0)+ u(u- 1)-1 and g(x, 0)+ u(u- 1)- respec-
tively for u < 0. We therefore know there exists a solution, which by Theorem 13
must be positive and hence also a solution of the original problem. If f(x, u) and
g(x, u) are nonincreasing in u and if Ul and ue are two positive solutions, then
W 1A --/12 satisfies

0<= u(Dw, Dw) <-(aDiw, Dw)a+(aw, w)a+(trw, w)a

(f(x, ul)-f(x, u2), w)a+(g(x, Ul)-g(x, u2), w)a<0.

whenever U -N <-- U2. Then the problem

L u Diai.i(x)Diu + a(x)u f(x, u)

(13) Bu =-Ol)/ON+o(x)u g(x, u)

12) f(x, U2) f(X, U

g(x, Uz)WtUZ g(x, Ul)+iUl,
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If il is Va-coercive it follows immediately that w =- O; if not, then Diw 0 for each
and hence w =constant. If also f(x, u) or g(x, u) is strictly decreasing, then it
follows that this constant must be zero.

Let us very briefly discus the stability of solutions to the associated parabolic
equation

U
+L1 U f(x, U) in 12,
Ot

BU=g(x, U) onA,
(14)

U 0 -> 0 on A’,

U(x, o)- Uo(x).

If U0(x)= u(x), the solution to the elliptic equation (13), then we have the
solution U(x, t) u(x). If the initial data is perturbed by ev(x), one might expect
a solution of the form

U(x, t) u(x) + ev(x) e-el + O(e2).
A formal calculation as in [1], then leads to the conclusion that c must be an
eigenvalue of

L v -L(x, u)v v ,
Bv-g,(x,u)v=O A,

v Va (i.e.,v=0 onA’).
Therefore, following Keller and Cohen [ 1 ], [ 11 ], we say that a solution u(x) of (13)
is stable if the principal (i.e., least) eigenvalue of (15) is positive.

THEOREM 15. Suppose that a >-_0, that f(x, u) and g(x, u) are continuous on
1 [0, c) and Of [0, o) respectively and that f(x, u) >= 0 and g(x, u) >- O. Sup-
pose thatfu(x, u) and gu(x, u) exist and are nonpositive on 12 [0, oo). Suppose that
I1 is Va-coercive or that (11) or (12) are satisfied[or all ul, u2>-O and some fixed
6 > O. Then the unique positive solution o[ (13) is stable.

Proo[. First note that by Theorems 11, 13 and 14 equation (13) indeed has a
unique positive solution. Let v be an eigenfunction corresponding to the principal
eigenvalue c 1; then

(v, v)-(L(x, u)v, v),-(g(x, u)v, v)= (v, v).

Clearly al -> 0 and 1 > 0 if 11 is Va-coercive. Suppose a 0; then l(v, v) must be
zero so that Vv--0 and consequently v is a nonzero constant. In view of the
hypothesis either ([u(x, u)v, v)a <-6(v, v)a or (g,(x, u)v, v)0a <-6(v, v)0, must
obtain. This leads to a contradiction.

In conclusion we note that if 012 is sufficiently smooth one may extend the
existence results in this paper to certain oblique derivative problems. One only
needs to require that the associated form is Va-coercive, or that it can be modified
to a Va-coercive form. This can be insured by imposing bounds on the coefficients
of the tangential derivatives occurring in the boundary condition. The regularity
result of Stampacchia which was needed in some of the proofs was extended by R.
Fiorenza [12] to the case of the oblique derivative problem, and consequently
those proofs also go through without any difficulty.
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A MODEL OF SINGLE SPECIES POPULATION GROWTH*

K. E. SWICKt

Abstract. The integral equation

(*) x(t)= P(L-s)h(t-L-’+s,x(t-L-’+s))ds

can be viewed as a model of single species population growth as well as certain other biological or
economic processes. Explicit bounds are determined for solutions of (*); these bounds are expressed in
terms of the relative magnitude of h(t, x), Id P(L-s) ds and the norm of the initial function of the
solution. These bounds are used to determine sutticient conditions for the existence of periodic
solutions of (*).

1. Introduction. In this paper we shall study a class of scalar integral
equations which can be viewed as a model of single species population growth.

Let x(t) denote the number of individuals in a population at time and let P(t)
be the proportion of the population surviving to at least age t. Clearly we must
have P(0)= 1, P(L)= 0, where L is the maximum life span of individuals in the
population, and P(t) is monotonically decreasing over the interval [0, L]. If the
assumption is made that the number of births per unit time at time is a function of
the total population at time t, say g(x(t)), then the size of the population is
governed by the equation

(1.1) x(t)= P(L-s)g(x(t-L +s)) as.

This is the equation derived by Cooke and Yorke [1] and [2]. It was shown
there that in addition to being a model of single species population growth, this
equation can be used as an infectious disease model and a model of capital growth.
Their principal result was the following theorem: Assume that g(x) is a continu-
ously differentiable function and that P(t) is continuously differentiable, nonin-
creasing and nonnegative on the interval 0 <- _<- L. Let x (t) be any solution of (1.1)
and let It0- L, o] be its maximal interval of existence, where to < o =<. Then one
of the following holds: x(t) -, x(t) - constant or x(t) -- as o.

In [3] Cooke used a result of Levin and Shea to extend this result to the
equation

L

x(t)= Jo e(I-s)g(x(- +s)) cls +(t),

where f(t) represents an imigration into the population.
In both of these models it is assumed that births per unit time is a function of

the size of the population only, and in particular, is not dependent upon the time t.

It also assumes no time lag between conception and birth.

* Received by the editors August 5, 1974, and in revised form June 19, 1975.
f Department of Mathematics, Queens College, City University of New York, Flushing, New

York 11367. This work was supported in part by the City University of New York Faculty Research
Program.
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If we assume that there is a time lag z between conception and birth and that
the number of births also varies seasonally, then the number of births per unit time
at time is given by a function of the form h(t-z, x(t-z)), and the size of the
population is governed by the equation

(*) x(t)= P(L-s)h(t-’-L+s,x(t-’-L+s))ds.

This is the model examined in this paper.
In 3, explicit bounds are determined for the solutions of (*); these bounds

are expressed in terms of the relative magnitude of h(t, x), d P(s) ds and the norm
of the initial function of the solution. The bounds are in general unrelated to the
size of the positive numbers L and -, although these constants determine the
elapsed time needed for a solution to reach certain bounds. In 4 the results of 3
are applied to an asymptotic fixed.-point theorem to show the existence of periodic
solutions of (*). The approach used is similar to that used by numerous other
authors, see, e.g., 12]-[15].

Cooke and Yorke [1], .[2] also proposed a form of (1.1) with P(t)= 1,
0_-< =<L. This model arises under the assumption that all individuals in the
population have life span L. If one again postulates a time lag - between
conception and birth this model becomes

L

(1.2) x(t)= | g(x(t-L-r+s)) ds.

Hale 11 obtained necessary conditions for the existence of periodic solutions of
(1.2) for the class of functions G ={g RI[0, o)lg(x)=0, x-<0 and x-> 1,
g(x) > 0, 0<x < 1}. The results of 4 are also valid for (1.2).

Wangersky and Cunningham [5] discussed the special case of (*) found by
setting h(t, x) bx and p(s) (-k/1 -exp (-kL)) exp (-k(L s)), and a number
of authors, see, e.g., [6]-[10], have discussed various forms of the model

L

Biologically, in both models, b is the birth rate which is assumed constant, while in
the second model g(x) measures how a change in the population x changes the
death rate. A significant advantage of (*) over these models is the fact that the
birth rate is allowed to vary seasonally as well as nonlinearly with respect to the
size of the population.

2. Preliminaries and basic assumptions. It will be assumed throughout that:
H" L and " are positive real numbers.
He: h(t, x) is continuous on [0, oo) R , h(t, O) O, >- O, and h(t, x) > O,

t-->0, x>0.
H3" P(0) 1, P(s)= p(u) du for 0 <= s <_-L, where p(s) is integrable over

the interval [0, L] and O-<._-p(s)<=K for O<=s<=L. Let Po
I’s s) as.

The following assumptions will be needed for the discussion of periodicity
and oscillation of solutions of (*).
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There is o >0 such that h(t+oo, x)= h(t, x) for t->0 and x eR 1.
h(t, x) satisfies H4 and for each x > 0,

sup {Ih(t, x)- h(O, x)lO <= <--_ oo} > O.

Let I [-L--, 0], J [0, L], C= C[L R 1] be the Banach space of continu-
ous real-valued functions on the interval I and C/ ={q C[0< q(t)t I}. For
pe C, we define I111- sup,d(t)l. Let x C[[-L--, A],R 1] for some A >0;
then for each e.[0, A] we define xt C by x,(s) x(t + s), s L

Since the only initial functions in C which are biologically reasonable are
those which satisfy q(t)>0, e L we will assume henceforth, to avoid needless
repetition, that the notation x(t; q to) refers to a solution of (*) with o e C/ and
to => 0. When we refer to a solution x(t) of (*), it is x(t) x(t; p, to).

3. Bounds for solutions of (*). We shall show first that for each q C/ and
to >--0, the solution x(t) x(t; q, to) of (*) satisfying Xto q, exists for >_- to-L- -.
If

(3.1) q(0) IL, P(L-s)h(to-’-L +s, qg(s-’-L)) ds,

then x(t; p, to) is continuous for >= to-r-L, while if
L

q(O) Io P(L-s)h(to-’-L+s, qg(s-’-L))ds,

then x(t; q, to) has a discontinuity at to and is continuous for all other values of
>= to-’-L. In the latter case, the solution x(t; , to) represents a valid popula-

tion only for > to + - + L.
The following result can be easily established using standard arguments

which we omit.
THEOREM 1. If H1-H3 are satisfied, then every solution of (*) exists and is

positivefor >= to L ’. The solution x qg, to) is continuous at to ifand only if
L

qg(0) | P(L-s)h(to-’-L +s, qg(s-’-L)) ds

and is continuous at all other >= to- ’- L.
THEOREM 2. Assume that H1-H3 are satisfied and that there are positive

constants b, r > 1 and B < (bPo)-/(r-1) such that
(i) h(t, x) <- bx r, x >: B,
(ii) h(t, x)<-bB r, O<x<-B;

then every solution x (t) x (t; o, to) of (*) satisfies

(3.2) 0< x(t) < max {bPoBr, (bPo)-’/(r-1)[llqgll(bPo)l/(r-1)]r"}

]’or to + (n -1)(L + ’) < <- to + n(L + ") if llqgll < (bPo)1 and]or to+(n- 1)’<
<--_ to + m" if II ll -> (bPo)-1/(-1), n 1, 2,’’’.

Note. bPoB < B.
Proof. It follows from Theorem 1 that x(t) exists and is positive for t->

to-L r.
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We consider first x(t)= x(t; q, to)such that [lull[ < B. For to < t--< to+ " we have

x(t)= P(L-s)h(t-’-L+s,q(t-z-L+s))ds

L

=< Jo P(L- s)bB ds

bPoB r,
and since bPoB < B, we can proceed inductively to show that x(t)-<-bPoBr for
to < _--< to + m-, n 1, 2, , or,

(3.3) x(t) <= bPoBr, > to.

Next we consider x(t)= x(t; q, to) such that B _-<llq ll < (bVo) Wor to<
_--< to + - we have

L

x(/)= I) P(L-s)h(t-’-L+s, qg(t-’-L+s)) ds

L

<= [ P(L-s)bllq[[ ds
J()

bPo]lll.
Since II,ll<-_(bPo)-’/r-’ and r > 1, bPo<-_llql[ ’-r and it follows that bPoll II

I1 11. This last inequality implies that 0 < x(t) <= I111 for to-L- _-< -< to + r, and if k
is a positive integer such that k 1)- < L + - <-_ kz, k iterations of the preceeding
argument yields

(3.4) x(t) <- bPollq][r, to < to + Z + ’.

The right-hand side of (3.2) will be established by induction on n(L + ’), so
let us assume that

(3.5) x(t) <= (bPo)-:,r’ll,cllr"-’ (bPo)-/(-[lill(bPo)1/(r--1)]r"-I

for to+(n-2)(L +’) <= <- to+(n- 1)(L +-), and that the right-hand side of (3.4)
is greater than B. It follows from (3.5) and (*) that

L

x(t) <-_ Jo P(L s)b[(bPo)ZT-sgr’[lqgl[r"-’] ds

(bPo)-,/(r-,)Eilll(bPo) I/(r-1)]r;
for to+(n-1)(L+z)<t<=to+(n-1)(L+’)+". Continuing as in the proof of
(3.4), we show that
(3.6) x(t) <=(bPo)-’/(r-1)[llqll(bPo)1/(r--1)]rn

for to+(n-1)(L +’)<t<-to+n(L +’), and it follows by induction that (3.6) is
valid for n 1, 2,..., as long as B < (bPo)-(r-l)[l[p[l(bVo)l/(r-l]r".

Since [[ql[<(bPo)-1/(-), [[p[[(bPo)/(-)<l which, with r> 1, implies the
existence of a positive integer N such that (bPo)-/(r-)[[[q[[(bPo)/(-l)]r <-B and
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we can assume that N is the smallest such positive integer. We now have

x(t + to + N(L + -)) x(t, Xto.N(L+), to + N(L + ’)), >-- to + N(L + ’),

where IIx,o//)llB, and it follows from (3.3) that x(t)<bPoB r, t>
to + N(L + -).

Finally, if q C+, and I1[1_-> (bPo)-/-, then

L

x(t) Io P(L s)bllll ds

bPollll

for to < _-< to + -. Since B < (bPo)-1/(r-l) <-_ IIqll. B < I111 < bPollll, which implies
that x(t) <= bPollqll for to- L -- =< _-< to + ’. Proceeding by induction, we assume
that

x t) < bPo)Y7:ar’llqllr"-’ bPo)- /- [llqll(bPo) /r- ]"-I

for to- L " _-< _-< to + (n 1)-, which implies that

(3.7) x t) <- (bPo)-1/r-[llqll(bPo) 1/(r--1)]rn

for to+(n 1)- < _<- to+ nr as long as the right-hand side of (3.7) is greater than
B. But IIll>-(bPo)-/- implies that IIll(bPo)/-)>-a and as a result
(bPo)-/-’)Ellll(bPo)/r-)]r>B, n--a, 2,’’’, which completes the proof of
Theorem 2.

COROLLARY. If H1-H3 are satisfied, h (t, x) bx r, >-_ O, x > O, where b > 0
and r > 1 and if 1111 < (bPo)-’/r-), then the solution x(t) x(t; qg, to) of (*) satisfies
x(t)O as t-.

THEOREM 3. Suppose that H1-H3 are satisfied and that there are positive
constants a, d > 1 and A > (aPo)-I/d- such that h(t, x) >- ax, x >-_ A. If q9 C+
satisfies qg(t) >- A, I, then the solution x(t) x(t; q, to) of (*) satisfies x(t) o as

Proof. If q(t)=> A, then it follows from (*) that

L

x(t) >- f P(L-s)aAa ds

aPoA
for to < _-< to + ’. Since A > (aPo)-I/(a-) and d > 1, aPoA > A, so if k is a positive
integer such that (k-1)-<L +--<k-, then the preceeding argument can be
repeated k times to show that x(t) >-_ aPoA d to < <- L + .

Following the proof of Theorem 2, we proceed by induction to establish the
inequality

x(t) >-_ (aPo)-l/a-1)[A (aPo) /,-l)]a-
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for to+(n- 1)(L +’)<t<-to+n(L +z), n 1, 2,.... The theorem now follows
from the assumptions d > 1 and A > (aPo)-1/(a-1).

THEOREM 4. Assume that H1-H3 are satisfied and that there are positive
constants a, b, Ao <A <B < Bo <-- oo, d < 1 and r < 1 such that

(i) A < (aPo) 1/(1-a) < (bPo)1/(-’) < B < (Bo/bPo)(/),
(ii) h(t,x)>-_ax a, Ao<x<A,h(t,x)>aAa= A<x<Bo,=
(iii) h(t,x)<-bxr, B<-__X<Bo, h(t,x)<-bBr, Ao<x<-B.

Then ]’or every ft,,/, Ao < fi --< A, B -</ < min {Bo, (Bo/bPo)(1/r)}, there is T(fi,, )
such that if fi, <= o(t) <-, L then the solution x(t) x(t; Oto) of (*) satisfies

(3.8) aPoA a <= x(t) <- bPoBr, >-_ to + T(, ).
Note. It follows from (i) that

A < aPoA a < (aPo) 1/(-) < (bPo)1< bPoB < B.

Proof. Consider first q9 C/ such that o(t) _-> A, /. For to < _-< to + " we
have, since x(t) is a solution of (*),

L

x(t) >= Io P(L-s)aA’ ds aPoA a.
Since A < aPoA a, we see that in fact x(t) >- aPoA a for to < =< to + m-, n 1,
2,..., i.e.,

(3.9) x(t) >= aPoA a, > to.

If A,<A<A and if o6C+ and qg(t)>-A, s6L then x(t)>-_
P(L-s)afi, a ds aPoA, to< <= to+z, and fi < (aPo) 1/(l-u) implies that fi <

aPofi, a. If k is a positive integer such that (k 1)- <_- L + - < kr, then repeating the
proceeding argument k times yields

x(t)>-_aPo a, to<t<-to+L +-.

Proceeding by induction, we find that

(3.10) x (t) -->_ (aPo) 1/(-d)[/ (aPo)-/(-d]d-

for to+(n--1)(L+z)<t<-to+n(L +-), as long as the right-hand side of (3.10)
is not greater than A.

Since ft. < (aPo) t/(-d, (aPo)-/(-a < 1, which along with d < 1, implies
that

(3.11) (aPo)l/(l-d)[A (aPo)-/(l-d)]dn --> (aPo) 1/(l-d)

as n -. c.
It follows from (3.11) and A < (aPo)/(-a) that there is a positive integer N

such that

(3.12) aPo) /(1-cl)[A aPo)- /(-a)]cl" > A, n >= N.



A MODEL OF SINGLE SPECIES POPULATION GROWTH 571

If we set T(A)=(N+ 1)(L +-) then, combining (3.9) and (3.12), we have

(3.13) x(t) >=aPoA a, > to+ T(fi,).

To verify the second half of the inequality in (3.8) we consider first q C/
such that I1 11 < B, For to < <= to + " we have, again using (*),

L

x(t) <- Jo P(L s)bB ds

bPoB < B,

or, proceeding as in the first half of the proof, x(t)<-_ bPoB to < <= to + m’, n 1,
2,..., i.e.,

(3.14) x(t) <= bPoB r, > to.

If qg C+, B-<IIII-< <(Bo/bPo) ’/r, then, using (*), we obtain

x(t) <- P(L s)bB ds

bPoB to < <-_ to + ’.

If bPoB <- B, then x(t) <-_B, to-L-r<= <= to+z, and an argument similar to
that used prior to (3.10) shows that

x t) <= bPo) /’-)[ bPo)- /’-r)]""

for to+(n-1)(L+)<t<=to+n(L+’),n=l, 2,..., as long as (bPo)/-)

[(bPo)-/-]r" >= B. Since (bPo)-/l-r)> 1 and r < 1,

bPo) 1/(1-r)[j bPo)- /(1-r)]r" bPo)1/(l-r)

as n --)c which implies the existence of TI(B) such that

x(t) <= bPoB >-- to + TI(B).

If bPo/r >/, then bPo/ < Bo since/ < (Bo/bPo)(1/), and x(t) <-_ bPo
(bPo) 1/(1-)[/(bPo)-1/(1-)], to L - <= <= to + ’. Now for to + " < _-< to + 2-, using
(*), we have

x(t) <= bPo(bPor) (bPo)i/(i-r)[j(bPo)-i/(i-r)]rz

and since 0<r< 1 and (bPo)-/(1-r)> 1 we have

(bPo) l/(i-r)[j(bPo)-/(i-r)] > (bPo) i/(i-r)[j(bPo)-/(1-r)]rz

from which it follows that

x(t) <= (bPo)1/(1-r)[j(bPo)-i/(-r)]r
for to- L " <= <= to + 2’. This argument can be repeated k 1 times to yield

x t) <= bPo) /( i-r)[j bPo)- /(1-r)]r
for to <= <= to + L + ’.
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We can now follow the proof for the case bPoB <= B to show the existence of
T2(/) such that x(t) <-_ bPoB, >-_ to + T2(/).

If we set T(B)=max (TI(B), T2(B)), then, using also (3.14), we have

(3.15) x(t) <= bPoB r, >= to + T(B).

Inequality (3.8) follows from (3.13) and (3.15), setting T(A,B)=
max (T(A), T(B)), completing the proof of Theorem 4.

Although the cases d 1 and r 1 have not been covered in the preceeding
results, the following corollary of Theorem 4 gives information about solutions of
(*) when h(t, x) has linear bounds over certain intervals.

COROLLARY. Suppose there are positive constants ao, bo, Ao <A <B < Bo
such that

(i) bo< l/Po<ao, A <(aoPo)2Ao<(boPo)2Bo<B,
(ii) h(t, x)>-aox, Ao<x<=A, h(t, x)>=ao(AAo)/2, A --<x <Bo,
(iii) h(t, x)<=box, B<-X<Bo, h(t, x)<bo(BBo) 1/2, Ao<x<B.--

Then for every A, B, Ao <A <=A, B <=B < Bo, there is T(A, B) such that if
fi, <= q(t) <= ;, I, then the solution x(t) x(t; q, to) of (*) satisfies

aoPo(AAo) ’/2 <= x (t) <= boPo(BBo) 1/2, >- to + T(A, B).

Proof. Set d r 1/2 and a aoA/2, b boB/2 in Theorem 4.
Combining Theorems 2 and 4, we are now able to provide more general

conditions than those provided in Theorem 2 which imply that the population of
our model will die out, i.e., approach zero, for large t.

THEOREM 5. Assume that H1-H3 are satisfied and that there are positive
constants a, b, B, Bo <--oo, d > 1 and r < 1 such that

(i) bPoB < (aPo)-1/(a-l)

(ii) h(t, X) <- ax el, 0 x <- bPoBr,
(iii) h t, x) <- bx r, B <- x <- Bo,
(iv) h t, x) <- bB r, 0 < X < B.

Then, if II ll<( o/bPo) the solution x(t; qg, to) of (*) satisfies x(t; q, to)-O as
t- oO.

Proof. It follows from Theorem 4 that if I1(011 < Bo, then there is T> 0 such that
x(t) x(t; (0, to)< bPoB, >-_ to+ T-L--. Applying the Corollary of Theorem 2
to x(t; Xo+r, to+ T) we have, since IIx,o+tl<bPoB <(aPo)-/(a-),

x(t; Xo+7", to / T) - 0 as

and this is the same as

x(t; o, to)O asto.

4. Periodic solutions oI (*). A periodic solution in a population model
represents a state of equilibrium for the system described by the model and, as
such, is of considerable importance in the applications of the model. An even
more favorable situation is that in which a periodic solution exists and all
solutions starting near it remain near in the future in some-well-defined sense, i.e.,
that the periodic solution be stable. It is shown here, under rather general
conditions on h, that (*) has at least one periodic solution; however, nothing as yet
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has been obtained about the nature of the solutions starting near a periodic
solution other than the information provided in 3.

We shall need the following result due to Browder [4].
LEMMA 1, Let S and $1 be open convex subsets of the Banach space X, So a

closed convex subset of X, So c $1 $, T a compact mapping of S into X. Suppose
that for a positive integer n, T" is well-defined on $1, U o__<__<,T(So)c S, while
T"(S1) So. Then T has a fixed point in So.

THEOREM 6. If H1-H4 and the hypotheses of Theorem 4 are satisfied, then (*)
has a periodic solution, (t), ofperiod nto, where n is any positive integer satisfying
nto > L + - and(4.1) aPoA a <_ ,(t) <-_ bPoB r, >-_ L -.

If H5 is also satisfied, then q,(t) is not constant.
Note. It is not asserted here that q,(t) has least period nw.

Proof. Define T:C/--> C/ by Tq x(q, 0)no,, where n is a positive integer
such that nw > L + - and x(q, 0) is the solution x(t; , 0) of (*). We also define So,
$1 and S by

So {q9 C+laPoAd <-q(t) <= bPoB r, I}

and

S S {q C+IA < qg(t) < B, I}.

It was shown in the proof of Theorem 4, see (3.9) and (3.14), that if
A -< 0 (t) -< B, /, then

(4.2) aPoA a <_ x(t; q, O) <-_ bPoB, > O.

So for N 1 we have, since no > L + -,
(4.3) U o<=j<_NTJ(So) $1 and TN(s1) So,
and it remains to be shown that T is a compact mapping of S into C/.

Since h(t, x) is continuous on K*=[-L-’, no]x[A, B], it is uniformly
continuous there, and there exists a continuous real-valued function /(e) such
that

Ih(t, x)-h(s, y)l<=rt(/(t-s)2+(x-y)2) for(t, x), (s, y)K*

and r/(e)-->0 as e->0. In particular, if 0, 0S, then [h(t, O(s))-h(t,q(s))[<-_
, (110- 11) for s, t I.

If 0, q S and x(t) x(t; O, 0), y(t) x(t; qg, 0) are solutions of (*), then

(4.4)
Ix(t)- y(t)l <: Io P(L-s)lh(t---L+s, O(t---L+s))

h(t-’- L + s, qg(t-’- L + s))Ids <-_ Po.(llo-  11)
for 0 < _-< -. We can assume that II0 q[[--< P0r/([10  011) and thus that

(4.5) Ih(t, x(s))- h(t, y(s))l--<,(Po(llO-

for s, [-L -, -].
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It follows from (4.5), using the same argument as used to establish (4.4), that

ix(t)- y(t)]-< Po(Port([lO o[1)), _-< _-< 2z.

If k is a positive integer such that nto <- kz, then it is clear that

(4.6) [x(t)-y(t)l<-(Pon)([[o-oll), -L-z<-t<-mo,

where (Pol)k is the composition of the function Pot/with itself k times. It follows
from (4.6) that

Ilzo- Z ll II(0, 0). 11

and, since r/is continuous and r/(e) 0 as e 0, (Por/)k(e) 0 as e0 establish-
ing the continuity of T.

We shall show that T is a compact mapping of S by showing that T(S) is
uniformly bounded and that there is K>0 such that x T(S) satisfies
Ix(t)-x(s)lglt-s[ for s, t[n-L-r, n].

It follows from (3.14) in the proof of eorem 4 that if x T(S), then

(4.7)

If x T(S) and s, [nto-L--, nto], s_-< t, then there is q S such that
x (t) x (t; q, 0) and, since nw L - > 0,

L

x(t)-x(s) Io P(L- u)h(t-z-L + u, x(t-’-L + u)) du

L

fo P(L- u)h(s- z-L + u, x(s- ’-L + u)) du

(4.8)
t-’r

fSP(t-’- u)h(u, x(u)) du- P(s-z- u)h(u, x(u)) du
--’r--L -’-L

t--"

f
t--.r--L

fs-, P(t-r- u)h(u, x(u)) du-
-,-

P(s-r- u)h(u, x(u)) du

+ [P(t-’- u)-P(s-z- u)]h(u, x(u)) du.
-r-L

Since 0 < x(t)< B, it follows from H3 and (iv) of Theorem 4 that

(4.9) and

IP(t- r- u)- P(s -z- u)lh(u, x(u)) < bPoBrglt s

P(t- z- u)h(u, x(u)) <- bPoBr.

Substituting these inequalities into (4.8) we have

Ix(t)- x(s)[ (2bPoB + bPoBrK,)I s

for s, t6[0, nto].
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We can now apply Lemna 1 to assert the existence of 0o So such that
TOo 0o. Consider now the solution q(t) x(t; qo, O) of (*). Since h(t + w, x)
h(t, x), > 0, and 0no 00, it is clear that q(t) is a periodic solution of (*) of period

It is of interest to note that since q(t) is continuous for > 0 and q,,,o q0, it
follows that

L

tOo(O) I P(L s)h(nw " L + s, O(no) r-L + s)) ds
LI P(L s)h(s z- L, Oo(s ’- L)) ds,

which implies that O(t) is continuous at 0.
The bounds given in (4.1) for q(t) are an immediate consequence of Theorem

4. The last statement of the theorem is obvious.
Theorem 6 can be combined with the corollary of Theorem 4 to show the

existence of a periodic solution of (*) when h(t, x) has linear bounds over certain
intervals.

COROLLARY. If HI-H4 and the hypotheses of the corollary of Theorem 4 are
satisfied, then (*) has a periodic solution, O(t), ofperiod no), where n is any positive
integer satisfying no) > L + z and

aoPo(AAo) /2 <= (t) <- boPo(BBo) 1/2, => -L -.
THEOREM 7. Suppose H1-H4 are satisfied and that there are positive constants

a, b, d < 1, r > 1 and Ao < A < (aPo)1/(-d) < B </ <_-- (bPo)-/(r-l) such that

(i) h(t,x)>=ax Ao<x<=A,
(ii) h(t,x)<-_bB O<x<=B,
(iii) h(t,x)<-bx B<-x<-_B.

Then (*) has a periodic solution q(t) ofperiod no) where n is any positive integer such
that no) > L + z, and furthermore,

(4.10) aPoA <= O(t) <-_ bPoB, >- -L z.

Proof. Define T:C+- C+ by Tp x(p, 0),o where n is a positive integer
such that no) > L + z, and So, S1 and S by

So {q C+[aPoA d <= qo(t) <- bPoBr},

S S {q9 C+IA < (#(t) < B}.

Since B < (bPo)-/(r-l and r > 1, bPoB < B and thus So c S c $.

If q S, then it follows from Theorem 2 that

x(t; q, O)<_-max {bPoB, (BPo)-/(r-)[[[qgll(bPo)l/(r-)]r’}
over the intervals stated there. Since [[p[[ < B < (bPo)-/(r-) and r > 1, we have

[[qll(bpo)l/(r-)< 1 and bPoB < B,

and it follows that there is a positive integer N such that

x(t; qg, O) <--_ bPoBr, >- N-.
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We note also that if I1 11 bPoBr, then

x (t; q, O) <= bPoB r, >= O.

We note from the proof of Theorem 4 that the lower bound determined in
Theorem 4 for solutions of (*) was independent of the upper bound of h(t, x) and
thus

x( q, O) >= aPoA a, t>0 if pS.

The preceeding argument can be summarized as

(.Jo<__j<__NTJ(So)S and TN(s1)So
The remainder of the proof is the same as the proof of Theorem 6, noting only

that the upper bounds in (4.7), (4.9) and (4.10) can be deduced from Theorem 2
rather than Theorem 4.

Acknowledgments. I would like to thank Professor K. L. Cooke for his
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ISOLATED SINGULARITIES IN STEADY STATE FLUID FLOW*

VICTOR L. SHAPIRO’

Abstract. New results concerning isolated singularities for classical and distribution solutions
of the nonlinear stationary Navier-Stokes equations are established. Also new results are established
for the equations of Stokes and Oseen. Some counterexamples are given. In particular, it is shown that
the nonlinear result for distribution solutions in dimension 2 is, in a certain sense, a best possible
result.

1. Introduction. Letting v (/)1,..., UN), N >= 2, and letting p be a scalar
function, we shall study the following three systems of equations where c is a
constant -1, b is a constant vector, and v is a nonzero constant"

Av Vp,
(1.1)

V.v -cp,

Av (b. V)v Vp,
(1.2)

V.v-- 0,

vAv (v. V)v Vp,
(.3)

V’v =0.

If c 0, equations (1.1) are called the Stokes equations and represent the
slow steady flow of a viscous incompressible fluid with v the velocity vector and p
the pressure divided by the viscosity.

Equations (1.3)are called the stationary Navier-Stokes equations and repre-
sent in general the steady flow ofa viscous incompressible fluid where v is the coeffi-
cient of viscosity. Equations (1.2) are called the Oseen equations of hydrodynamics
and represent a particular linearized version of equations (1.3).

With k 1, 2 or 3, we shall say the pair (v, p) is a classical solution of (1.k)
in the open set f if vj and p are in C(f), j 1, -.., N, and if for each x in f,
equations (1.k) are satisfied.

We shall designate the open N-ball with center x and radius r by B(x, r) and
shall prove the following theorems.

THEOREM 1. Let (v, p) be a classical solution of(1.3) in B(O, ro) {0}. Suppose
that

(i) there is a fl > N such that v is in L’[B(0, ro)];
(ii) for S 2, limr_o [r2 log r[- f too,r)Iv[ dx O.

Then (v, p) can be defined at 0 so that (v.p) is a classical solution of(1.3) in B(0, ro).
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THEOREM 2. Let (v, p) be a classical solution of (1.2) in B(O, ro) {0). Suppose
that

(i) v is in L I[B(O, to)I;
(ii) limr. o r-2 fB(o,r)Ivl dx 0 for S >__ 3,

lim_, o IrE log rl- B(O,r) Ivl dx 0 for N 2.

Then (v, p) can be defined at 0 so that (v, p) is a classical solution of(1.2) in B(0, to).
THEOREM 3. Let (v, p) be a classical solution of (1.1) in B(O, ro) {0}, where

c v for N >_ 2 and c v 1/2 for N 2. Suppose that
(i) v is in L lIB(0, to)

(ii) lim,_. o r-2 fB(O,r) Il dx 0 for S >__ 3;
lim_, o rE log rl- fBto,,)Ivl dx 0 for N 2.

Then (v, p) can be defined at 0 so that (v, p) is a classical solution of(1.1) in B(0, to).
Theorem 3 actually does not hold for the case N 2, c -1/2 as can be

seen by the following counterexample" v xlx1-2, v2 XXXElX] -2, p--

2xlxl-2. The correct theorem in this case is the following.
THEOREM 4. With N 2 and c 1/2, let (v, p) be a classical solution of(1.1)

in B(0, ro) {0}. Suppose that
(i) v is in L[B(O, ro)];
(ii) for either j or j 2, there is a constant called vj(O) such that

lim r-2 fn Ivj(x) vj(0)l dx O.
r--* 0 (O,r)

Then (v, p) can be defined at 0 so that (v, p) is a classical solution of(1.1) in B(O, ro).
In the concluding section of this paper, namely 7, we state and prove

Theorems 5 and 6 concerning isolated singularities for distribution solutions of
the nonlinear stationary Navier-Stokes equations with an external force. Theorem

is an immediate consequence of these two theorems and I3, Thm. 3].
We note that Theorem 1 for N => 3 gives an improvement of [3, Thm. 1].

Next, we note that Theorem 3 is in a certain sense a best possible result. In particu-
lar, the conclusion of Theorem 3 does not hold for N 3 if we replace (ii) by
(ii’) where

(ii’) fs Ivl dx O(r2).
(O,r)

To see this, we set for Ixl 0 and c 4: 1,

v -(1 + c)lxl - + 2 -lDzlxl/ox,

vj 2- 21xl/x xj,

p Olxl- X/Oxx.

A similar situation prevails for N >= 4 and N 2.

j- 2,3,
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In particular for N 2, we observe that (ii) cannot be replaced by (ii’) where

(ii’) Iv 21 dx o(r2 log r),

f Iv dx O(r2 log r).
(0,r)

In this case, we set for Ixl 0 and c 1/2 or 1,

v -(1 + c)log Ixl + 4-1 Olxl= log Ixl/Ox2,

v2 4-1 2[xi2 log Ixl/Oxl Ox2,

p c3 log Ix[/Oxl.
In a similar vein, it can also be shown that Theorem 2 is in a certain sense

best possible (see [2, pp. 391-392]). It is also possible to show that Theorem 1 for
N 2 is in a certain sense best possible; we shall deal with this and related
matters in a future paper.

We shall prove Theorem 3 first, then Theorem 4, then in 5 we shall discuss
the case c 1 for equations (1.1). In 6, we prove Theorem 2 and in the conclud-
ing section of this paper, namely 7, we prove Theorems 5 and 6 and show that
Theorem 6 is in a certain sense a best possible result. Theorem is an immediate
corollary to Theorems 5 and 6.

In this paper, in contrast to our results in [3], we put no conditions on the
pressure in the neighborhood of the singular point. As a consequence, in order
to achieve removability of the singularity in the nonlinear case, we have to make
stronger assumptions here (which nevertheless turn out to be best possible in
dimension 2) on the velocity vector.

Also in this paper, in contrast to [3], we proceed in the nonlinear situation by
first establishing new removable singularity results for the linearized Navier-
Stokes equations, i.e., equations (1.1) with c- 0. Then using the fundamental

k and qj introduced in 2, we relate the linearized results to the non-solutions uj
linear situation. The nonlinear theory is dealt with in 7 of this paper.

2. Multiple trigonometric series and fluid flow. We shall use the theory of
trigonometric series somewhat as in [7] to establish the results in this paper. In
particular, we shall need a number of specific functions on the N-torus, TN
{x" --re _<_ x < t,j 1,.", N}. To deal with this, we shall use the following
notation" m will designate an integral lattice point; (x, y) xlyl + + xryv;
Ixl 2 (x, x); for a function g in the LI(Tv), we shall set

(2.1) g (m) (2r0 -s f(x) e -i(m’x) dx.

For g in L l(Tu)’and > 0 we shall set

(2.2) g(x, t)

The following remark is well-known (see for example [5, Lem. 2]).
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Remark 1. If g is in class C in a neighborhood of the point x, then limt_o
0g(x, t)/xj cg(x)/cxj, j 1, ..., N. Likewise if g is in C2 in a neighborhood
of the point x, then limt_o 2g(x0, t) tXj 6OXk (2g(xO)/63Xj (Xk for j, k 1, ..., N.

Next, with En designating Euclidean N-space, and periodic meaning of
period 2n in each variable, we introduce the functions

k and qi j k=l N(2.3) G,H,u

which are periodic in En U {2nm}, in C[En U,, {2nm}], and in Ll(Tn).
In particular,

(2.4) (o) o,G (0)=H (0)=qj (0)--uj

and for m - 0,

(2.5)

G (m) -Iml-4 H (m) Iml- 2

qf(m) im.ilm1- 2,

u.i (m) [- (1 4- c) 6 / mjmklml- 2] Iml- 2,

where 6 is the Kronecker 6 and c is the constant in (1.1).
To be specific, we define H(x, t), q(x, t) and u(x, t) for > 0 in a manner

analogous to (2.2) using (2.4) and (2.5). Then in [6, p. 72], it is shown that the limits
of H(x, t) and qj(x, t) exist and are finite as 0 for x in En {-J {2rim}. Defining
H(x) and qj(x) respectively as these limits, it is furthermore shown in [6, p. 72] that
these functions have the properties enumerated in (2.3).

Also the following two facts are established in [6, p. 72]:

(2.6) H(x) Ix12/2N is harmonic in En [_J {2nm}.

(2.7)

There is a function H*(x) in C[B(0, 2)] and a positive constant an such
that for x in B(0, 2) {0},

n(x)- ulxl2- n*(x) for N => 3,

H(x) an log Ixl- n*(x) for N 2.

Next, we define

(2.8) G(x)= -(2)-nf H(x-y)H(y)dy forx inEn- U{Znm},
OT

and observe from (2.6), (2.7), and the standard arguments of potential theory that
G has the properties enumerated in (2.3), (2.4) and (2.5).

We furthermore have from Remark 1 that

(2.9) AG(x) H(x) for x in E,- U {2rim}.
Next, we observe from (2.8) that in dimension N 2 and N 3, G can be

defined at 0 so that it is continuous in B(0, 1). Also it follows from (2.6), (2.7) and
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(2.8) that, in particular, G(x) O([x[ 3-N) as Ixl 0 for N _> 4. Consequently, we
obtain from (2.7), (2.9) and well-known facts concerning removable singularities
in potential theory that

there is a function G*(x) in C[B(0, 2)]
such that for x in B(0, 2) {0},

rv[xl4-ev
G*(2.10) G(x)---N) (x) for N> 3, N#-4,

G(x)- 2-1e4 log Ixl G*(x) for N 4,

G(x) 4- lo Ixl 2 log Ixl- G*(x) for N 2

where eu is the constant in (2.7).
Observing that

(2.11) u)(x, t) fi(1 + c)H(x, t) + t3 2 G(x, t)/cxj t3Xk

and defining

(2.12) u(x) lim u(x, t) for x in E LJ (2zrm},
t0

we see from Remark 1 and the properties previously enumerated for G and H
does indeed satisfy the conditions stated in (2.3).that u

Next, we establish the following lemma.
LMMA 1. Let g be a periodic function in C[Ev U (2nm)] and in L(T).

Suppose furthermore that
(i) g is harmonic in B(0, ro) {0} where 0 < ro < 1;

(ii) limlxio [x[Ug(x) O.
Then there are constants Kj, j 0,’", N, and a periodic function A in C(Eu)
such that

N

(2.13) g(x) KoH(x) + Kqj(x) + A(x) for x in Eu- O {2rim}.

From the definition of qj(x) given below (2.5) and from (2.5), (2.7), and
Remark 1, we have that for x in B(0, 2) {0} and j 1, ..., N,

q(x) + (N 2)xlxl -u OH*(x)/Oxj for N 3,
(2.14)

qj(x) + uxjIx1-2 OH*(x)/Oxj for N 2.

Consequently, it follows from (i) and (ii), the hypothesis of the lemma, from
well-known facts concerning removable singularities in potential theory, and from
(2.7) and (2.14) that there is a function A(x) in CB(O, ro/2)] and constants
Ko,K,"’, Ks such that

N

(2.15) A(x) g(x) KoH(x) Kq(x) for x in B(0, ro/2) (0}.
j=l
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We use the right-hand side of (2.15) to define A(x)in Es -Um {2rm} and
we define A(2rm) A(0). The conclusion to the lemma then follows immediately
from periodicity, (2.3), and the conditions asserted for g in the first sentence of the
lemma.

Next, we state the following remark.
Remark 2. Suppose that g satisfies the conditions in the hypothesis of Lemma

1. Suppose furthermore limlxl._,olxlS-lg(x)= 0. Then (2.13) holds with K1
K2 Ks 0.

Remark 2 follows immediately from Lemma and the details of the proof
can be left to the reader.

3. Proof of Theorem 3. From the first equation in (1.1), we have that

(3.1) Avj cp/c3xj forx in B(0, ro) {0}
forj 1, ..., N. Combining this fact with the second equation in (1.1) we obtain
-c Ap Ap. Since c - 1, we conclude that

(3.2)
p is harmonic and vj is biharmonic

inB(0, ro)- {0}, j= 1,...,N.

But then from the well-known mean value theorem for biharmonic func-
tions, we have the existence of constants C and Ce such that

Avj(x)- Cxlxl- f vj(y)dy + C2vj(x)
dB(x,lxl/2)(3.3)
for 0 < Ixl < to/2 and j 1,..., N.

Now B(x, Ixl/2)/3(0, 31xl/2). We consequently conclude from (ii) in the
hypothesis of Theorem 3 and from (3.1) and (3.3) that

(3.4)
lim IxlN- 2[Ixl2 cDp(x)/xj Czvj(x)] o for

lim Ilog Ixll- Xfflxl 2 Op(x)/xj C2vj(x)] 0
Ixl--,o

and j= 1,...,N.

N>3

for N 2

From (3.4) in conjunction with (ii) of Theorem 3, we next obtain that as

f13 {o(r
2 for N>3,

(3.5) IxlZlOp(x)/OxjI dx
(O,r) o(r2 log 1/r) for N 2,

forj 1,..-, N.
Letting N 2 and fixing j, we have from (3.2) that t?p/t?xj is harmonic in

B(0, ro) {0}. Consequentiy, there are constants {a,},%o, {b,}2= and a function
O(x) harmonic in B(0, to) such that

(3.6) c3p(x)/c3xj O(x) + ao log Ixl- + (a, cos nO + b, sin nO)r-"
n=l

for x in B(0, to) {0} where x r cos 0 and x2 r sin 0 and where the series
in (3.6) converges uniformly with respect to 0 for 0 < r _<_ r N r2 < to.
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From (3.6), we obtain for 0 < e < r < r0 that modulo a good term

(3.6’) Ixl c3p(x)fi?xj cos nO dx a,rc p3-, dp.
(O,r) B(O,)

We consequently conclude from (3.5) that a, 0 for n >__ 3. Likewise b, 0
for n __> 3. But this implies

(3.7) IVpl=O(Ix1-2) as Ixl-,0 for N=2.

Using the theory of spherical harmonics for N >__ 3 and proceeding in a similar
manner (see [4, p. 94]), we obtain a slightly better result, namely

(3.8) IVpl O(Ixl x-N) as

From (3.7) and (3.8), we obtain

0(Ixl-1) as Ixl0 for
(3.9) P=

O(Ixl z-N) as Ixl0 for

Next, we choose r and r2 so that

(3.10) 0 < rl < r2 < min (ro, 1)

and select a function 2 such that
2 is C[B(O, r2)

(3.11)
2 in B(0, rl).

We then define forj 1,..., N,

f 2v in
vj ’[ 0 in

(3.12)

Ixl 0 for N >_ 3.

and

B(O, r) {0},

T B(0, r2)

f2p in B(0, r2)- {0},
p’

0 in TN B(0, r2).

N--R,

N>3.

We then extend v) and p’ by periodicity to EN U {2rcm} and observe in
particular from (3.2), (3.9) and (3.12) that the conditions in the hypothesis of
Lemma are met for p’. We consequently conclude from Lemma and Remark 2
that there are constants Ko, K and K. and a periodic function A in C(EN) such
that

(3.13)

2

KoH + Kjqj + A for N=2,

KoH + A for N>__3

forx inEu- U {2rim}.

Next, we define

(3.14) Pj(x) (2re) -u fr p’(x y)qj(y)dy for x in E U {2rcm}.
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Since

(3.15) p’ and vj are in C[Es U {2rcm}] for j I, N,

it is easy to infer from (2.3) and (2.14) that for j 1, ..., N,

(3.16) P is in C[E. U {2nm}]’.

Next, we define

(3.17) wj(x)= v}(x)+ Pj(x) for x in Eu U {2rim} and j= 1,...,N.

From (3.15), (3.16) and (3.17), we have that for j 1,..., N,

(3.18) wj is in C[EN U {2tm}].

From (3.1), (3.11), (3.12) and Remark 1, we have

(3.19) lim [Iml2v) (m) + imjp’ (m)] exp [i(m, x) Imlt] 0
t-*O

for x in B(0, rl) {0}.
Consequently, we infer from (2.2), (3.14), (3.17) and (3.19) that

(3.20) lim Awj(x, t) 0 for x in B(0, rl) {0}.
t--0

But then we obtain from Remark 1, (3.15), (3.16) and (3.17) that

(3.21) wj is harmonic in B(0, rl) {0} for j 1,..., N.

From (3.14) and the properties associated with p’ and qj, we see that for x
in B(0, rl) {0},

(3.22) IPj(x)l =< (2n)-N Ip’(x- yllqj(y)l dy + 0(1).
(0,1)

Writing B(0, 1) B(0, Ix]/2) U [B(0, 21xl) B(O, Ixl/2)] U [B(0, 1) B(0, 21x)] for
Ixl small, it is an easy matter to infer from (2.14), (3.9), (3.22) that as Ixl - 0,

j’O(loglxl-1) for N-2and3,
(3.23) P(x)

O(Ixl 3-s) for m>__4.

Next, we split the rest of the proof up into two cases, namely N >__ 3 and
N-2.

First let us assume that N __> 3. We then infer from condition (ii) in the
hypothesis of Theorem 3, from (3.17), and from (3.23) that

(3.24) Iw(x)l dx o(r) as r - 0.
(0,r)

Using the theory of spherical harmonics exactly as in [4, p. 94] in conjunction
with (3.21) and (3.24) enables us to conclude that for j 1, ..., N,

(3.25) w can be defined at 0 so that it is harmonic in B(0, r,).
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From (3.17), we see that for m : 0,

(3.26) w (m) v (m) + imp’ (m)lml-2.
From the second equation in (1.1) and from Remark 1, we also have that

N v(x, t)
(3.27) limt_o j_ ] cp’(x) for x in B(0, r) (0.

We consequently conclude from (3.25), (3.26), (3.27) and Remark 1 that

w(x)(3.28) -cp’(x)- p’(x)+ p’ (0) for x in B(0, rl)- {0}.
= x

We therefore infer from (3.25) and (3.28) that

(3.29) p’ can be defined at 0 so that it is harmonic in B(0, r).

We next use (3.14) to define P at 0 and infer from (3.29),

(3.30) P is in C[B(0, r)].

But then from (3.17), (3.21) and (3.30) we have that

(3.31) v) can be defined at 0 so that it is in C[B(0, r)].

But from (3.11) and (3.12), we have that v v} and p p’ in B(0, r) {0}.
This fact in conjunction with (3.29) and (3.31) concludes the proof of Theorem 3
for the case N 2 3.

We now assume that N 2 and c 1/2 and c 1. We then infer from
condition (ii) in the hypothesis of Theorem 3, from (3.17), and from (3.23) that

(3.32) (r2 log r- )- f lw(x)l dx O(1) as r 0.
(0,r)

From (3.21), we see that w can be expressed in a manner similar to the right-
hand side of (3.6). We conclude consequently from (3.32) that there is a function
A’(x) in C[B(0, r)] and a constant a’ such that w(x)= A’(x) + a’ log Ixl- in
B(0, r) {0}. But then it follows from Remark 2 that there is a periodic function

A in C(Es) and constant a such that

(3.33) w=aH+A forx inEs- {2zm}.

Next we note from (2.3), (2.4) and (2.5) that in Es U ({2nm},

OG(x)/Oxj (2)-s H(x y)q(y) dy,
OT

(3.34)

26(x)/Oxj xk (2n)- s qk(X Y)qj(Y) dy.
OT

We consequently infer from (3.13), (3.14), (3.17), (3.33) and (3.34) that

6(x) @ K
6(x)

A"(3.35) v)= aH +o + kXXk
+ in E

k=l

where A] is a periodic function in C(E2).
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(3.36)

and

From (2.10), we obtain that for j 1, 2

32G(x)/3x] o22-1 log Ixl - 0(1) as

(3.37)
cG(x)/c3xj 0(1) as Ixl O,

c32G(x)/c3xx c3x 0(1) as Ixl O.

We consequently conclude from (2.7), (3.35), (3.36), (3.37) and (ii) of Theorem

(3.38) aj -Kj/2 forj 1,2.

Using the fact that AG H and that qj c3H/c3xj except at the integral
lattice points in the plane, we conclude from (3.13), (3.35) and (3.38) after a short
computation that in E2 U,, {2rcm},

(3.39)
/)’1 cv ) OH

c3x
+ x2 + cp’ c+ J=KJ + (c + 1)KoH+ A",

where A" is a periodic function in C(E2).
From the second equation in (1.1), and from (3.11) and (3.12), we obtain from

(3.39) that

(3.40) c + ) Kj?H-- -(c + 1)KoH-A"
j= cqxj

for x in B(0, r) {0}.
Since qj c3H(Oxj) in B(O, ra)- {0}, we obtain from (2.7), (2.14) and (3.40i

that for x positive and small

c + )K,o2xxx-(2= -(c + 1)Ko2 log xi-2 + O(1).(3.41)

Since c 4- 1/2 and since e2 4- 0, it follows from (3.41) first that K1 0 and
then since c 4: -1 that Ko 0. In a similar manner, it follows from (3.40) that
K2 0. We consequently conclude from (3.13), (3.35) and (3.38) that

(3.42)
vj Aj, j 1,2,

p’=A in E2- U {27rm}.

Since A’, A’ and A are periodic functions in C(E2), we see from (3.42) that
v’l, vz and p’ can be defined at 0 so that they are in C[B(0, r)]. But from (3.11) and
(3.12), we see that in B(O, r) they are respectively equal to v, vz and p. The proof
of Theorem 3 is therefore complete.

4. Proof of Theorem 4. We shall suppose that condition (ii) in the hypothesis
of Theorem 4 holds for v, i.e.,

(4.1) lim r- 2 f IVy(X) V (0)l dx O.
r-* O .J B(O ,r)

A similar proof will prevail in case (4.1) holds for v2.
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Since obviously v and v2 satisfy condition (ii) in Theorem 3 and since for
N 2 in the proof of Theorem 3 we only started using the fact that c 4: -1/2
after (3.41), we see that (3.1) through (3.9) hold for v and p. In particular, we have
the following:

(i
(ii)

(4.2) (iii)
(iv)

n is harmonic and vl and/)2 are biharmonic in B(0, to) {0}.
Avj c3p/c3xj in B(0, ro) {0}, j 1, 2.

IVp[=O([x[-2) as [xl--,0.
p-O(lx])-1) as.lx]0.

observe that if g is biharmonic in a neighborhood of the origin

g(0) (/1:/’2) / g(x) dx /’28-1 Ag(0)
(O,r)

for r small. Consequently, we infer from (4.2 (i)) that for 0 < [xl < to
(1x1/2)28-1 Avl(x) + [v l(x) v l(0)]

(4.3)
(rlx122-2)- | [vx(y) vl(0)] dy.

(x,lxl/2)

Observing that B(x, Ixl/2) B(O, 31xl/2), we conclude from (4.1) and (4.3)
that

(4.4) Ixl 2 Avl(x) + 32[vl(x) vl(0)] o(1) as Ixl 0.

But then we obtain from (4.1), (4.2 (ii)) and (4.4) that

(4.5) lim r- 2 |
rO JB(O,r)

[xI2Ic3p(x)/c3X dx O.

that
Next, we obtain from (4.2 (i)) and (iv) and well-known facts in potential theory

(4.6) p(x) (x) + ao log Ixl + alxlr
-2 + blx2r -2

where is harmonic in B(0, ro).
But then

for x in B(0, ro) {0},

+ aoxlr
-2 + al[r2 2xZ]r-4

(4.7) X X

for

From (4.7), we obtain that for 0 < r < ro,

2blXlXar-4

x in B(0, ro) {0}.

f VP(X) c?{ ] dx _2b(4.8) 8(nr2) X1X2 k OX OX(O,r)

(4.9)

Since is harmonic in B(0, to), we obtain from (4.5) and (4.8) that

b --0.



588 VICTOR L. SHAPIRO

Next, we observe once again from (4.7) that

f,(o,,.) L coxt -x J dx a1(-4-’)

and once again we use (4.5) and (4.8) to obtain that

(4.10) al 0.

We next choose rl and r2 as in (3.10), 2 as in (3.11) and define v) and p’ as in
(3.12). Likewise, we define Ps and w) as in (3.14) and (3.17) respectively and ob-
serve that (3.18) and (3.21) hold. From (4.6), (4.9), (4.10) and Remark 2, however.
we now have that

(4.11) p’= KoH + A in E2 U {2rcm},

where A is a periodic function in C(E2).
From (4.11) and (3.14) we obtain that for m #-0, Ps (m)= [Kolml-2 +

A (m)]imjlml-2. Consequently ,, IPj (m)l < oo, and we conclude that

(4.12) Pj can be defined at 0 so that it is continuous at B(0, rl).
But then from condition (i) in the hypothesis of Theorem 4 and from (4.12),

(3.17) and (3.21), we conclude that

(4.13) wj can be defined at 0 so that it is harmonic B(0, r).

But from (3.17) and the second equation in (1.1), we have that

(4.14) c3ws(x) p,^
= ?xj =-P(x)-p(x)+ (0) forx inB(0 rl)- {0}.

We conclude from (4.13) and (4.14) that

(4.15) p can be defined at 0 so that it is in C[B(0, rl)].

But then Pj is in C[B(0, r l)] and we obtain from this fact in conjunction with
(4.13) and (3.17) that v and v2 can be defined at 0 so that they are in C[B(0, r)].
This, along with (4.15), concludes the proof of Theorem 4.

5. The ease e----- 1. In this section we discuss the case c -1 in (1.1),
i.e., the system

kv Vp,
(5.1)

V’v=p.

In particular, we shall show that an isolated singularity at 0 is not removable
for classical solutions of the system (5.1) even if v is in C +LiP[B(0, to) for r0 > 0.
To see this set

and

vj(x) xjIxl, j 1,.--, N,

p(x) (N + 1)lxl.

Then an easy computation shows that (v,p) is a classical solution of (5.1) in
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B(0, ro) {0} for any rn > 0. Also it is clear that vjxk exists at 0 (and is zero) and
that vjxk is Lipschitz continuous in B(0, to) for j, k 1,..., N. On the other
hand we see that vl(x)is not in C2[B(0, to)I, i.e.,

v,,,,,(x, 0,..., O)= ( 2, X, O,

( -2, xl<0,

and our assertion concerning the system (5.1) is established.

6. Proof of Theorem 2. The proof of Theorem 2 at first has points in common
with that given for Theorem 3. In particular, we choose r and r2 as in (3.10), 2 as
in (3.11), and define v and p’ as in (3.I2). We then extend v and p’ by periodicity
to E, U {2tm} and observe in particular that

(6.1) v and p’ are in C[EN IJ {2rcm}].

Next, we define

(6.2) V(x) (2t)-Ubk v(x- y)qk(y)dy for x in E,- LI {2rcm},
k=l N

and observe that

(6.3)

(6.4)

Also we observe that

Vj is in C [E 12 {2rtm}].

Next, we set

N

iv (m) bkmklml- 2 for m :Y- 0,

0 for m 0.

(6.6)

(6.7)

(6.5) Wj=v+ V in Eu- U {2rim}

and observe from (6.1), (6.3) and (6.4) that

From the first equation in (1.2)and this last fact, we conclude that

AW (3p/(3xj in B(0, rl) {0}.
But

p is harmonic in B(0, r l) {0}.
We therefore obtain from (6.6) that

(6.8) W is biharmonic in B(0, rl) {0}.
Consequently, there are constants C1 and C2 such that the analogue of (3.3)

holds for 0 < Ixl < rl/2 with W replacing vj. But then from (ii) in Theorem 2 and
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from (6.6), we conclude that the analogue of (3.4) holds with Wj replacing vj.
We use (ii) in Theorem 2 once again and obtain that (3.5) holds. Proceeding
exactly as before using (3.6), (3.6’), (3.7) and (3.8), we obtain (3.9) which we record
here as

O(Ixl-X) as Ixl --* 0 for N 2,
(6.9) P-

O(Ix[2-N) as Ixl .0 for N >= 3.

From (6.1) and (6.9), we have that p’ is in LX(TN). We therefore obtain from
(6.7), (6.9), Lemma and Remark 2 that there are constants Ko, K1 and K2 and
a periodic function A in C(Ev)such that

(6.10)

2

KoH + Kjqi + A for N=2,
p’ j=l

KoH+ A for N>__ 3.

Next, we define Pj as in (3.14) and set

(6.11)

From (3.14) and (6.1), we have that

(6.12) P; is in C[Ev U {2nm}]

and furthermore that

tmjp (m)lm[-2 for m - 0,
(6.13) Pj (m)=

0 for m=0.

We conclude from (6.6), (6.11), (6.12) and (6.13) that

(6.14) wj is harmonic in B(0, r 1) {0}.

It follows from (2.3), (2.4), (2.5), (6.10), and (6.13) that

(6.15)

Ko c3G _2 32G

c3xi ,@1 K,
c3xic3x,

+ Aj for N=2,

KooG/cxJ+ Aj for N__> 3

in En {2rim}

where Aj is a periodic function in C(EN).
Now, in particular, it follows from (6.4), condition (ii) in Theorem 2, and [4,

Lem. 4] that V (V1, "’, VN) meets condition (ii) in Theorem 2. Consequently,
it follows from (6.5) that W (W1, "", Wu) meets condition (ii) in Theorem 2.
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(6.16)

But then it follows from (6.11) and (6.15 that as r 0,

r-2 f/ Iwal dx o(1) for
(O,r)

[r2 log rl- fB Iwjl dx O(1) for
(O,r)

We also note from (6.1), (6.3), (6.5), (6.11) and (6.12) that

N_>_3,

N--2.

(6.17) wj is in C[EN U

From (6.14), (6.16) and an analogue of (3.6) and (3.6’), we obtain that for N 2,
wj(x) O(log Ix] -1) as Ix[ 0. This fact in conjunction with (6.14), (6.17) and
Remark 2 enables us to conclude that there is a constant K and a periodic func-
tion A’ in C(E2)such that

(6.18) wj-K’oH+ A’ in E2- I,.J {2rtm} for N=2.

For N >= 3, a better situation prevails. From (6.14), (6.16) and an argument
involving spherical harmonics as in [4, p. 94] we can conclude that wj can be
defined at 0 so that wj is harmonic in B(0, r 1). We consequently conclude from
(6.17) that

(6.19)
for N >__ 3, wj can be defined in I,.J {2ztm} so that it is a
periodic function in C(EN).

Next, we note from (6.5) and (6.11) that

(6.20) v)=wj-P- V in Eu- U {2rm}.

Now, it follows from (6.2) and (2.14) that

(6.21) V is in L(TI) for < 7 < N/(N- 1).

From (6.15), we have that

PjisinL(T2) for <7< m and N=2,
(6.22)

PjisinL(Tu) for <7<N/(N- 3) and N>= 3,

We consequently conclude from (6.18), (6.19), (6.20), (6.21) and (6.22) that

(6.23) v} is in LY( Tv) for <7< N/(N- 1).

From (6.2), (6.3), (6.23) and [3, Lem. 2] we next obtain that

(6.24) VisinL(TN) for <;<N/(N-2) and N_>_2.

But then we obtain from (6.18), (6.20), (6.22) and (6.24) that

(6.25) v} is in L(T2) for << m and N=2.

In a similar manner, we obtain from (6.24) that

(6.26) v’isinL(T) for <7<N/(N-2) for N__>3.



592 VICTOR L. SHAPIRO

But then using (6.22), (6.3) and [3, Lem. 2] once again but this time in conjunc-
tion with (6.26), we obtain that

(6.27) VisinL(TN) for <7<N/(N-3) for N_>_3.

We infer once again from (6.19), (6.20), (6.22), and (6.27) that

(6.28) visinL(TN) for <7<N/(N- 3) for N> 3.

Next, it follows from [1, p. 261] (as in [3, pp. 341-347]) and from (6.25) and
(6.28) that

v’j. (m)mRm,lm[-2eim’x)

(6.29)
,,,o

is the Fourier series of a function in L(Tu), where < 7 <
forN=2andl <7<N/(N- 3)forN>__ 3andj, k,R= 1,...,N.

From (6.3), (6.4), Remark and [6, Thin. 2], we obtain from (6.29) that

(6.30) cVjc3xR is in Lr(Tu), where 1 < 7 < for N 2 and
1 < 7 < N/(N- 3)for N >_ 3, and wherej, R 1,..., N.

Next, we observe from the second equation in (1.2) that

(6.31) j=12 x 0

Also we observe from (6.13) that

in B(0, rl) {0}.

(6.32) cPj_ p,^
j=c3xj

[p’ (0)] in Eu U= {2a:m}.

From (6.10), (6.19), (6.20), (6.30), (6.31), (6.32), we obtain that

p’ is in L(Tu),

(6.33) where <y<2 for N=2,

and <7<N/(N- 3) for N=>3.
We now subdivide the proof of the theorem into two cases, namely Case

where N > 3 and Case II where N 2.
For Case I, we use (6.33) in conjunction with (6.10) and obtain that KoH

must be L(Tu) for < y < N/(N 3). From (2.7), we see that this is impossible
unless Ko 0. We consequently obtain from (6.10) that

p’ can be defined in U {2tm} so that it is a periodic
(6.34)

function in C(EN).

Next, we observe from (6.13) and [3, Lem. 1] that a similar situation to (6.34)
holds for Pj. We record this as

Pj can be defined in U {2tm} so that it is a periodic
(6.35) function in C(Eu).
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Next we observe from (6.2) and [3, Lem. 2] that

if S is a positive integer and S < N and if v is in L(TN)
(6.36) for < , < N/(N- S), then V is in L(Tv) for

<o < N/(N- S- 1).

We consequently conclude from (6.19), (6.20), (6.35), (6.28) and (6.36) that

(6.37) V is in L’(Tv) for < 7 < v.

From (6.37) and (6.20), it follows that

(6.38) v) isinL(Tu) for <y< o.

We use a similar bootstrap argument in conjunction with (6.38) and [3,
Lemmas and 3] to obtain finally that

v) can be defined in U {2rcm} so that it is a periodic
(6.39) function in C(Eu).

The conclusion in the statement of Theorem 2 follows immediately from
(6.34) and (6.39), and the proof of Theorem 2 for N >__ 3 is complete.

We now consider Case II where N 2. From an argument similar to that
used to obtain (6.29), we observe from (6.33) that p’ (m)mjmklm1-2 is the Fourier
coefficient of a function in L(T2) where < ?, < 2. We consequently conclude
from (6.12) and (6.13) that

(6.40) c3Pj/c3xRisinL(T) for <7<2 and j,R- 1,2.

It then follows from (6.18), (6.20), (6.30) and (6.40) that

(6.41) ?v)/c3xlisinL(T2) for <7<2 and j,R= 1,2.

Next, we set

(6.42) .= bk tv)
k=

in E2- Um {2rm},

and observe from (6.41) that

(6.43) fisinL’(T) for < 7<2.

Next, with c 0 in (2.5), v 1, and f defined by (6.42), we define Uj(x)
2 27t)-2 J’7"2 u(x y)f(y) dy and Q(x) ] (2rt) -2 J’r2 qk(x Y)fk(Y) dy forZk---!

x in E2 U,, {2rcm}. Then it follows from (6.1) and (6.42) that

(6.44) Uj and Q are in C[E2 [,.J {2rcm}].

From (6.42), we have thatff(0) 0. We consequently observe that for all m

(6.44’)
-Iml2Uj (m)- imjQ (m)= fi (m),

2

imkUk (m) O,
k=l
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and conclude that

AUj OQ/Oxj
(6.45)

2

2 UWOXk=O in E2 [,.J {2rim}.
k=l

From (6.42) and (6.43), we next observe that
2

(6.46) f (m)= v.i (m) irrtkb
k=l

It follows therefore from (2.5) (with c 0), from (6.44’), and from (6.46) that for
me0,

2 2

(6.47) Uy (m)= bRimRlm1- 2
l) (m) [mjmklm[ -2 (]

R=I k=l

But then it follows from (6.25), (6.29), [3, Lem. 3] and (6.34) that

(6.48) U can be defined in Um {2rcm} so that it is a periodic
function in C(E)for 0 < e < 1.

From (1.2), (6.42) and (6.45), we have that

A(v)- U)) cO(if- Q’)lcx O,
(6.49)

2

2 (Uk Uk)/Xk--O in B(0, rl)-{0}.
k=l

It follows from condition (ii) in Theorem 2, from (6.49), (6.48) and from
Theorem 3 that

(6.50)

there are periodic functions 1, Oe and in C(Ee)
such that in E2 U {2rtm},

vj=0r+ Uj, j= 1,2,

p’=+Q.

But then it follows from (6.48) and (6.50) that

(6.51) v) can be defined U {2rim} so that it is a periodic function
in C’(E2) for 0 < e < 1.

As a consequence, it follows from (6.51) that the Fourier series in (6.29) is the
Fourier series of a periodic function in C(E2) for 0 < e < 1. But then it follows
from (6.47) and (6.51) that Uj is in C +(E2). As a consequence, it follows from
(6.50) that e can be replaced by (1 + ) in (6.51). Iterating this argument, we
conclude that

(6.52) v can be defined in U,, {2rim} so that it is a periodic
function in C(E2).

From (6.42), we see that the analogue of (6.52) holds for f. Since Q(x)=
2 (2rt)-2j’T2 qk(X- Y)fk(Y)dY in E2- Um{Zrcm} with fj given by (6.42) itk=
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follows from [3, Lem. 1] that the analogue of (6.52) holds also for Q. But then it
follows from (6.50) that a similar situation prevails for p’. We record this as

P’(6.53)
can be defined in U {2rm} so that it is a periodic

function in C(E).

The conclusion to Theorem 2 for N 2 follows immediately from (6.52)
and (6.53), and the proof of Theorem 2 is complete.

7. Isolated singularities for distribution solutions. In this section, we deal with
the system of equations

vAv-(v.V)v-Vp= -f,
(7.1)

V.v =0.

Let f be an open set in EN and let f be locally in Ll(f). We shall say (follow-
ing for the most part the notation in [3, p. 336]) that (v, p) is a distribution solution
of (7.1) in f if v is locally in L2(f), p is locally in Ll(f), and the following holds:

(7.2)
v dx 0

j=I,...,N,

for b in C(f).

In this section, we intend to establish the following two theorems.
THEOREM 5. Let f be locally in L liB(0, to) and suppose that

(i) there is a fl > 2 such that v is locally in LO[B(0, to)I;
(ii) p is locally in El[B(0, to) {0}];
(iii) (v, p) is a distribution solution of(7.1) in B(O, to) {0}
(iv) {r -N j’B(0,r) IVl dx} 1/tJ o(r-{U-1)/2)as r 0;
(v) for N 2, Bo,,)Ivl dx o(r2llog rl) as r O.

Then p is locally in Ll[B(O, ro)], and (v,p) is a distribution solution of (7.1) in

B(O, ro).
THEOREM 6. For N 2, Theorem 5 is also true if condition (iv) is deleted.
To establish Theorem 5, we choose r and r. as in (3.10) and 2 as in (3.11).

Next, we assign p a value at 0 (say 1) and then define for j 1,..., N,

(7.3)
vj 2vj, p’= 2p, f 2f in B(0, r2)

p,v =fj=0 in Tu-B(O r2)

Next, we find a function 2j which is in C[B(0, 2) B(0, 1)] and is such that

[JS"- 2j] dx 0. We then define

(7.4) f)=f-2j in T
and extend vj’, p’ and f) by periodicity to all of Eu. We note in particular that

(7.5) f)=f in B(O, rl)
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and that

(7.6) fs (0) 0,

Next, we define for j, k 1,-.., N,

(7.7) vj, VV’k
and observe that

(7.8)

Also, we observe that as r - 0,

VSk is in LIs/Z(TN).

j=I,...,N.

(7.9)
(0,r)

Next, using (2.5) with c 0, we define U and Q to be periodic functions in Eu
which are also in LI(TN) and which have the following Fourier coefficients:

(7.10) vU (m)= u (m) imvk (m)- fk (m)
=1 R=I

(7.11) Q (m)= qk (m) imvk (m)- f’ (m)
=1 R=I

It is not difficult to see from (2.5), (6.29), (7.8) and [3, Lem. 2] that there exists
a , such that 7 > 1 and such that both Ui. and Q are in L(Tv). (7 ofcourse depends
on N and ft.)

Next we observe from (7.9) and the fact that fl > 2 that

r-U fB Ivjl dx o(r -(Iv- ).
(O,r)

Now from this observation, in conjunction with (2.5), (7.9), [3, Lemmas 12
and 13] and [4, Lem. 4], we conclude that

( o(r- (N- 2)) for N >_ 3,
(7.12) r -I [Uj[ dx

(o,) o([log r) for N 2

and

(7.13) r-u ;n IQI dx o(r-(-)) for N _> 2.
(O,r)

Next, we set for > 0,

Us(x, t) U (m)exp [i(m, x) ]mlt],

(7.14)
Q(x, t) Q (m) exp [i(m, x) Imlt].

fk (m)We define 1)kR(X t) and fk(X, t) in a similar manner using 1)kR (m). and ’"
Observing that -[ml2vUj. (m)- imjQ (m) 2RN=I imRVjR (m)- fj (m) and that
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(7.15) vA Uj(x, t)
cOQ(x, t) cOvjg(x, t)
3x R-1 OXg f)(x, t)

and

(7.16) t?Uk(X, t)
k=l (Xk

O.

From (7.15), we observe that for > 0,

fr [vU(x’ t) AA(x) + Q(x’ t)cg:(x;)]
(7.17)

=--fT,[21Vp(x,t)O(xXR)+ f){x, t)A(x)] dx

for every periodic function A in C(Es).
As is well-known, Us(x, t), Q(x, t), vs,(x, t) andf(x, t) tend respectively in the

L-norm over Ts to Us(x), Q(x), vs(x andf’s{x). We consequently conclude from
(7.17) that

A(x)][. [vUs(x) AA(x) + Q(x) Ox j
dx

(7.18)

v,tx) "x + f)(x)A(x)
j

dx.

Next, we observe that for every in C[B(0, r) {0}], there is a periodic
function A in C[E] such that A in B(0, r) {0}. We consequently conclude
from (7.3), (7.5), (7.7) and (7.18) that

vsv + axusA4+ Ox j
dx

(7.19) (o,,,) (o,,,) k OXk
for in C[B(0, r,)- {0}].

Proceeding in a similar manner, we obtain from (7.16) that

(7.20) 2 UO/Ox dx 0 for in C.[B(0, r)- {0}].
(O,r) k=

Setting B(0, r) {0} in (7.2), we see from (iii) in Theorem 5, (7.19) and
(7.20) that forj 1,..., N,

(7.21a) [ v(vs- U) A4 + (p- ) O4/Oxs 0
(O,r)

and

(7.21b) t --0

for 4) in C(B(O, rl) {0}].
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It is an easy matter using the method of mollifiers to conclude from (7.21)
there is a pair (W, P) such that the following three facts hold:

(7.22) W and P are in C[B(O, ra) {0}] for j 1,..., N;

(7.23)

v A l/V(x) cP(x)/Ox2 O,
N

oW (x)/Ox o
k=l

forx in B(O, r) {0};

(7.24)
v- Uj W,
p-Q=P,

Next, from (iv) in Theorem 5, we observe that

(7.25) lim r-2 f IVl dx 0 for N => 3.
rO d B(O,r)

We consequently obtain from (7.12), (7.24), (7.25;), (v) in Theorem 5; that

fB { (t-(N-2)) fr N > 3,
(7.26) r- u I/V] dx

(o.) o(llog rl) for N 2.

But then it follows from (7.22), (7.23), (7.26) and Theorem 3 that

and P can be defined at 0 so that W and P are in

(7.27) C [B(0, rl)] for j 1,. ., N.

j=I,...,N,

almost everywhere in B(0, r 1).

Now Q is in LI[B(0, rl)]. So we conclude from (7.24) and (7.27) that p is in
LI[B(0, r l/2)]. But this fact in conjunction with (ii) in Theorem 5 tells us that

(7.28) p is in LI[B(0,
Also from (7.13), (7.24) and (7.27), we have that as r 0,

(7.29) r -u | [p] dx o(r -(-1)) for N => 2.
(0,r)

From (7.28) and (7.29), we see that the conditions concerning p in the hypo-
thesis of[3, Thm. 2] are met in B(0, r). This, plus (i), (iii), and (iv) of Theorem 5 in
conjunction with [3, Thm. 2] tells us that

(7.30) (v, p) is a distribution solution of (7.1) in B(0,

Next, we observe that for every 4) in C[B(0, to)], there are functions k and
t/ such that is in C[B(O, rl)] and r/ is in C[B(O, ro)- {0}] and such that
4) + r/. This fact in conjunction with (iii) of Theorem 5 and (7.30) tells us that
(v, p) is a distribution solution of (7.1) in B(0, to). Also (7.28) in conjunction with
(ii) of Theorem 5 tells us that p is locally in LI[B(0, ro)] and the proof of Theorem 5
is complete.

Before proving Theorem 6, we state the following lemma.
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LEMMA 2. Let (v,p) be a classical solution of (1.1) in B(O, ro)- {0} where
N 2 and c v 1. Suppose that

(i) v is in LlIB(O, ro)];
(ii) limr_o r-1 fnto,r)Ivl dx O.

Then there are Ko, K1, K2, al, a2 andfunctions A, A and A2 in C[B(O, ro)] such
that

t?lxl 2 log Ixl- 2 t?Elxl 2 log Ixl-vj(x) aj log Ixl- + Ko cx + Kk + A(x),
k=l lXj tXk

2

4- p(x) Ko log Ixl- KkxklxI- 2 + A(x)
k=l

for x in B(O, ro) {0} and J= 1,2.

To prove Lemma 2, we proceed precisely as in the proof of Theorem 3 and
observe that the conclusion of Lemma 2 is given exactly by (3.13) and (3.35). We
leave the filling in of the details to the reader and consider the proof of Lemma 2
complete.

To establish Theorem 6, we shall show that for N 2, conditions (i), (ii),
(iii) and (v) of Theorem 5 imply that condition (iv) holds every 7 such that
2<7=<3.

To do this we proceed exactly as in the proof of Theorem 5 and observe that
everything is valid from (7.1) through (7.24) except (7.9), (7.12) and (7.13). However,
it is easy to see from (7.8) and 3, Lem. 13] that instead of (7.12), we have

(7.31) r-2fB IU)ldx=o(r-1) as r0.
(O,r)

But then it follows from condition (v) in Theorem 5, (7.24)and (7.31) that

(7.32) r-2 y Wjl dx o(r-1) as r 0.
(O,r)

We next set W (W1, W2) and observe from (7.22) and (7.23) that with
c 0, (W, P) is a classical solution of (1.1) in B(O, rl)- {0}. From (7.24) and
(7.31), we also see that W meets conditions (i) and (ii) in Lemma 2. We have conse-
quently from Lemma 2 that for j 1, 2,

(7.33) V is Lr[B(0, r l/2)] for < T < oo.

Next, we observe that fr2f’(x y)H(y)dy is in L(T) for 1 < < o, and
we conclude from (7.8), (7.10) and [3, Lem. 2] that if 2 < fl < 4,

(7.34) U is in L2fl/(4-fl)[B(0,/’)] for 0 < r < rl/2.

But then from (7.24), (7.33) and (7.34) we conclude that

(7.35) vj is L2/(’*-#)[B(O, r)] for 0 < r < rx/2.
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We then use [3, (3.36), (3.37) and (3.38)] and conclude with no difficulty from
a bootstrap argument that

(7.36) v is L6[B(0, r)] for 0 < r < rl/2.

From (7.36), we see that for 0 < r < rl/2,

r -2 Ivl dx <= Ivl 6 dx nl/2r -1.
(0,r) (0,r)

Therefore {r-2 ivl} /3 (r-/3)Boo,r) =o However this fact implies in particular
that condition (iv) of Theorem 5 holds for every y such that 2 < y =< 3, and the
proof of Theorem 6 is complete.

In conclusion, we shall show that Theorem 6 (and therefore Theorem 5 in
dimension 2) is in a certain sense best possible. In particular, we shall show that
condition (v)cannot be replaced by

(v’)
r-2 fB Ivll dx O(log r),

(O,r)

r-2 B [V2I dx o(log r) as
(O,r)

To see this, we set for Ixl 4: 0,

r-.0.

(7.37)

vl(x) (2v)-l[x2lxl-2 -t- 2 -1

U2(X (2v)- 1X lx21xl- 2,

p(x)-- XllX1-2,

log Ixl],

A(X) UI(X IO1)I(X)/OX1 21- U2(X

A(X) Vl(X V2(X)/OX -JI- V2(X OI)2(X)/tOX2
Clearly, Vl and v2 meet condition (v’). Also we observe that f and p are in

LI[B(0, 1)], v is in L6[B(0, 1)], and that (7.1) is satisfied in the classical serrse in
B(0, 1)- {0}. Consequently (7.2) holds with f B(0, 1)- {0}.

Therefore all the conditions in the hypothesis of Theorem 6 hold provided
(v) is replaced by (v’). If the conclusion of Theorem 6 held also, we would have
that (7.2) holds with f B(0, 1). It is not difficult to see from (7.37) that this
implies in particular that

(7.38) vvl A + Px dx 0 for in C[B(0, 1)].
(0,1)

Observing from (7.37) that YV --log [xl + 4- 821x12 log Ixl/Ox2x, we obtain
after an easy computation that the integral on the left in (7.38) is given by

(7.39) | log Ixl - A(x)dx for b in C[B(0, 1)].
(0,1)

From another easy computation, we obtain furthermore that the integral in (7.39)
is equal to 2rtqS(0). Consequently we see from (7.38) and (7.39) that if the conclu-
sion to Theorem 6 held for the functions defined by (7.37), we would have that
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qS(0) 0 for every b in C[B(0, 1)]. This however is a manifest contradiction, and
our assertion is established.
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SOLUTION OF INTERFACE PROBLEMS BY HOMOGENIZATION. I*

IVO BABUKA

Abstract. The problem of an elliptic differential equation with nonsmooth coefficients is studied.
It is assumed that the coefficients are double periodic with the period H and the right-hand side is
smooth. The behavior of the solution for H- 0 is investigated and theorems about limiting solution
are proved. The study is related to the homogenization ideas used in an intuitive way in the theory of
nuclear reactors and theory of composite materials.

1. Introduction.
1.1. Motivation. In various fields there are problems which lead to a special

kind of partial differential equation. We show its simplest form. The problem
deals with the boundary value problem on f for the self-adjoint elliptic differen-
tial equation

0 cul-1..[- U
H(1.1.1) L _---all(x1, x2) C"(x1 x2)

i=1

where the functions all(X1, X2) and CH(xl, x,2) are piecewise constant (or piece-
wise smooth) and periodic (or "nearly" periodic) with period H which is small
compared to the inverse of the first and second derivatives of f, and the diameter of
the domain

Let us mention some areas where we can find this kind of problem.
(a) Problems related to the study of composite materials. See, e.g., [ 1], [ 13],

[17], [18], [19], [31].
(b) In reactor computations we encounter it when subassemblies create cells

of the reactor. (See e.g. 11, p. 255]). We refer here to [6], [29], [30], [33], [38].
(c) In transformer computations this problem arises when we study the

electrical field of conductors and insulations in oil. In chemistry this problem is
important in connection with the polymer studies. See, e.g., [39].

(d) We find it in studies related to the flow of electrical current in the brain,
the diffusion of metabolics in the tissues, etc.

1.2. Numerical aspects. The problem described by (1.1.1) or some similar
equation is the problem of interfaces where the solution has many singularities.
Singularities of the solution create very severe computational difficulties. For
dealing with singularities caused by interfaces or unsmooth boundaries see e.g.
[2], [3], [4], [12], [20], [37] and many others. If the number of singularities is large,
then it is impossible to consider them individually. So the question is how to solve
such problems. The practical approach here is the homogenization, which, e.g.,
plays an essential role in reactor computations. See, e.g., [14], [30], [38].

1.3. The theoretical aspect. Obviously one natural question is how the
solution behaves when H-0. If aH ao in the space L2 strongly, then the
solution converges to the solution of the differential equation with coefficients a0.

* Received by the editors April 26, 1974, and in revised form November 6, 1974.
t Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park,

Maryland 20742.
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A quite different situation occurs when aH--x a0monly weakly. Let us mention
here some studies related to this or analogous problems in [10] or [35], [36].

Another question arises in connection with the numerical solution, namely,
whether it is possible to use ideas of a small parameter (H). These problems are in
general unsolved. Some particular results are contained in this paper. For a survey
see [7], [40].

The situation is quite different when ordinary differential equations are
investigated instead of partial DE’s. In the case of ODE’s the problem is then
much simpler and has been studied in different aspects, e.g., see [26], [32].

1.4. Outline of the results. This paper is the first of a series. It deals with the
elliptic equation

H

(1.4.1) Z xa,,, r: f

with

(1.4.2) a i,j(x 1, X2) i,j

and a i,j(xi, xe) is a doubly periodic function of period one. We are interested here
in the solution on the entire plane Re only.

1. Provided that f is smooth (and has properties which lead to the finite
energy of the solution) then un - U in Le on every bounded domain with the rate
H(when uu and Uwere properly normalized) (Theorems 4.3.2, 5.3.2). Here U is
the solution of the limiting differential equation with constant coefficients

20bOU(1.4.3) Y i,j-S-’=f"
i,j=l

The coefficients bi3 are computable by solving a periodic problem related to the
differential operator in (1.4.1). Hence it is possible to determine these coefficients
bi,j by the numerical study of a single unit cell only.

Further (Theorems 4.3.4, 5.3.4)

IR [ HouH’OuH] dx--> fR [(1.4.4) dx.
i,j i, OXi

If a1,1 a2,2 1,1 a2,2 and 41,2 a2,1 0, then, in general, b1,1 # b2,2 and bl,2 0.
2. With U obtained from (1.4.3) and V being the solution of the equation

(1.4.5)
0

b
OV

AU,
i,

i, o-jj
where A is an operator of degree 3 with constant coefficients (which are obtained
as a result of the analysis of the single cell only), we see that an approximate
solution can be constructed which converges in energy with the rate H2 (see
Theorem 4.3.3). It is important that the functions U and V are smooth and, e.g.,
the finite element method may be very well used to find them (see, e.g., [5] and
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others). The single (unit) cell problem with all the interfaces has to be solved by
special techniques of the finite element method. See, e.g., [8].

3. Section 5 introduces illustrative examples and summarizes the approach.

2. Basic notations and auxiliary results.
2.1. Domains. Let R2 denote the two-dimensional Euclidian space Ix

(xl, x2)6 R2] with the norm
Further let tl be a given domain. We shall assume that fl is bounded and its

boundary Ofl is composed by a finite number of arcs, which have all continuous
derivatives. Some special domains will be of importance later.

Let now H> 0 be given. Then we define for any integral k-= (kl, k2),

S: S(,,)" {xl Ix Hkll < 1/2H, Ix2- Hk21 < 1/2H}.

The domain Swill be called a cell. If H 1, then we will write S instead of S.
Obviously US-- R:.

Denote further FH= -Jk OS-- .Jk[{X IXl klH,}U{x IX2--- k2H}] again
omitting H when H 1.

Let
4

i=1

where I’i are the sides of Sshown in Fig. 2.1.1. The index H will be omitted if
H= 1. We shall also use the notation Iu= {t[Itl < 1/2H}.

lff
X, H

FIG. 2.1.1

For p > 0 we shall use the notation Opn;, SHand Op will be used instead of
Olp;0

.2. Sobolev spaces. Consider a domain 11 (resp. R2) and let ’(fl) (resp.
C(R2) be the space of all (real) infinitely differentiable functions on fl (resp. R2)
such that all the derivatives have continuous extension to 0fl. Furthermore denote
by @(ll)c (fl) (resp. (R2)) the subspace consisting of all functions with
compact support in 11 (resp. R2); supp f denotes the support of f.

Denote by CH(R2)c (R2) the set of all H-periodic functions, i.e., u
CH(R2) if and only if

(2.2.1) u(x + kH)= tl(Xl + kill, x2 + k2H) ---/g(Xl, x2)
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for any integer and g.(Sff) is the restriction of H(R2) on S. Obviously

Let g(FH) (resp. (FH)) be the restrictions of g(R) (resp. (R2)) on I"/ and
g’(0) be the restriction of g’(f) on 0.

As usual L2() will be the space of square integrable functions u on f/with

the norm

|(2.2.2) 2 2

and dx dx dx2. The scalar product will be denoted as (u, v)m). Sometimes we
shall use the notation L2()= H(),). Further let for a > 0,

(2.2.3)
R

with obvious definition for (u,
In an obvious sense we shall use the notation

(2.2.4) Ilu][r(os) s
u ds.

Later we shall use also the norm (1 < < ), Ilull   0s ), etc., where

(2.2.5) lul ds.

Suppose now that 1 is an integer. The Sobolev space H, (l integral) will be
defined as the closure of (fi)in the norm where

(2.2.6)

0Or +2 2

(2.2.7) D
2 2OXl OX2 i=1

are nonnegative integers. In a similar way the space H(R2) may be introduced,
where the closure is taken of the subset of (R2) Of functions where (2.2.6) is
finite. We denote H(fl)c H(fl) (resp. HS)H(S)), the closure of (fl)
(reap. (S)).

We shall introduce also the spaces L (fl), LSY), etc. These spaces are the
closure of (h), etc. in the norm ]].[,(n) where

L()
L2(II)

e expression (2.2.8) creates a norm of classes if functions modulo constant
functions are considered. In a completely analogous way as closure of the proper
subspaces we introduce the spaces L (R2), L(a), LSt), etc. Further let gp(R2)

More precisely, gH(S) is the space of all u H(R2) being restricted to
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be the subspace of functions such that

(2.2.9) f u dx 0

and L ;P(R2) be the closure of p(R2)iri the norm I1" IILl(n2) (Note that obviously
we deal here with norms and not seminorms as we did in LI(R2).)

0Further we shall denote LLoc(R2)[LLoc(R2). Hoc(R2)] the space of all func-
tions u whose restriction to l-I belongs to L2(), [L2(I), H(R2)] for any bounded

0. We remark that if u 6 LLoc(R2), then u 6 LLoc(R2) also.
Let us make some comments now.
1. Sobolev (see [34]) has shown that the spaces L(R2) and L(R:) are

identical, i.e., that (R2) is dense in LI(R2).
2. In general if u L(R2), then u need not be integrable. Nevertheless if

u L (R2), then u L2.(R2) with a > 1. For more see [24].
3. A similar situation occurs in the case of the space L;P(R2), i.e., if

u L ;"(R2), then

(2.2.10) I[ulli2.,,(n) <= C()llull(n).
For more see [24], [25].

HNext let u-- u,,) L(S), resp. [u H(S)]. Then we shall denote by
H:{u } the se_quence of funct,ons u, and write {u} n/oc(R2)[resp, n/2/oc(R2)]).

H--*I HalFurther L (R2) LLoc(R2) so that

/-2(2.2.11) II{u}l[ (n)=Yllu,llI’(sf)<
k

and analogously for HIQI(R2). {Uff} could be understood as a function defined on
R in an obvious way. We shall say that the sequence {u} coincides if there exists
H Hu eL[o(Ra)so that u uf for x eS. If {u}eI(R) and {u} coincides,

then

We shall often write un={u} LLoc(R2), etc.
We introduce (0fl) as the restriction of (12) on 012 and define/-P (012) as a

closure of g’(0f) in the norm I1" where for u

(2.2.12) Ilull.    ) inf .) I!. (-,)
(f)
0g

Similarly we define L 1/2(0’) and L /2(F/4), H/Z(lP/4), etc. The structure of the
space H/2(O") is well known. For 012 smooth see, e.g., [27] and for 011 piecewise
smooth see, e.g., [9] and [15]. We shall speak about traces of u eLa(f)
(resp. H1()) on OO in the usual sense. Then we have

(2.2.13)

and analogously for Ha/2(Ol).
Now we shall mention some well-known facts about the introduced spaces.
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THEOREM 2.2.1. Let u L1/e(O). Then u G Lq(c3’) for any l<-q<oo.
If oau ds O, then

(2.2.14) Ilu =< Cllull .= o.).2

H [/THEOREM 2.2.2.. Let {u} "-,Loct-2) be given. For any pair k k 2 such that
II-I= OS f)OSI # cb letuI uI on I (in the sense oftraces). Then {UkH} coincides,
i.e., {u} e L ILoc(R2).

2.3. Bilinear form. We introduce a theorem which is a generalization of the
well-known Lax-Milgram theorem.

THEOREM 2.3.1. Suppose
(I) HI and H2 are two real Hilbert spaces with the scalar product (.,.)ul and

(’,")n respectively.
(II) B(u, v) is a bilinear form on H1 H2, (u H1, v H2) such that

(2.3.1) IB(u,
(2.3.2) inf sup IB(u, v)[-> C2 > 0,

Ha H2

(2.3.3) sup IB(u, v)[ > 0, v e 0,
uH

where C < c.
(III) f e HI, i.e., f is a linear functional on H2.

Then
(IV) there exists a unique element Uo 6 H1 such that

(2.3.4) B(uo, v) f(v)

]:or any v He.

(2.3.5) Iluoll., < [Ifll.=
C2

For proof see, e.g., [5].
Let us show some examples which will be useful later. LetH L l(R2) H2,

(2.3.6)
i= 10Xi OXi

Obviously this bilinear form satisfies (2.3.1), (2.3.2) and (2.3.3). Let now [
L(R2), supp f Oq, q > 0 and

(2.3.7) Ir fdx O.

Then

(2.3.8) F(v) IR IV dx

is a continuous functional on H2 and so there is an unique u06 L(R2) (in L l(R2),

C is a generic constant with different values on different places.
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i.e., up to a constant) such that

(2.3.9) B(u0, v) F(v) Vv L(R2),3

and therefore,

(2.3.10) -Au0 f
(in the usual generalized sense). Condition (2.3.7) is a necessary condition for the
continuity of F.

Take now H H2 L 1;P(R2). Then the F of (2.3.8) will be continuous for
any f satisfying IR2f2(1 +]]XI]) dx < 0o with a > 1. By Theorem 2.3.1 there is a
unique uL 1;P(R2) such that

(2.3.11) B(u’d, v) F(v) Vv L 1;P(R2).
Let us assume now that supp f Op and f satisfies (2.3.7). Then as we said we may
find Uo (resp. ug) such that (2.3.9) (resp. (2.3.11)) holds. Because uoe L 1(R2) and
uoe L2, we may choose a representative io for Uo so that ao L 1;P(R2). We shall
often identify io with Uo. Since (2.3.9) holds for all v L 1(R2) we see that rio ug
in this case. This simple observation will be useful later, when oLl(e2) f E
L2(R2), supp fe Oq with Io, fdx =0 will be given such that

B(tio, v)= f vf dx
aR

for any v L 1;p(R2). Then we shall identify io and uo where uo is the solution of
-Auo= f.

2.4. The reglari irob|em. Let ai,i ai, i, i, ] 1, 2, be measurable functions
on R2 which are H-periodic with H 1 and satisfy

2

(2.4.1) Y. a,(x)f, >- a(f +)
i,j=

with c > 0 and

(2.4.2) la,(x)] </3 < 0o.

On L(R2)x L(R2) define the bilinear form

(2.4.3) B(u, v) aii dx.
i, OXi

L2(Qq) q 3, and u is such thatAssume that u 6 LLoc(R2) and f 6 _->

(2.4.4) B(u, v)= f fv dx
aR

for any v 6 (R2) with supp v Qq. If in addition functions aq were smooth, then
u H2(Q,I), ql < q and so Ou/Oxi H(Qq,) and therefore the traces of Ou/Oxi on
OQql would exist and u would be continuous on Qql. (See, e.g., [27].)

//) means "for every v."
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In general, conditions (2.4.1) and (2.4.2) are not sufficient for the above
conclusions. Therefore we shall restrict ourselves to the case when u is continuous
on Oql, the traces of Ou/Oxi exist on Oql and for some p > 1 (ql < q),

(2.4.5) 0xU/II C["UllLl(oq)-l-
Lp(OQq

with C depending on a,/3, q, ql, P. The coefficients which guarantee (2.4.5) for u
satisfying (2.4.4) and the continuity of u will be called regular.

With this regularity assumption we may write for any v L I(Q),

(2.4.6) aii dx fv dx ,fv ds
q i, OXi q Oql

with sc Lp(OQo) and

(2.4.7)

and so : may be defined on every side of the Oq, separately.
The question is nowmWhat conditions of ai,i will guarantee the regularity

assumption? This question is likely not solved. Nevertheless, the coefficients
which occur in applications satisfy mostly the regularity condition, e.g., the case
when the coefficients ai,i are smooth (as we already mentioned). Another case is
when the ai,i are piecewise smooth. Here it is sufficient to assume that in S0 there
are a finite number of domains with piecewise smooth boundaries without turning
points and the coefficients ai,i are smooth, on these domains. This conclusion
follows from [5], [16], [21], [22] and [23]. In the application the most important
case is when the a,i are smooth or piecewise constant.

3. Systems of particular solutions. Through this entire section we shall
assume H 1. Further ai,i will be H-periodic, measurable functions defined on
R2, satisfying (2.4.1) and (2.4.2) and will be regular (see 2.4). Further B(u, v)
will be the bilinear form (2.4.3) defined on Loc(R2) @(R2) and

Obviously,

Bk (U, V) ai dx.
i,j= OXi

B(u, v) Z B(u, v),
k

and because of the periodicity of a,i,

B(u, v) Z Bo(u(x k), v(x k)).
k

Because we assume v e (R2), the sum is finite.

3.1. Particular solution for linear functions. It is obvious that if u C, then
B(u, v) 0 for any v (Re).

Let us define now UtkX;LI(Sk), i= 1,2, k=(kl, ke), as follows. For x-=
(Xl, xe) Sk let

(3.1.1) ut;i(x) k +(x,- ki)-x[li](x k),
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where X[1;i] LSo) (i.e., X
[1;i] is an H-periodic (H 1) function such that

(3.1.2) Bo(X[’;’], v)= eo(x,, v)

for any v L(S0).4 To determine the function uniquely we shall assume that

(3.1.3) Is u[1;i]dx=!s x, dx=O.

Bilinear form Bo defined on LSo)Lln(So) satisfies all assumptions of
Theorem 2.3.1. Further Bo(x, v) is a continuous linear functional on LSo).
Therefore by using Theorem 2.3.1, the function X

[1] exists and is uniquely
determined (in LSo), i.e., up to a constant function).

LEMMA 3.1.1. The system offunctions defined by (3.1.1) coincides and so

U
[1’i] {/[k1’i]} L/oc(=).

Proof. We shall use Theorem 2.2.2. The trace of u[1’i1 exists on OS,. Therefore
we may write for IX2I < 5,

+1/2)6(1 i)u[kl’i](kl + g, k2 + x2) (kl
(3.1.4)

+(k2 + x2)(2, i)-xt;](1/2, X2),
where 8(i, j) is the Kronecker symbol (i.e., 8(i, j)= 1 for =j and 8(i, j)= 0 for
# j). Similarly

[1;i]U(k,+l,k2)(kl--1/2, k2+x2)=(kl +1/2)6(1, i)
(3.1.5)

+ (k2 +x2)6(2 i) X[1,i][,--, X2).

Because X
[1;i L(So) we have

U[1;i] [1 ;i]. ,(k(3.1.6) (k,+l,k_>(kl--5, k2+x2) U(kl,]2)\ 1+1/2, k2+x2)
In the same manner one could show that for ]x ll < ,

[1;i] [1;i] (kU(k,,k2+l)(k Jr-X1 k2-1/2) +x k2+1/2)/A k ,k2\’" 1

etc. so that all assumptions of Theorem 2.2.2 are satisfied. Therefore the lemma is
proved.

THEOREM 3.1.1. For {u1’il} defined in (3.1.1) we have

(3.1.7) utl;’] {U[k1’i]} Loc(R2)
(3.1.8) B(u[1;il, v) 0

for any v

Proof. Let us show that

(3.1.9) B(u1", v) 0

for any v (e2). In fact outl’i]/Oxj, j 1, 2, is a periodic function and therefore
for x So,

(3.1.10) B(u[1;’1, v)= Bo(u[o1;’], v(x + k)).
4 We shall not explicitly distinguish between X LH(R2) and X LSo).
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Hence

(3.1.11)

Denote

B(u v)=X U (ut v)
k

(3.1.12) q(x) Y v(x + k).
k

Because v (R2) the sum in (3.1.12) is finite and obviously q(x) LSo). So we
have

B(u[1;i], qg)=Bo(u[ol’i], )=Bo(xi-x[1’], )=0
because of (3.1.2).

Let us study the function u1; further. We have

(3.1.13) ]lut;illo) 3llu[1;i]llL(So).
Therefore using (2.4.6) and (3.1.8) and the regularity assumption we have

Bo(u[1;i], D) [1;i]D ds
So

(3.1.14)

i=l
vids

with l;l (resp. vi) being the restrictions on I and

(3.1.15) cllur’;’3ll  So)
for some a > 1.

We saw in the proof of Theorem 3.1.1 that Bo(ut; v) 0for any v LSo)
Therefore defining z(x, x2)= p(x) with p(t) (i)6,
(3.1.16) Bo(utl;, zi) 0.

Therefore

(3.1.17) :1"i] __[31 ;i]

and similarly

(3.1.18) [21;i] --7141;i].
Let us define now

(3.1.19) q’;’: JI 1;i] ds, i, ]: 1 2.

These coefficients will play a major role later. Let oo(x, x2) x +1/2. Then ro e
L(So) and using (3.1.16) and (3.1.7) we easily see that

(3 1 20) ql;i] Bo(u[1.i] [1;i] ;i] u[1;j])toi)= Bo(u xi)= Bo(utl

I {/1-< < }.
6 See Fig. 2.1.1.
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Remarks. The regularity assumption was not necessary here for defining the
coefficients ql;il. They could be defined directly by (3.1.20), but the regularity
assumption will be used later.

3.2. Particular solution tor quadratic functions. In 3.1 we introduced the
function utl;il (with the leading term x) which satisfies Theorem 3.1.1. In this
section functions ut2;’’j, _-->0, j _-->0 integers +] 2, with the leading term XEX2

will be introduced. Similarly as in 3.1, the function ut2:i’ will be defined on Sk.
So for x Sk let

(3.2.1) u[2;i’J](x)= xlx2-[(ik + itOmai;i,j)(x -k)xta;il(x-k)]

where

[jk lit’lk 12b-’11+ jto,,(2 ;i,)(x k)xt ;2a(x k)] X
t2;’j-,

(3.2.2)

1[i]1 for -> 0, I[i]l 0

m(1; i, j) min (2, j + 1),

m(2; i, j)= max (1, ])

for < 0,

and X[2;i’J] L/(R2), i.e., X
[2;i’j] is an H-periodic (H 1) function which will be

determined later. See (3.2.24). We shall assume that the function X
2;i’ is so

determined that

(3.23). Is u[2;i’J] dx-- fs xil xzdx.

Functions X
1; and wi have been introduced in 3.1. It is easy to verify in an

analogous way as in 3.1 that {u;’} coincides. Therefore we may define
[2;i,]]_ i, [2;i,]]1 [

k 1 LockX2/

Let us show now that the function X
a;’ may be chosen so that for any

(3.2.4) B[U[2;i’]], V] Pi,] V dx

holds, with , constants which will be determined later. Let us first prove two
lemmas.

LEMMA 3.2.1. Let q (R2), x So and

(3.2.5) Y q(x + k) 0.
k

Then

(3.2.6)

Proof. Denoting

Y’. k,o(x + k) L/(R2).

(3.2.7) i(X) Z kicp(x 4- k)
k
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and letting n ( 1, 2), ’ be integers we get

q,.(x + Z k.,c(x + k +
k

E(k. +.,..).(x + k + -Z -,...(x + k +.,.
k k

q,,(x)-,E (x + k)=

Lemma 3.2.1 may be stated obviously in a slightly different way. Given
qgj E (R2), j 1, 2, and

(3.2.8) E q91(x + k)= E qz(X + k),
k k

then

(3.2.9) Z k,ql(x + k) Z kq2(x + k)+ w(x),
k

where w E L(R2).
Let us prove now the following lemma.
LEMMA 3.2.2. Let q, H(So). Then there is q @(R2) with supp q 03 such

that for x So,

(3.2.10) E qg(x + k)= q(x)

and

Proof. For 0 -< 1 let p(t) be a C function"

p(t) 0

3
(3.2.12)

p(t) 1 for -- t-- 1,

p( t)= -.p(t),

0=<p(t):< 1.

Further for -c< < let

(3.2.13)

u(t) 1

u(t)=p(t+)

u(t) p(- t)

u(t)=0

(t) =0

for ---]=< =<]
for <= =<--,
for 1/2--< t_--<-,
for --<--,
for =< .
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Let us extend the function 4’ periodically and denote it with the same symbol.
Take

(3.2.14) q(x) =1/4q(x)x(x)x(.x2).

It is easy to check that (3.2.14) satisfies (3.2.10) and (3.2.11).
We return now to (3.2.4). On Sk we have

uf2;’l(x) k k2 + ikf-’llkil(x,
+jk}lk-l(x2 k2)+ 1/21[i- 1]lik-211klt2il(x- k)2

+ ijkf-lki-l(x- k)(xz- k2)

(3.2.1 5) + 1/21[J 1 ]ljk11k-21(x2 k2)2

-[(ik-llklt2il + iOam(.i,i) (X k))x’1(x k)]

-[(J’kilk-1 +jWm(2;i,i) (X k))a;21(x k)]

X[2;i’J](x k ).

Therefore

(3.2.16)

B([2;i’j], l)) Z Bk(u
k

[2;i,j], Dk

-[- Bo(X2-X[1;2], j Z kll[i]lkl2[J-’]’/)(x +

+ Bo(1/21[i 1]lixi + ijxxa +1/211-i]1 [[j- 1][x.
(i,) m(;.(x X

; +jo ,(2;.(x X

-X[2;id], Z v(x + k))).
k

In (3.2.16) we used the fact that +j 2. This assumption also gives

}[i- 111 L. I[ J]l =(3.2.17) ik 2

2kl fori=2,

k2 for i= 1,

0 for 0.

Other analogous terms have a similar form.
Using (3.1.2), (3.2.17) and Lemma 3.2.1 we have

(3.2.18) ( X
[’;1] I[li-1]lkl[2J]lv ) F(i’/)/v (x+k))Bo x1- ,iZk (x+k)-- \19k

i.e., F(i’*) depends only on k V(X + k).
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Analyze now the functional Fi’j) defined by (3.2.18).more. Let sC:(x)= 1, x 6

=-x(xl)x(x2) be defined as in (3.2.13). We haveRe, and 5(x)

Bo(xl-Xt’, 2 Y kl 3(x + k)]
/

F2,)()
k

(3.2.19) Bo[X,-X, 1-2p(x +1/2)]
=-Bo[Xl-X’, 2p(x-1/2)]=-2q.

(3.2.20)

(3.2.21)

In general for +j 2, we have

Fi’J)= Bo(x1-x[l’l], Y. k-lkP1)
k

F(2i’j,= Bo(x2-,/[1;2], j Z k[i]lkl2-l]l(x "}- k))
k

_jq[1 ;2]

Therefore we see that

(3.2.22)

with

K(v) Bo(x,-Xt’’l, Y. ki-’llkllv(x + k)
k

(3.2.23) , Y v(x + k)
k

depends on only (see (3.2.18)) and for 1, we have K(ff)= 0. Therefore we
may assume that s,, dx 0. Under this assumption II ,ll.  o <-- Now
using Lemma 3.2.2, for any given ’n(So) we may construct v so that (3.2.23)
holds and < cll ,ll  so . It follows immediately that K is a continuous
linear functional on L(S0).

The same situation occurs with expressions for b4’.
Going back to (3.2.16) we see that

[1;1] [1;2] -]fB(u[2;i’j], V)+ttqm(1;i& +lqm(z;i,j)_l 6 dx
Js

is a linear functional on LSo) when (3.2.23) is used. Hence using Theorem 2.3.1
we may construct X,

t2;’i LSo) so that

(3.2.24) B(ut2;’il, D) [1"1] [1"2] /--[tqmil;i,j) +lqmi2;i,j)J 9 dx
aR

for any v 6 I(R2). This condition serves as definition of X
2;i’ LSo).

So we have proved the following theorem.
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THEOREM 3.2.1. For {Uk2;i’j]} defined in (3.2.1) with X
[2;i’j] determined by

(3.2.24) and (3.2.3) we have

(3.2.25) {u2;i’1} utZ;’i]e LLoc(R2)

and

(3 2.26) B(u[2;i’j], t))= [i,.[1;1] f--t_ I m(1;i,j) -" jq m(2;i,j)] 1.) dx
aR

for any v (R2).
Similarly as in 3.1 we may write

[1"1] [1"2] -IS 0 [2;i,j]i.)Bo(Ig[2;i’j], I))’[-[lqmil;i,j +]qmiz;i,j)J t9 dx ds
So(3.2.27a)

with 2;i,j] resp. being functions on I/o and
(3.2.27b)

Let us introduce

(3.2.28)

then it is easy, to see that

r2,id]__ fi 2;i,j] ds;

r2;i,J] _r[32;i,J],
(3.2.29)

r[22 ;i,j r[42 ;i,j]"

3.3. The structure of the particular solutions. In 3.1 and 3.2 particular
solutions with leading linear and quadratic terms have been constructed. It is also
possible to create, in an analogous, but more laborious way, the particular solution
with leading terms of higher order. It is important, especially from a computa-
tional point of view, that these solutions may be constructed by finding periodic
solutions based on the knowledge of the solution of lower order terms.

We derived the particular solution for H 1 only. It is obvious that knowing
the particular solution for H 1, the general case H 1 is obtainable by a simple
transformation. E.g. denoting u ;il,Hthe particular solution for a given H, then we
have

and analogously,

(3.3.2)

l’l[k2;i’j]’H(x) xx-H iki-1]lk]l + iO)m(1;i,j) H

-H2[jk][li]lkl2-l]l’JvjOJm(2;i,j)(-k),[1 ;2]()]

for x S.
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4. Homogenization problem.
4.1. Introduction. Let aid, i, j 1, 2, be H-periodic (H= 1), measurable

functions on R2 satisfying (2.4.1) and (2.4.2) and the regularity conditions (see
H x2.4). Further let aid()--aii(x/H), Obviously functions a Hi,j satisfy (2.4.1) and

(2.4.2), too, with the constants a and/3 independent of H. We may define on
L 1(R2) L 1(R2) the bilinear form

(411,. BH(u’ v):Iu2 (aO---U Ox)"lOxi
This form satisfies conditions (2.3.1) and (2.3.2) with C1 and C2 independent of H.

Given.]’ @(R2) with compact support and R2fdx 0, there exists a unique
Hu L ’P(R2) so that

(4.1.2) BH(uH, v)= f fv dx
aR

for any v e L I(R2) and, in addition,

(4.1.3) IluHll,l() <_- C,

where C depends on f but is independent of H. The solution uH obviously
depends on H. The main topic in this section is to study how the solution behaves
for H 0. Let us prove a lemma now which will be useful later.

LEMMA 4.1.1. Let f be the same function as above. We define fu so that
fH(x) f(kH) for x e SI. Further let tH e L I’p(R2) be such that

BU(fiH, v) f fUv dx Vv L I’P(R2).(4.1.4)
aR

Then

(4.1.5) Ilt"- UUI/LI(R_)=< CH2,
where C depends on f but not on H.

Proof. Denote O supp (f_fH). By the assumption O is a bounded set.
Let us show that

(4.1.6)

Obviously,

(4.1.7)

and

(4.1.8)

and

(f"-f)v dx

(4.1.9)

Io (fH--f)V dx

.Z Is (fH f)V dx

]fH__ fl <- CH

(fH f) dx <_ CHH.
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On Sff we may write

(4.1.10)

where

(4.1.11)

and

(4.1.12)

Therefore

(4.1.13)

and

(4.1.14)

and

(4..5)

Therefore we have

fs (fH--f)v dx
(4.1.16)

d=H-2 fs vdx

<-- Idl Is (f"-f) dx + fs (fH--f)O dx

Because (4.1.7) holds we have by Schwarz’s inequality and (2.2.10),

f (f--fH)v dx <- CHaIIVIILI(R2)(4.1.17)
aR

for any v L 1,P(R2). Therefore using Theorem 2.3.1 we get (4.1.5).
Let us remark that (4.1.17) holds also when IOfl<C/(l+llxll), >,

lal 2 and }DTI--< C, Ill.
4.2. Analysis of the limiting equation. It will be seen later that the operator

(4.2.1) Au
0 [;] 0__U_U

i,j= l-x q
Oxj

and the bilinear form

(4.2.2) /(u, v) ql’ dx
i, OXi

will play an important role. Let us prove the following theorem.

THEOREM 4.2.1. There exists ao > 0 so that

2

(4.2.3) Y ql;J]ij O/0(+)
i,j=l

for any pair (, 2) and q[1;j] defined by (3.1 19)
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Proof. Using (3.1.20), we see that

(4.2.4) ql;j]:i:/= Bo = iu[1;i], i/4[1;i1

i,j=l i=1

Because of (2.4.1) and (4.2.4),

;J12 a iU[1;i1

L (So)

so (4.2.3) follows if we are able to show that the u t;iJ are linearly independent
functions. But this is obvious because x are linearly independent functions and
xLSo) and xtl;] LSo). Theorem 4.2.1 is completely proved.
e bilinear form (4.2.2) satisfies all assumptions of the eorem 2.3.1 with

H He L I(R2) or H H2 L I’p(R2). Consequently the following theorem
holds.

THEOREM 4.2.2. Let f Hk (R2), k 0, supp [ Qs and R2fdx O. en
there exists exactly one u L l(R2) such that

(4.2.6) B(u, v)= N dx

or any v e L (R). Furthermore u has the ollowing additional properties:
1. ueH[o(R)orl=O, 1,..., k+2;
2. on R-Os has all continuous derivatives and

1
(4.2.7) IDu(x)] g

1 + Ilxll=+’ I1 a,

where K depends on f but not on x. Iff N(R), then (4.2.7) holds for all x R2.
The second part of the theorem follows from the well-known theorems about

the solution of the problem -Au [ on R2, because a simple transformation of the
coordinates transforms the operator A given by (4.2.1) into a Laplace operator.

4.3. The homogenization problem. Let f (R2) and R2fdx 0. Denote by
U L 1,p (R) the function introduced in 4.2, i.e., let

(4.3.1) J(U, v) fn fv dx Vv LI(R2).

Because of Theorem 4.2.2, U has derivatives of all orders and

(4.3.2)
(9 [1 ;i]o_g_

Next we construct vH={1 V}e n(R) so that for x S,

1 oUV(x)=
=o Ox’ Ox(k(xl- kiWi(x2 k2

i+j=
(4.3.3)

2 b(x-l(x-l
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with

b(k)=
/i +
i)(4.3.4) -r zz-.. (kH).(i 45j)! 0x 0x2

We see immediately the following lemma.
LEMMA 4.3.1.

(4.3.5) IIu "W ]]L2(R2) <= CH3,
(4.3.6) u-w"ll-) CH2.

Remark. A sufficient condition for this lemma is that all third derivatives
DU, I1 3 are majorized by the function C(I +llxll)- with > 1.

We set Wn {W} and W" { W} so that

2

i=1
(4.3.7)

(4.3.8)

2

+ Z b(k)utZ"’i’n(x- kH),
i,j=l

2

W(x)= b(k)+ Y’, bH(k)ut;’n(x-kH).
i=l

In (4.3.7) and (4.3.8) the notation

(4.3 9) bY bo,o, blH Hb ,o,

Hhas been used with bi.j defined by (4.3.4).
Let us state some simple lemmas.
LEMMA 4.3.2.

(4.3.10)

(4.3.11)

(4.3.12)

b2H= b0H,

C depends on f but is independent of H. The lemma is easy to check using
(3.1.3) and (3.2.3).

Remark. It is sufficient for Lemma 4.3.2 that ]D" U], ]a 1, 2, 3, is majorized
by the function C(1 + Ilxll)-,/3 > 1.

In general 1VH- wHll,,f.,()- 0 for H 0 and w"ll(< c indepen-
dently of H.

In general the system {Wdoes not coincide. Nevertheless it is easy to check
that there exists a case when the system coincides.

LEMMA 4.3.3. Let

(4.3.13) dO(x) Z pi,jx x 2,

0--<_i+j_--<_2

Pi.i constants, and let bg, bH, bH, in (4.3.7) be given by (4.3.4) and (4.3.9) using
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(4.3.1.5)

(4.3.16)

(4.3.17)

where

(4.3.18)

instead of U. Then {W} coincides and

[ [1;1] .[1"2] ]I
R

(4.3.14) BH(wH, v) Pidtlqm(1;i,j) +]qmiz;i,j)] 13 dx Vv E (R2).
i+j=2

Lemma 4.3.3 follows ,immediately from, Theorems 3.1.1 and 3.2.1.
Define the auxiliary functions

#(X) X[2"/9]([(X -(k, +)2+ (x2 (k, +)2]1/2),
T(x) x[2w9]([(xl (kl +)2+ (x2 k22]1/2),

k, +(x=-

with (t) defined by (3.2.13). It is easy to check that

(4.3.19)
k

on F.
Denote now [r =- (Xl, X2)],

(4.3.20) *#(x)
,=o . .=, ax’, axe

with rl, r2 integral. Further let

(r/-/)(X1- rlH)i(x2 r2H)

(4.3.21)

where 2 VI;r is defined by (4.3.7) using (4.3.9) and (4.3.4) after replacing U in
(4.3.4) by #.

In S# we construct the function 3 V# so that

3V Z lkl--i,k2-])[wl--2vH;(kl-i’k2-j)]
i,j=O

(4.3.22) + (l_i,k2)[W-2V;(kl-i’k2)]
i=0

+ X a(kl,2--j)[W- 2

e system {2 V;,}coincides as shown in Lemma 4.3.3. erefore it is easy to
check that {W-. 3 V} coincides.

Let us estimate 13 Vnl(a). It is easy to see that

(4.3.23) I]W-2 Vn;(k’-’ka-i)l--t,(S. C(k)H3

and

(4.3.24) IIL2(S
< C(k)H4,
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where

(4.3.25)
0 < C(k) _-< C max (ID UI).

Similar estimates hold for WkH-2VH;(kl-i’k2) and W-/-2 VH;(kl’k2-j).
We have

(4.3.26)

(4.3.27) ’k =< CH-’

and similar bounds hold for y and 6. Inequalities (4.3.23), (4.3.24), (4.3.26),
(4.3.27) and analogous ones for the other terms in (4.3.22) give

(4.3.28) 1Ia vI]L’(SkH’) <= C(k)n3.
Using (4.2.7) and Schwarz’s inequality we obtain

(4.3.29) 3 VIIIHCl(R2) C/-/2,
where C depends on f but is independent of H.

We have now proved the following lemma.
LEMMA 4.3.4. Let Wn {W} be defined by (4.3.7). There exists the function

3 VH H (R2) so that

(4.3.30) ]13 vHIIr’’(R2) <-- cn

and WH --3vH L l(R2) i.e., the difference coincides.
Remark. It is possible to weaken the assumption oja U so that

IDaUI -< C(1 +[Ixll)-L > a, I1-- 1, 2, 3.

Lemma 4.3.4 and Theorem 2.3.1 then yield the following lemma.
LEMMA 4.3.5. Let WHbe defined by (4.3.7). Then there exists 4 WH {4 Vkn} SO

that

(4.3.31)

and

(4.3.32)

for any

5 VH {5 VkH} { W-/_ 4 V-/} L ’(R)

and

(4.3.33)

with C independent of H.

k

vELI’p(R2)
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Let v (R2) be given. Then using the regularity condition we obtain

(4.3.34) [1"2] f[’]

+lqmiz;i,j)JJs V dx,Z Z Pi,j(k)[lqmil;i,j)
i+j=2 k

where for +j 2,

1(2) 02U
(4.3.35) p,j(k)=

Ox 10x (kH).

We have

,,k2)- (k,+ 1,/,:2)] ds
(4.3.36)

"" k I, [‘k;2 H;4
l,k2)-- (kl,k2+l)] ds.

Applying Lemma 4.3.3 we obtain

eH;I H;3 [ k- ((k + 1)Hlk2g(k,k2)-- (k+l,k)

((k, + 1)H; k:) ql.;.+ (k
OU((k+I)H, kz-H

0 Ox2

(4.3.37) + i+=2 xil Ox (kH)-oxi Ox((k + 1)H, k2 t2;/,;

OU
((+m,)+((k+m,)

[@ OU
((k + )H, k2H)+

+nf((+I)H,H)],(’
U

2 Z i1+1 ((k +) k2H)
i+=2 Ox Ox

+HR.H,,((k+ 1/2)H,kzH) ] ct2;,/
where

(4.3.38) IR/n((kl+1/2)H, k2H)I<-_C max (IDUI),
xQ 3,k,lotl=3,4

Hand the same bound holds for R
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/-/.2 H,4An analogous expression holds for the term k’,k2--k,,k2+l"
Denote

(4.3.39) K(k) | [(k,,k2)-- k,+l,_] ds,

(4.3.40) K(k) f H,1 H,3[(k,,k2)- k,,k2+ 1] ds.

Similar to the above, we obtain (as in (4.3.37))

f(k)= ou kn)q;((

(4.3.41)
OU

+g4((k +)g, k,

and RH has the same bound as in (4.3.38).
Analogously,

Kf(k)=1/2H3[ a3U
ax ax2 (kH’ (k2 +1/2)H)q[21;1]

03U
+o-(k/, (k +1/2)/-/)q;

(4.3.42)
03U

" () OX]2+l(klg’(kl+(1/2)g)r[22;i’]]]i+j=2

+H4U (klU, (ke +1/2)U).

Now we may construct 6 vH__ {6 Vk/-/} SO that

BHk (6VI, 1;)+[KH(k, k2)+K(k 1, k2)

+ K(k, k2)+ K(k, k2- 1)] f v dx.,s’
H;1 H;3[(kl,k2)- (kl-t-1,k2)]v ds

(4.3.43)

I! /-/’:3

H;2 H;4+ [,-,,/]v ds

H;2 H’4+ [,,2-i)-l2]v ds
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for any v L l(Sff). Using (4.3.37) and an expression for ;tbased on (3.1.1) and
(3.2.1) we obtain

(4.3.44) [[6 VIIIL(S.H <= C(k)n3

with

(4.3.45)

and hence,

(4.3.46)

Ic(k)l c max (Ivu[),
Og;k,lot l= 3

6 vH[I,-,,) <= CH.
Coming back to (4.3.34), using (4.3.35) and (4.3.2) we have for any v

(R2),

E B(W, v) !R fV dx +E B(Ik,,2k2+l)(6 H 12)V2k,2k2+

(4.3.47)

(4.3.48)

Let us denote

3

+H [O’U3(2klH, (2k2+ 1)H)(q]l;1]- r2;2’3)
LOx1

03U
+0 oX(2k’H’ (2k2 + 1)H)(ql;2]- 2r2;1’1]- rt22;2’)

03U
+ (2k H, (2k2+ 1)H)(q’1 r2;0’2] 2r[22;1’1])
OX10X2
03U

+ +
S(2kl,2k2+ 1)

v dx.

03
2A (q1;a1_ r2;2,01) Ox3

+ (ql ;2]_ 2rq2;1,1]_ r[22,2,0]) 02

+ (q[21 ;11_ 2r[22;1,,]_ r2;0,21) 03

+ (qr1 ;e_ rr-;o,e] OX
Therefore it is easy to see that we may construct 7 Vn so that

E B(W, v)= In fnv dx

(4.3.49) +HI (AU)vdx+Z "B(2k,2k2+l)(6 V2k,2k2+
k

k
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with

vt’ll’<) --< CH.
Using Lemma 4.1.1 and Lemma 4.3.5 we get for v e L ’P(R),

(4.3.50) Y. B(WH uH, I)) Hf AUv dx + F(v),
k .IR

where IF(v)[ _-< CH[[v[[( and the operator A is given by (4.3.48).
Applying Theorem 3.2.1 and Lemma 4.3.2 and taking into consideration

Lemma 4.3.5 and Theorem 4.2.2 we get the following theorem.
THEOREM 4.3.1. Let ULI"P(R2) satisfy (4.3.1) (resp. (4.3.2)) and uH

satisfy (4.1.2). Further let 1wH be given by (4.3.8). Then

(4.3.51) Ilu H__l

Using Lemma 4.3.1 and (4.3.12) we get the following theorem.
THEOREM 4.3.2. Let uu and U be as in Theorem 4.3.1. Then

(4.3.52) IIu- cn,7 a > 1.

The proof of Theorems 4.3.1 and 4.3.2 goes as follows. Using Lemma 4.3.5
and (4.3.50), we construct zH= {z} so that WH- zH LI(R) and

(4.3.53)

and

(4.3.54)

Further we have

BH(uH--(WH--zH), V)=0 VvLI’P(Re).

(4.3.55) B"(u", v)= Iu fv dx.

So that, based on the analysis in 2.3, we may claim that uH= WH-zH (in
L 1(Re) or after proper normalization in L ’P(Re)).

Let us further remark that in (4.3.50), which is the basis of Theorem 4.3.1, we
assumed that f has compact support. Essential only was that U L1(R2) IDUI <-_

K(1 + Ilxll) for /3 > 1 and Icl 2, 3 and ID]’I =< K(1 + Ilxll) for /3 > 1 with

Let us define jr A U. Then

(4.3.56) [D]r[ _-< C(1 + IIxI[) -[a[-4,
Further, for _-> ], + ] 3 we shall define

03 U I 0eU Ov
(4.3.57)

Ox Ox2 v dx i-OX OX2 OXl

and for ] _-> i,

(4.3.58)

mdx,

For L2,,(R2) see (2.2.5).
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Because of Theorem 4.2.2 all second derivatives are square integrable. Let us
take L I(R2) so that

(4.3.59) /(, v) f AUv dx,.
aR

and replace the terms with third derivatives by terms with second derivatives of U
using (4.3.57) and (4.3.58).

Obviously the right-hand side of (4.3.59) is a continuous functional on
L l(R2) and Theorem 2.3.1 assures the existence and uniqueness of .

Because the operator A in (4.2.1) has constant coefficients, the function /)
has second and third derivatives which are majorized by the function C( 1 + Ilxll)-4.

Let us denote by if,, the function which is defined by (4.3.8) using instead
of U. Also, " is the function which satisfies (4.3.2) with 1 instead of f (use
(4.3.57) and (4.3.58)). Then Theorem 4.3.1 holds, i.e.,

(4.3.60) II’aH--1 nll.1(R2 CH,

and we get using (4.3.50) also,

(4.361)

with

(4.3.62)

Therefore

(4.3.63)

, B(WH-HHITvl- u",. v)= (v)
k

li (v)l CH2IIVIIL’tR2) L I’p(R2).

We have proved the followingheorem.
THEOREM 4.3.3. Let U and u be functions as in Theorem 4.3.1. Further let
L 1(R2) be such that

/(0, v)= f AUvdx /)ELI(R2)(4.3.64)
aR

and let WH be the function defined by (4.3.7), and 11TVI the ]’unction defined by
(4.3.8) using (J instead of U. en
(4.3.65) IIuH--(wH--H  H)II"z CH,
(4.3.66) Ilu" Wu H’ u < cn, >1w

Let us make some additional comments about this theorem.
1. We analyze the one single cell first.
2. We solve the differential equation of the homogenized problem (4.3.2)

essentially twice (for He convergence) and we use this solution for the construc-
tion of function W.

3. In the case when the coecients a, are constant, then the homogenized
problem (4.3.2) is identical with the original and A 0.

4. The function H is of magnitude H. erefore homogenization
without corrections (operator A) leads to the accuracy of order H only, and the
error in the norm I1" is not better than in the norm I1" I1’=-
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Let us analyze now the problem of the accumulated energy. We are
interested in

(4.3.67) -(f) BH(u I-l, uI).
Going back to (4.2.4) we have

i=l i=l

and therefore,

(4.3.69)

Using Theorem 4.2.2 we obtain

IR (x)l C(1 / IIxlD(4.3.70)

Hence we get

[k B-/(1 w-/’ W/) -/( e’(4.3.71)

On the other hand, using Theorem 4.3.1 we obtain

(4.3.72)

with IRI - CH.

<__ CH2.

BH(u", U") Y’. Bff(uH, un)
k

Y. Bif(’ W, Wff) + R
k

Hence we have the following theorem.
THEOREM 4.3.4. Let f ()) and ff dx =0. Further let uH LI(R2) satisfy

(4.1.2) and U L(R2) satisfy (4.3.1). Then

(4.3.73) BH(uH, uH)=(U, U)+R(H),

where

(4.3.74) IR (H)I <- CH.

5. Examples.
5.1. General algorithms. We now describe the general approach based on

the homogenization principle. Let us be interested in the solution of the problem

(5.1.1)
Oxjid=l -Xi aj’i f
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when ai,j(x) are bounded double periodic functions with period 1 and

(5.1.2) E a,.j(x)sCsci => Y(sc +s2)
with y > 0 (and satisfying the regularity condition (see 2.4)). In addition, assume
that f has compact support and

(..3) f fax o.
aR

Then there exists exactly one weak solution uH L 1(R2) with

(5.1.4) f un dx O.
.10

This solution is the only un L 1(R2) such that

B uH v
i, : ai, - -x -x dx fD dx

for any v 6 L I(R2).
Now the homogenization approach is the following.
1. Find periodic functions (with period 1) X

tl;i] e L 1(S0), 1, 2,

;i](5.1.6) X
[1 dx =O

such that with

(5.1.7) Bo(u, v) E aid(x) dx,
i,]=

Bo(X[1i], v)= Bo(xi, v)

for any v LSo) (see (3.1.2)). Function X
[1;i] exists and is uniquely determined

by (5.1.8) which is the weak form of the equation

0 OX[1;k] 2 0
(5.1.9) . xia.,(x) a,.,.

2. Find the constants q)l;i], i, ] 1, 2, so that (see (3.1.20))

(5.1.10) ql.i]= Bo(Xi-X[1;i], x]).

Because of (5.1.8) we have also

(5.1.11) ql.i] Bo(U[1;i], u[.;i]),
where

(5.1.12) U[I’i] Xi
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3. Find U L l(R2) so that

(5.1.13) IO, Udx=O
and

0 OU
(5.1.14)

i,i=1

Denoting (see (4.2.2))

(5.1.15) - U, " i,1 q -x -x , dx,

we see that U is determined also by the condition

(5.1.16) /(U, v)= f fv dx
aR

and (5.1.13). Function U exists and is uniquely determined.
Now Theorem 4.3.2 claims that

(5.1.17) U- uHIIL:,,(R:) <-- CH

for any a > 1 (for L2,,(R2) see (5.2.5)) (i.e., U approximates un in L2(O) for any
bounded fl). Function U does not approximate un in L 1(Re). But defining

(S. 1.18) Vn(x) U(x)-H O-zs-U_ (x)xtl;i](x/H),
i=1

we get

(5.1.19)

Claim (5.1.19) follows from Theorem 4.3.1 because it is easy to see that

Function Vn approximates u and its derivatives in contrast to function Uwhich
approximates u" but not its derivatives.

5.2. A concrete example. Let us show a concrete example which may be
easily solved. Let a,(x) a2,2(x) a(x) and al,2 a2,1 0 with

a(x) p > 0 for IXl[ <,
a(x)=p>O

In this very special case functions X
t’i] may be easily found. We have X

tl;2] 0. In
fact, it follows immediately from the observation that

(5.2.1) a(xl)--x2 dX O

for any v L(So).
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Let us show now that

(5.2.2) X[1; 1]

Pl P2
X1 for ]Xl < ,

Pl +P2

P!-- P2 (Xl --1/2) for <Xl
P +P.

Pl,--P2(x,+1/2)
Pa +P2

By simple computation we get

(5.2.3)

for -1/2 < Xl < --.

Is a[OX[1;1]Ot’)OX[1;1]OD]- dx
OX OX OX20X2

(p-p) [v(, xa)-v(-1/4, x)] dx.

It is also easy to check that

Ov
dx (Pl-P2) (v(1/4, Xl)-v(-1/4, x2) dx2.(5.2.4) aox--

Because it is obvious that

(5.2.5) Is Xt(x) dx O,

;]equalities (5.2.3), (5.2.4), (5.2.5) are proving together that X
t is given by

expression (5.2.2).
It is also easy to compute q;. We get q;2= qza.a 0 and

qqql;1] 2plP2 [(l 2)1]P +Pz

q(lz ;2] Pl + P2
2
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SOLUTION OF INTERFACE PROBLEMS
BY HOMOGENIZATION. II*

IVO BABUKA
AbstreL The paper studies the effect of the boundary on the homogenization problem analyzed

in[1].

1. Intro8efion. This paper is the second in the series of papers dealing with
homogenization problems. The first part 1 studied the case when the domain was
the entire plane, i.e., the case when no boundary is present. This paper analyzes
the simplest case of a domain with boundary, namely, a half-plane and shows new
features created by the presence of boundary.

All notations will be the same as in {1], which will be referred to as I. The
references to the equations and sections in I will be made by prefix I, e.g., (I.3.2.1)
means equation (3.2.1) in I. On the other hand, (3.2.1) means equation (3.2.1) of
this paper.

2. Basic notations and auxiliary results.
2.1. Domains and spaces. As in I, R2 denotes two-dimensional Euclidian

space [X--(X1, X2) GR2]. Further let for t>-_O, R+(t)-{x Rzlx2> t} and R+=
R +(0). The notations Sff, F", etc., have the same meaning as in I.

For k (kl, k2), k integral and H> 0 let

+HRk, (t) {x
/H /Hwith R k, R, (0).

In I we introduced the spaces (), (R2), Ht(R2), etc. In the same vein we
shall use notation (R+), (R/), H (R +), H(R+), etc. In I the set of H-periodic
functions has been denoted by u(R2), LS), etc. The same notation will be
used here. In addition,R+) (R+) will be the set of all H-periodic functions
in x, i.e., u R+) iff

u(x + kH, x2)= u(x, xe)
+Hfor k any integer. The restriction ofR+) on R, will be denoted by ,(R kl)"

All other notations have analogous self-explanatory meanings.
In I we introduced the space p(R2) (R2) as a subspace of functions

satisfying equations (I.2.2.9):

(I.2.2.9)

_
u dx O.

The space p(R+) (R+) is the space of functions such that instead of (I.2.2.9),
equation (2.1.1) is satisfied:

(2.1.1) udx =0.
aooR

Received by the editors April 26, 1974, and in revised form January 21, 1975.
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We introduced the space L ’P(R2) as a completion of $’p (R2) and introduced the
inequality

(I.2.2.10)

which holds for any u e L I’p(R2). This inequality holds also for the space L(R +);
i.e., we have

(2.1.2)

for any u L(R+).
2.2. eflinear iarm. In 1.2.3 an application of Theorem 1.2.3.1 has been

studied. Let us study now another example of a bilinear form satisfying the
hypothesis of Theorem 1.2.3.1. Let a

+n ([i.e., R2 for ka 0). Assume thatfunctions defined on Ro
2

H(2.2.1)
i,]=

and
H(2.2.2) la,(x)l

with a > 0 and fl < m independent of H. Further let us define the bilinear form

(2.2.3) BH(u, o) fR ai dx.
i, Oxi Ox

Because of (2.2.1) and (2.2.2), the bilinear form is defined onLRH) xLRH)
and satisfies all assumptions of Theorem 1.2.3.1. Bilinear form (2.2.3) satisfies the
assumptions of Theorem 1.2.3.1 also when some other spaces are used. Let the

1,[+space LH --o) be defined in the following way. Let

0 )ofand denote by L’(R-H) the completion in (2.2.4) of the set M $H(RTM

functions with (2.2.4) finite. Now the following theorem holds.
THEOREM For and H1 H2 LV(R-H)

L-V(R +H’
0 ), bilinearform (2.2.3) satisfies all assumptions of Theorem 1.2.3.1 with

C1 and C2 independent of H.
Proof. 1. The norm II" I]v may be expressed also in a different way. Because

u LV(R-H) is H-periodic in variable x we may write

u(x) Z q(x) cos kx
k=0

(2.2.5)
+ q.(x) sin kx

k=l

As in I, C is a generic constant with different values on different places.
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and

(2.2.6)

get

(2.2.7)

-"[[u’[2=
2 [= Io ezra’- +

2

=
e k (x) dx

_2xe 2+H e o tx dx

1,[+Hh 11,-[+Hh2. Let u L -o , v -o . Then using the Schwarz inequality we

[BH(u, v) a,, e -- e
i, OXi

So the first condition of Theorem 1.2.3.1 is satisfied.
3. Let u L(R-n) be given. Using (2.2.5), we see that the function u is

characterized by the functions Pk and qk and the norm of u is given by (2.2.6). Let
l 1,-3’119 +H,us construct vu -0 in the dependence on H in the following way.

Function v will be given by g3g and @ so that

eZvxZqlk(X2), k 1, 2,...,

(2.2.8) q3k e2VXZqgk(X2), k 1, 2,. .,

Equations (2.2.8) yield

(2.2.9)

X2-o e2Vtqt(t) dt.

v eZvX2(u Oo) + q-o,
and therefore,

(2.2.10)

So we get

(2.2.11)

0’/.) 2/x20U--e
OX OX

01.) 2"x, 2__OU e2VXz(=e +23, u qo).
Ox2 Ox2

IBH(u, v)l
Z’* i, =1 aidox---l e 23’x dx

+ ai,a 23, e;’X(u o dx
H il

ellull-2llull, ;(u-o)2 e2vxz dx
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But

(2.2.12)
(u q0)2 e

Therefore,

On the other hand, for [3’1--< C/H,
(2.2.13)

with C independent of H and u. So for any u L t-0 we have constructed a
v Li-V(R-) so that (2.2.13) holds and

(2.2.14) IB’-Z(u,  > llull .
So we have

(2.2.15)

vii [lull IBU(u, v)l = llull ll

with C independent of H and u. Inequality (2.2.15) gives (I.2.3.2). Changing the
role of u and v, inequality (2.3.15) yields (I.2.3.3). The theorem is proved.

Let us remark that Theorem 2.2.1 holds when the spaces LiV(R-n) will be
replaced by Lu,o(R c Ln (Ro which is the subspace of functions whose
traces are zero when x2 0.

The importance of Theorem 2.2.1 is shown in the following observation. Let
uoL,o(R-") be such that

BH(uo, v)= In fv dx

for every v Lko(R-") and Ilfll=; < c with f(x) 0 for x2 > kH. (k, C is
independent of H.) Then Ouo/OXl, OUo/OXz have boundary layer character because
by Theorem 2.2.1, Iluoll, <-- c with 3" C/H.

3. Homogenization problem for R+.
3.1. Introduction. In 4 of I the homogenization problem has been discus-

sed when f R2, i.e., when 1 has no boundary. This section will be devoted to the
case when 1) is a half-plane, i.e., when the boundary occurs in the simplest way.
Here, the boundary may be located differently with respect to the position of the
cells.

We may restrict ourselves to the case 1) R +’, i.e., OR + will intersect the cells
S[l,0) in the middle. Because many steps of the analysis will be the same as in I.4,
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we shall be briefer and we shall concentrate on these parts which are essential to
the study of R /.

Let us formulate our problem. As in 1.4.1, let

(3.1.1) BH(u, v)= ai,j dx
i, O.i

and

(3.1.2) B(u, v)= E q, dx.
i,j=l OXi

We integrate here over R / instead of Re as was done in 1.4. Instead of the spaces
LI(R2) and LI’p(R2) we shall deal here with L(R+). Let (R+) and/(x) 0
for Ix} > p. In contrast to the case studied in 1.4, we do not assume that [ dx O.
Similar to Theorem 1.4.2.2, there exists a unique R+, U L(R+), such that

(U, v)= fR fv dx(3.1.3)

for any v L(R+), and U has all its derivatives extending to the boundary and
(I.4.2.7) holds here too. This follows from the well-known theory of elliptic partial
differential equations. Further, we may extent the function U into R2 preserving
the existence of all its derivatives and (I.4.2.7). Similarly there exists (and it is
uniquely determined) a uH L(R +) such that

B"(u", v)=. fv dx.(3.1.4)

3.2. PtieMar solutions. Through this entire section we shall assume H= 1.
Let

(3.2.1) B,(u, v)= ai,j dx., Ox Ox
Obviously

(3.2.2) B(u, v)= B,(u, v),

and because of the assumed periodicity of ai,i we have

(3.2.3) B(u, v) Y’. Bo(U(Xl k, x2), v(x- kl, X2)).
kl

We have introduced the space LI(R +) resp. L(R+), L I(R 2H), etc. Further
we introduced the spaces LR/H

k ), etc., as spaces of periodic functions. In 2.2
3’ +/-/ ,y +/-/the spaces L/i (R) and Lho(R have been defined. We shall also introduce

IT + 1/’ +the space L (R) resp. Lo’ (R) n the obvious manner, namely,
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In 1.3.1 the function U[k1;i] and in 1.3.2 the function U[k2;i’j] have been
introduced. Let us introduce here functions which will play an important role. Let
us first prove the following lemma.

LEMMA 3.2.1. There exist the function tzql;i]ELlt_I(R +) and numbers /[1,i],
i= 1, 2 (resp./xt2;i’J] E L(R+) and A t2;i’j], i, j= I, 2), such that

(3.2.4)

(3.2.5)

(with X
addition

(3.2.6)

and

(3.2.7)

(3.2.8)

.$[1;i](Xl, O) X[1;i](xl, 0)--/ [1;i]

(resp. l&[2;i’J](Xl, O)-= X[2;i’J](Xl, O) q-[2;i,j]),

(resp. IItt2;i’nlk..(.) <= fllxt2;i’nlk.so))
resp. X

[2;i’]] defined in 1.3.1, resp. 1.3.2, and /given in Theorem 2.2.1). In

Ix 1 ;ill

i_+1/2 (’l’[1 ;i](x1, X2))2 dx, <= C
1/2

+l/2

(resp. (l&2;i’J](xl, x2))2 dXl <= Ce-2=qlx2;i’JllL,So),
,*-1/2

B(/z [1;i], 19)--0

(resp. B(/z [a;i’/], v) O)

]’or any v (R+).

we may find W[1;i1

(3.2.11)

for any

Proof. Let sO(x) 1-p(4x2), where p(t), O=<t -< 1 is defined by (1.3.2.16) and
p(t) 1 for > 1. Obviously :(x, O) 1 and sC(x, x2) 0 for x2 -->

It is easy to see that

(3.2.9)

because of the normalization given in (1.3.1.3). The same estimate holds for
sC(x)xt2;ia. The estimate (3.2.9) also yields

(3.2.10)

and analogous estimates for sC(x)x[e;a] hold. Using Theorems 1.2.3.1 and 2.2.1,
1,//i +/-/e L,,o--o so that

B(w[1"i], 19)=B(X[1;i], 19)

v LI-)oV(R +

and

(3.2.12)
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Using (1.2.2.6) and (3.2.12), we may find h [1;i] satisfying (3.2.6) so that
l/2

wt ’i](x l, Xe)-htl;i]) e dx <-_ C e-2/X2l[x[1;i][[2Ll(So).(3.2.13)
J-1/e

Now we may define
;i] __X ;i]

W
;i] -["h ;i],

and/xt;i] satisfies all properties of the Lemma 3.2.1. Analogously we get the
function tte;i’j. Let us prove now the following lemma.

LEMMA 3.2.2. There exists a function u Le(R+) (3’ as in Lemma 3.2.1)
such that

+)(3.2.14) o={Ok}={[k+Wl(Xl-k)]tztl;2+u}LLoc(R

(3.2.15) _-< cIIxt;2all,.lso,

(3.2.16) u(x, 0) r,

(3.2.17) I, 1 -< cllx;3lll(so,

(3.2.18)

and

(3.2.19)

for any v (R/).

1/2

(/(X1, X2))2 dXl < Ce-2xllxtl2"2IILl(So)
a-l/2

B(q, v) 0

Proof. The proof is similar to the one in 1.3.2 and in the proof of the Lemma
3.2.1. We have

B(o, v) B(q, vk)

(3.2.20) Bo(/./, [1;2], k)(X -k- k, x2)) + Bo(Wll,l, [1;2], ., v(x -- k, x2)
k

+ Bo(t’, 2 v(x + k, x2)).
k

We have (just as in 1.3.2),

Let us study now this functional. First, it is easy to check that if q Li’/e(R /),
then

and

(3.2.22)

V 1/1/29g(Xl) L’-v/2(R+)
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and as is Lemma 1.3.2.2 we get

(3.2.23)

We have also

and hence,

(3.2.24) B(tOl/X

IF(2(6)1 =< IBo(/X1;23, Y, kV(Xl + k, x2))l
k

Therefore there exists w L,Z(R+o),

(3.2.25)
+)q --{(k 4- W (X k )) l.lb[1;2]-4 w} bLoc(R

and B(q3, v) 0 for any v6(R+). As in the proof of Lemma 3.2.1, we find tr so
that w + tr u with u and tr satisfying all properties of the lemma.

3.3. Homogeneous problem. Just as in 1.4 we may construct the
function Wu and W using (I.4.3.7) and 0.4.3.8) with U defined by (3.1.3).

All steps we did in the 1.4 are valid here, too, when space L I’P(R2) is
replaced by L(R+). Unfortunately the step in connection with the function 3 Vu

will not lead to a function of L(R+). To correct this deficiency we have to subtract
function s Vu L (R +) such that

(3.3.1)

and

8VH(xl, O)--(wH--3vH)(xl, O)

u( v", o(3.3.2)

for any v (R+).
Let us study the structure of s VH. For this purpose let 9vH’r= {9Vff"} be

defined so that

02 U9Vff’r(x)= (OU(rH, 0)+ (rH, O)(k-r)H)(-Hp,l;2(x/H)
\OX2 OX10X2

oZu
+ (rH, O)H2(-1/21z[I"I](x/H)
OX10X2

tOl(Xl/H- k)txtl;(x/H) Ix[2;l’13(x/H))
10U(3.3.3) +- _x (rH, O)H.(_txl;(x/H)_ ix[;o,(x/H)

=-HO---U(rH, O)tj,[1;2](x/H)-H2 02U
(rH, O)

OX2 OX10X2

[((k r)+ Wl(Xl/H- k))la,[1;z](x/H) + IJt,[2;I’I](x/H)]
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1 02 U [2;0,2](x/H)]"
2 02 (rH, 0)H2[ ;23(x/H)+ p,

+). IOvH (9 H, 11VH {11We see that V’ Lo(R Denote V }. Construct V
analogously as the fction VU; i.e., let

(3 3.4) 1 VH H 9 9k-i,O[ V’k- v’k-i]
i=0

Then we get by analogous reasoning, using Lemmas 3.2.1 and 3.2.2, that for
7 a/(2),
(3.3.5) }II vIIHCl,/4H(R+) CH2

and
IvH_ll vH LI,v/4H(R+).

Therefore there exists 1 V X(R +) such that

(3.3.6) I112 vH{I’’R+) CH2,
(3.3.7) 3V"= IvH--2vH L(R+),
(3.3.8) BH(3V v)= E B(9V’, v)

k

for any v L(R +) and

(3.3.9) 3VH(x, 0)= (V"- Vn)(x, 0).

Let us find now 14 VH L(R +) such that

(3.3.10) BH(3vH--Zv V)=0

for any v L(R +). Let v L(R +) such that v(x) 0 for x (+ k)H, k arbitrary
integer. Because of the construction of IV we see that

(3.3.11) E B(9V’, v)=0.
k

Let v L(R+). Denote
(3.3.12) w(x) v(x)x((x/H-(k-))2)
with x defined in (I.3.2.13). Then

EB(V’, )
k

=Z (Bff(9 Vff’k, wD+Bgi(9V’-1, w))

Z H(9v’k--9V’k-l, W).
k

(3.3.13)

We get also

(3.3.14)
]B(9V’k-9V’k-1, w)

c(k)llgv’-gv’-lJl.,,4,-,-,llvll,-,-,.
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(3.3.17)

so that

This yields

(3.3.15) Y J--/(9W--/’k,/.)) CH211vll’.+
and using Theorem 1.2.3.1, we see that there exists 14 V/-/L(R /) with

(3.3.16) TM v"ll+)--< cn2

and satisfying (3.3.10).
So there exists 15 V" " (R +),

15 V"ll,,Cl<n+)__< CH2

lOv. 15 VH LI(R +),
(3.3.18) B"(lVI-15V", v)=0
for any v L(R/) and

(3.3.19) (V"-SV")(x, 0)= (V"- V")(x, 0).

Going back to the definition of IVH and 11V, we shall get by simple
computation

(IvH--11 vH)(xl, O)-(wH--3VH)(X1, O)
(3.3.20)

HOU(x, O)Xtl;2]+H2g(xl)
Ox2

where function g depends on U and H with

f_-oo g12)(3.3 21) (g2+ dXl < C

and C independent of H. Equations (3.3.18), (3.3.19) and (3.3.20) describe the
structure of the function 8 VH introduced at the beginning of this section. This
analysis of 8 V. leads to the following theorems.

THF,OREM 3.3.1. Let Usatisfy (3.1.3) wit.h,f g’(R /) CI (R2) and uHsatisfy
(3.1.4). Further let 1WI be given by (1.4.3.8). Then

(3.3.22) [[u"- W"ll-c.(+)_-< CH’/2,
(3.3.23) Ilu" -’ W"]["r,’(R+(z))----< CH+ CH1/2 e -z/",
where ?>0 is independent ofH (and R+(z) is introduced in 2.1).

THF,ORM 3.3.2. Let un and U be as in the previous theorem. Then
H(3.3.24) u- u I1.o )--< CH. a < 1.

THEOREM 3.3.3. Let u I-I and U be the same as in Theorem 3.3.1. Further let
L I(R /) be such that

(3.3.25) (, v) f/ AUdx
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for any v L(R+) and

(3.3.26) t)(x, 0)= At’20---U(x, 0).
OX2

Let W be given by (I.4.3.7) and ITVH, the function defined by (I.4.3.8) using
instead of U. Then

(3.3.27) IIuH--(WH--H vH)Iln’(R+(z)) <- CH2 + CHa/2 e-13z/H.

THEOREM 3.3.4. Let the assumptions of Theorem 3.3.1 hold. Then

(3.3.28) BIq(uH, uH) (U, U)+ R(H),

with

R(H) <= CH.

3.4. The general problem. The existence of the boundary influenced the
analysis of the problem. We have been able to proceed because of our assumption
about the boundary, namely, we only investigated the case of a half-plane. The
question is whether the theorems hold for a general domain also, provided that the
solution U is smooth. The problem remains open. Of course some weaker results
are valid in the case of the general domain. So, e.g., it is possible to prove that
(3.3.22) holds in general. The validity of (3.3.23) is not clear. Using the maximum
principle which is valid for the equation, estimate (3.3.24) holds for c 0 if the
domain is bounded. In some of the next papers we shall study these problems
more thoroughly.
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AN INVERSE EIGENVALUE PROBLEM
OF ORDER FOUR*

JOYCE R. McLAUGHLIN?

Abstract. In this paper coefficients A(s) c*[0, 1], B(s) c[0, 1] are constructed so that given
positive numbers A < A_ < < A,, are the first n eigenvalues and given positive numbers Pl, ",

are the first n normalization constants for the first n eigenfunctions for the fourth order self-adjoint
eigenvalue problem y(4) + (Ay(1))(1) + By-Ay =0, y(0) y(1)(0) y(1) yl)(1) 0. The solution is
determined from the spectral function for the eigenvalue problem.

1. Introduction. In the usual fourth order, self-adjoint eigenvalue problem,
Coddington and Levinson [4], real coefficients A(s) C(1)[0, 1], B(s) C[0, 1],
and self-adjoint boundary conditions ja__l[M/jy(j-1)(0)+Nijy-l)(1)]=0, i=
1, 2, 3, 4, are given with Mij, Nii being real constants, i, j 1, 2, 3, 4; then
ei-genvalues A 1, A2, A3," are sought so that the problem

y(4)(S) + (A (s) y(1)(s))(1) + B(s)y(s)- Ay(s) 0,
4

E [MiiYJ-1)(O)+NiiYY-1)(1)] =0, i= 1, 2, 3, 4,
j=l

has a nontrivial solution when A A, i= 1, 2, 3,.... The inverse eigenvalue
problem to be considered here is that of assuming that a set of positive real
numbers is given and then seeking to determine real coefficients A(s) and B(s) in
a fourth order, self-adjoint, linear equation, and real constants IVIi, N, i, j 1, 2,
3, 4, so that the given set of real numbers is the set of eigenvalues for a fourth
order, self-adjoint eigenvalue problem.

Interest in this fourth order, inverse eigenvalue problem is fairly recent.
However, inverse second order problems have been considered by a number of
authors. Extensive work has been done by Borg [3], Marcenko [ 12], Krein [6-1, [7],
Levinson [9], and Gel’land and Levitan [5]. Roughly speaking, in each of their
papers an infinite set of real numbers is given and then a function q(s) and
corresponding boundary conditions are sought so that the infinite set of real
numbers is the set of eigenvalues for the eigenvalue problem

y2)+(A-q(s))y -0,

y(O)+hy(1)(O)=O,
y(1) + Hy(1)(1) O,

where h and H are determined from the given set of real numbers. It was noted by
Borg [3], that knowledge of all of the eigenvalues for one eigenvalueproblem was
not enough to determine q(s) uniquely; and that both for uniqueness and for
existence proofs an additional condition had to be assumed. Accordingly, in [3],

* Received by the editors October 8, 1974, and in revised form June 18, 1975.
t Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York

12181.
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[12], [6], [7], [9] knowledge of two alternating sequences of eigenvalues is
assumed, while Gel’land and Levitan [5] assume knowledge of a sequence of
eigenvalues, and the corresponding sequence of normalization constants, i.e., the
spectral function. (The normalization constants are squares of the L2 norms of
eigenfunctions corresponding to the sequence of eigenvalues.) Furthermore,
Levitan [10], [11] has shown that given the two sequences of eigenvalues as in [3],
[ 12], [6], [7], [9], the normalization constants associated with either sequence, i.e.,
the spectral function, may be constructed. Hence if either two alternating
sequences of eigenvalues are known or if the spectral function is known, the
approach given by I. M. Gel’fand and B. M. Levitan may be used to find the
unknown coefficient, q(s) and boundary conditions in the second order inverse
problem.

Some work has been done for the fourth order problem by Barcelon [ 1], [2].
Following the approach of M. Krein, V. Barcelon shows that uniqueness and
construction of coefficients can be obtained for a fourth order problem from the
knowledge of three, distinct, interlacing sequences of eigenvalues. Other work has
been done by McKenna [13] in which the author parameterizes the coefficients in
a fourth order self-adjoint equation and attempts to vary the parameters to force
the first four eigenvalues for an associated eigenvalue problem to be chosen real
numbers. The results here are largely negative; i.e., the parameters cannot be
chosen so as to make the given four real numbers the first four eigenvalues for the
problem.

The present paper attempts to generalize the work of Gel’fand and Levitan
[5] to the fourth order case. That is, roughly speaking, it will be assumed that
eigenvalues and normalization constants are known, and then the corresponding
eigenvalue problem (i.e., coefficients of a fourth order, self-adjoint differential
equation and self-adjoint boundary conditions) will be sought. In order to make
the analysis more elementary and to exhibit basic ideas more clearly, it will be
assumed that only the first n eigenvalues and first n normalization constants are
known. The assumption that only the "first part" of the spectral function is known
means that solutions (i.e., coefficients of the fourth order equation and self-
adjoint boundary conditions) are not unique. It does allow us, however, to choose
the remaining eigenvalues and normalization constants, that is, the remainder of
the spectral function to vary the resultant boundary conditions; also, it enables us
to represent the coefficients in the fourth order differential equation as finite sums
of other functions which, in turn, are solutions of a finite set of nonhomogeneous
linear equations.

The particular problem to be solved is the following. We assume we are given
2n positive real numbers , <I2 <i3 <" <ln, Pl, 02, P, On. We then seek
to find a set of coefficients A(s)Ct’[O, 1] and B(s)eC[O, 1] and functions
yx,, 1, 2,. , n, such that 1 <A2<" <, are the first n eigenvalues, and
yx,, i= 1,..., n, are the corresponding eigenfunctions, for the eigenvalue
problem

y(4) + (Ay(1))(1) + By Ay 0,

y(0) y(’)(0)= y(1)= y(1)(1)= 0.
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Further, it is required that Pi =10 [Yx,(S)]2 ds. The boundary conditions y(0)=
y’(0)- y(1)= y’(1)= 0 are chosen for ease of solution. It is possible that for the
given finite set of eigenvalues and normalization constants, more general bound-
ary conditions may be obtained; this is discussed in Remark 2 of 3 and in 4.

The analysis of this paper is divided into three sections. In 2 the set of
eigenvalues and normalization constants is completed (judiciously) and a set of
functions {Yx,}l is generated so that each y,, 1, 2,. , has the form

yx,(s) Zx,(s) + K(s, t)Zx,(t) dt,

with each Zx,(s), i= 1, 2,..., being a given, known function. The function
K(s, t), 0 <= <= s <= 1, is determined from the assumption that {y,}i= is a complete
orthogonal set on 0=<s-< 1 with p =j [y,(s)]2 ds. Under this assumption it is
shown that K(s, t) is a solution of an integral equation of the form

f(s, t)+ K(s, z)f(t, z) dz + K(s, t)= O,

where f(s, t) is represented as a finite sum of known functions. It is also shown that
y,(0) y(l,)(0) 0 and y,(1) y(l,)(1) 0.

In 3, the coefficients A (s) and B(s) are defined, and it is shown that each
satisfies

(1)x(1),, +tY, +By,-Aiy,, =0,

i= 1, 2,.... Further, it is noted that since the set {yx,}i_- is complete and
orthogonal and each element of the set satisfies the same set of self-adjoint
boundary conditions then the given A < A2 <" "< An set of positive real numbers
are eigenvalues (an in particular the first n eigenvalues) for the problem

y(4) + (Ay(1))(1) d- By hy 0,

y(0) y(1)(0)= y(1) y(1)(1)= 0.

Section 4 is devoted to a discussion of the existence of self-adjoint boundary
conditions satisfied by a set of functions {ya,}= which is orthogonal and such that
for fixed A (s) and B(s) each y, satisfies an equation of the form

y(4) + (Ay(xli))(1) + Byx,- A,yx, 0.

This discussion is relevant when more general boundary conditions are desired.

2. Construction of a complete, orthogonal set of functions. In this section a
complete, orthogonal sequence, {y,}7’= 1, of functions will be generated; each of
the functions y,, 1, 2,. ., will also be shown to satisfy the boundary condi-

(ltl) 0 These functions will later be shown to betions y,(0)= yl,)(0)= y,(1)= yx,,
the entire set of eigenfunctions for the eigenvalue problem (1).
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To this end, the following associated eigenvalue problem will be considered.
Let A *, A 2"," be the eigenvalues for the eigenvalue problem

(2)

Let

where

Z(4)- AZ 0,

z(0)= z)(0) z()= z)()=0.

[sin (A 1/4S)-- sinh (A 1/4S)]
Zx(s) 2A3/4 -k-o

[cosh A 1/4S--COS A 1/4S]
2A 3/4

sinh A 1/4- sin A 1/4

cosh A 1/4-cos A 1/4.

(4)Then for each A, Zx (s) satisfies the fourth order differential equation Zx AZx
1/4 (3) 10, and the initial values, Zx(0)= ZI)(0)=0, Z2)(0) a/A and Zx (0)=-

Furthermore, Zx(1)=0. Also, Zx,*. is the associated eigenfunction for each
eigenvalue A * of problem (2). Furthermore, let/9/* be the normalization constant
for Zx* that is,

0* | [z,*.] ds.
Jo

It should be noted, at this point, that in order to determine the coefficients
A(s) and B(s) in (1), more than the given first n eigenvalues A1,-" .,A, and
corresponding normalization constants pl, ",p, will be needed. In fact, for the
formulation being presented here, the entire set of eigenvalues and associated
normalization constants is needed. These are chosen judiciously to ease the
solution of the problem and insure that the yx, satisfy the chosen boundary
conditions. Consequently, the remaining eigenvalues and normalization constants
are defined as follows. Let the remaining eigenvalues Ai, n + 1, n + 2, , be
defined by Ai A/*, n + 1, n + 2, and similarly, let the remaining normali-
zation constants pi, n + 1, , be defined by pi p’i, n + 1, n + 2, .
Since the known eigenvalues A 1, , An are required to be the first n eigenvalues,
the above choice for the remaining eigenvalues implicitly assumes that An < A*n+l
This assumption is without loss of generality since an additional, finite number, of
eigenvalues, say An+l < < An+,, with An < An+l, may be added to the list of
known eigenvalues until An+m < A*n+m+l

The set of functions {Y,}i=I is now defined in terms of the functions {Z,}=I
and an unknown function K(s, t) as

(3) yx,(s) Zx,(s) + K(s, t)Zx,(t) dt.

The formulation defines yx,(s) as equal to Zx,(s) plus the "error" term,
o K(s, t)Zx,(t) dt. The function K(s, t) is the same for each 1, 2,. and will be
completely determined by requiring that the sequence of functions {Y,}il is a
complete, orthogonal set. In addition, under the assumption that K(s, t) is
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sufficiently differentiable, this formulation for yx,(s) automatically gives the
left-hand boundary conditions of (1), namely that yx,(0) yl,)(0) 0.

Again, the function K(s, t) is determined from the assumption that {yx,(s)}i=
is a complete, orthogonal set on 0 =< s =< 1. In fact, the following theore,m is true.

THEOREM 1. LetZx,(s), Zx.,(s), and yx,(s), 0-<s_-< 1, i= 1, 2,.... be defined
as above. Suppose, in addition, that K(s, t) is continuous in 0 <- <-s’< 1. Then
{yx,(s)}il is a complete, orthogonal set on 0 <-s <- 1, with normalization constants
{pi}i=l, pi p’i, n + 1, n +2,. , if and only if K(s, t) satisfies the integral
equation

(4)

where

f(s, t)+ f(p, t)K(s, p) dp + K(s, t)= O,

i=1 L Pi P*i J

Remark 1. The function f(s, t) is represented as a finite sum precisely because
of the judicious choice of the remaining eigenvalues An, An+l, and remaining
normalization constants 0n, pn+l," This representation of f(s, t) makes the
solution of the integral equation easier. One could, however, choose the remain-
ing eigenvalues and normalization constants so that asymptotically they approach

i}i= and {Pi }i= 1, respectively. In general, this would result inthe sequences {A* ,
expressing f(s, t) as an infinite sum, thus making the solution of the integral
equation more difficult.

Remark 2. The proof of Theorem 1 uses the following two well-known
concepts: (i) the sequence {Y,}=I, with p [ya,(s)]2 ds, i= 1, 2, satisfies
Parseval’s equality on 0s 1 if and only if for every two functions f(s),
g(s) L2(O, 1),

y [jlo f(s)y,Cs) ds][J gCs)y,Cs) ds]
fCs)g(s) ds;

i=1 fli

(ii) the sequence {y,x,}=l, where I [y,x,(s)]2 ds pi, i= 1, 2,..-, is a com-
plete, orthogonal sequence on 0 =< s <_- 1 if and only if {Y,}i satisfies Parseval’s
equality.

Proof of Theorem 1. Assume first that K(s, t) is a solution of the integral
equation (4). Recall that, by hypothesis, K(s, t) is continuous on 0 -< =< s =< 1.
Then let h, g be arbitrary functions in L2[0, 1]. It will be shown that Parseval’s
equality holds (hence, {Y,}il is a complete orthogonal sequence), i.e.,

[1o hCp)ya, Cp) dp][lo g(q)y;,,(q) dq]=
i=1 Pi

hCp)g(p) dp.

More specifically, since it is known that {Z**,}i=1 is a complete, orthogonal
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sequence, we shall show that

I= , [o h(p)yx,(p) dp][10 g(q)y,,(q) dq]
i=1 pi

[o h(p)Zx*,(p) dp][$10 g(q)Zx*,(q) dq]= o.

When this is shown then we will have proved that if K(s, t) is a solution of (4), then
{Yx,}i is a complete orthogonal sequence with the given normalization constants.

In order to show that I 0, we first recall that Zx, Zx, and pi p*, for
n + 1, n + 2, . We then observe that

01Io h(p)yx,(p) dp h(p)Zx,(p) dp+ Io’ Zx’(t)[It h(p)K(p, t)dp] dt,

and that a similar expression holds when h is replaced by g. Then, after a suitable
rearrangement of terms, and use of the fact that {Zx*}i_- is a complete, orthogonal
set, it can be shown, after a lengthy but elementary calculation, that

I [h(p)g(q) + g(p)h(q)]

[’(p, q)+ e/,(, q)]} dq dp

+ [h(p)g(q) + g(p)h(q)]

g(p, t) dt [(q, t)+ [(t, s)K(q, s) ds + K(q, t) dp dq.

Since K(s, t) satisfies the integral equation (4), we then have I 0.
It remains to show that in order for {y,} to be a complete, orthogonal

sequence, with normalization constants {0}, it is necessary that K(s, t) satisfy
the integral equation (4). Assume then that {y,}= is a complete, orthogonal
sequence, and again that h and g are arbitrary functions in L[0, 1]. This implies
that I 0 and, hence, if we let

we have

0= I-- fo

J(p, q) f(p, q) + f(q, t)K(p, t) dt + K(p, q),

tip yf dq[J(p, q)+ Ioq J(p, t)K(q, t)dt][h(p)g(q)+h(q)g(p)].
Since h and g are arbitrary functions in L210, 1], it is then true that

I0
q

J(p, q) + J(p, OK(q, t) dt O, 0 <= q <-_ p <- 1.
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For fixed but arbitrary p, 0-<p-< 1, this is a homogeneous Volterra integral
equation with kernel K(q, t). The only solution of this equation is the zero
solution, Yosida 14]. Hence, since p was arbitrary, J(p, q) 0 for 0 _<- q _-< p -< 1,
i.e., K(p, q) must satisfy

p

f(p, q)+ f(q, t)K(p, t) dt + K(p, q)= O.

We have shown that under the assumptions that Yx, has the form given in (3)
and that {yx,}g is orthogonal and complete, with normalization constants {pg}g 1,

we must have that K(s, t) satisfies the integral equation (4). It must now be shown
that (4) actually has a solution. We show first that (4) has at most one solution.
Then, the proof of existence of a solution is constructive; that is, it will be shown
that K(s, t) can be obtained by solving an appropriate set of linear equations. We
have the following theorems.

THEOREM 2. Let f(s, t) be defined as in (5) and suppose that K(s, t) is
continuous in t, 0 <-_ <= s <-_ 1, for each fixed s, 0 <- s <-_ 1. Then, there exists at most
one solution of the integral equation

(4) f(s, t)+ f(p, t)K(s, p) dp + K(s, t)= O.

Proo[. For fixed s, the integral equation (4) is a nonhomogeneous Fredholm
equation in K(s, t) with kernel f(p, t). In order to show that (4) has at most one
solution, one need only show that for each s the homogeneous equation

Ios h(p)f(p, t) dp+ h(t)=O, O<-t<-_s,

has only the zero solution (i.e., h =0). Therefore, fix s, assume that h(t) is
continuous on 0 -< s and that

fo h(pff(p, t) dp + h(t) O.

Multiply by h(t) and integrate from 0 to s to obtain

ios ioSlo[h(t)] dt + h(t)f(p, t)h(p) dp dt O.

Since {Zx*,}i=1 is a complete, orthogonal set, we have from Parseval’s equality,

Ios [h(t)]2 dt y. [jo h(t)Zx;(t) dt]2

i=1 p*
If we substitute this last equation into the above integral equation and recall that
Zx, Zx., and pi p* for n + 1, n + 2, , we obtain the result that

y,. [o h(t)Zx,(t) dt]2
0

i=1 Pi

or that h(t)Zx,(t) dt 0, 1, 2,. . It can now be shown that this implies that
h(t)=O, 0 <- t<-_s, if we can show that {Zx,(t)}gl is a complete set on 0_-< t<=s. In
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fact it will be shown that {Zxi}= is a complete set on 0-< -<_ 1, since then {ZAi)i= is
a complete set on [0, s] for every s, 0 <- s <= 1.

In order to show that {Z,}i is a complete set on [0, 1 ], it will be shown that if
g(t)L2(O, 1) and if log(t)Z,(t)dt=O, i=1,2,..., then og(t)Z(t)=O for
i= 1, 2,- ., and hence, g(t)= 0, a.e., in [0, 1]. To do this, we observe that we
already know that if 10 g(t)Zx,(t)dt=O, i= 1, 2,-.., then 10 g(t)Zx.,(t)dt=O,
i= n+l, n+2,.... Consider, then, the case where i= 1,..., n. Again using
Parseval’s equality, we have that

0= g(t)Zx.(t) dt= Z [I g(t)Z,7(t) dt][jl0 Zx,(t)Zx(t) dt]
j=l p

[ g(t)Zx(t) dt][lo Zx,(t)Zx(t) dt]
1 2,... n.

j=l p
If A,
from consideration and A from the sum on the right-hand side above. Therefore,
we assume without loss that A # A for any i, j 1, , n. The above set of finite
sums then gives n homogeneous linear equations in the n unknownso g(t)Zx(t) dt. The components, (1/p) J Zx,Zx dt, i, j 1,..., n, of the coeffi-
cient matrix may be simplified by making use of the boundary conditions satisfied
by Zx,, Zx, i, j 1,..., n, so that

1)Z(1)1 Zx,
p Za,Za dt

(a- a)(p)
For each 1, , n, Z,>(1) # 0 since is notan eigenvalue for (2); and for each

(2)z1,..., , a tl)#0 (see [8, pp. 327-328]). The coecient matrix thus has
a determinant equal to [H= 1/p**,l>,t*,r{2>t 1 )] det 1/( )). The determi-
nant can be shown to be nonzero by induction; hence, the n linear homogeneous
equations have only the zero solution, i.e., g(t)Za(t) dr= 0, 1,..., n. is
completes the proof of eorem 2.

Now that it is known that the integral equation (4) has at most one solution,
one can proceed by any means whatsoever to find some solution of (4). Once a
solution is obtained, it will be known that that is the solution. Accordingly, we
have the following theorem.

THEOREM 3. Assume that K(s, t) is continuous in t, Ots, for each s,
0 s 1. en the solution of (4) has the form
(6) K(s, t)=

here E(s), Gi(s), i= 1,..., n, are solutions of the nonhomogeneous set of 2n
linear equations

0=
j=l

i=l,...,n,

(7) 0
j=l

i=l,...,n,
here (Za,, Za,)(s)= 5 Za(t)Za,(t) dr, etc.
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Proof of Theorem 3. The proof consists merely of assuming the form (6) for
K(s, t), substituting this form into the integral equation (4), and then setting the
coefficients of Zx,(t) and Z*,(t), 1,. , n, equal to zero. This results in the set
of 2n linear, nonhomogeneous equations (7) in Fi(s), Gi(s), 1,. , n. This set
of equations in F(s), Gi(s), i= 1,..., n, has a unique nontrivial solution if the
coefficient matrix is nonsingular for all s, 0-<_ s _<- 1.

The proof that the coefficient matrix is nonsingular is by contradiction.
Assume that the coefficient matrix, F(s), is singular for some s, say So, 0-<_ So--< 1.
Then there exists a nonzero vector C=(C1,"’, C,, Cn+m,... C2n such that
F(so)CT= 0, or more specifically, so that

and

c,p, + o,
j=l

i=1,..-,n,

j=l
i=l,...,n.

Taking the scalar product of C and F(so)CT we have that CF(so)CT= 0 or

j=l i=1 i=1

where ij is the Kronecker delta. However, the n n matrix with components
Pi ij + (Zxj, Z;,j)(So), i, j 1, ., n, is positive definite for all So, 0 =< So <- 1, and the
n x n matrix with components p* i- (Zx, Zx,. )(So), i, j 1,..., n, is positive
definite for all So, 0 =< So < 1, and has all components zero when So 1. Hence F(s)
can be singular only when So 1 and in addition one must have C =0,
i= 1,-.., n. But if So 1 and C=0, i= 1,..., n, the components C, i=
n + 1, , 2n, must satisfy the homogeneous, linear set of n equations

C.+,(Zx,*., Zx,)(1) 0.
j=l

The coefficient matrix for this set of equations was noted to be nonsingular in the
proof of Theorem 2. Hence, C+ 0, ] 1, , n. This contradiction proves the
result.

Remark 1. If the form (6) for K(s, t) is substituted into the form (3) for y,(s),
one obtains the expression

j=l

i=l,...,n.

The first set of n equations in (7) then yields that yx, =-pF(s), i= 1,..., n.
Similarly, if yx ,*. is defined as

Iosy*= Z.+ K(s, t)Zx.(t) dt, i= 1 n,



AN INVERSE EIGENVALUE PROBLEM 655

then the second set of n linear equations in (7) yields that

yx.=-p*i Gi(s), i= 1 n.

Remark 2. Since the coefficient matrix in (7) is nonsingular for all s, 0 _-< s =< 1,
and sinceZx,(1) Zx.*.(1) ZI(1)0, Zx(0) (1> Z(0)z,. (o) z,,..(o) o,
1,... ,n, it can be shown that Gi(O)=GI1)(O)=Gi(1)=O, i= 1,... ,n, and
F(0)=I(0)=F(1)=I(1)=0, i=l,...,n. Hence yx,,i=l,...,n, all
satisfy the same four boundary conditions yx,(0) y,(0) ya,(1)= y,(1) =0.
Furthermore, since for n + 1, n + 2, ,

y,(s) z,.,(s)+ F(s)(Z,,, Z.,)(s)-G(s)(ZZ.,)(s),
j=l

we have, in addition, that for n + 1, n + 2, .,
y,,(0) yl,)(0) y,,(1) yl)(1) 0.

Remark 3. The form for K(s, t) given by (6) and the fact that F(s) and
Gi(s), i= 1,..., n are solutions of equations (7), yield that K(s, t) is infinitely
continuously differentiable in both variables s and t, 0 =< =< s =< 1.

Remark 4. The form (6) for K(s, t) and the fact that

.-..(1)(0 (1)z,(0) z,, )= z...(0)=z (0)= 0,

yields that K(s, 0)= 0 and (O/Ot)K(s, t)l,=0--0 for 0 _-< s _-< 1. This will be used in
3.

Before proceeding to 3, where it will be shown that each yx,, 1, 2, ,
satisfies an equation of the form y4,)+ (Ay,))()+ Byx,- Xiyx, 0, it would be of
interest to examine the role of the set {Zx.i_-1 and the functions Zx,, 1, , n.
We note first that the proof of Theorem 1 requires only that the set {Zx ,*.}i be a
complete, orthogonal set. The presented proofs of Theorems 2 and 3 do make use
of the fact that Za(s) satisfies z(n)-,Z=O, and that Zx(0)= Z)(0) Zx(1) 0
while Z(x)(1)= 0, 1, 2,..., n. All that is needed, however, is that {Zx,*.}1 is a
complete orthogonal set and that there is no nontrivial linear combination of the
set {Z,}= which is either identically zero or is orthogonal to every member of the

(1){Zx,*.}=. The conclusions (made in the remarks) that yx,(0)= yx, (0)= yx,(1)
Yx,,1) 0, i=l,...,n, that F(0)
Gi(1)=0, i=l,...,n, and similarly that K(s, 0)=0 and g,(s,t)lt=o--O do
depend on the boundary conditions satisfied by the Z ’s, but not on the fact that
each Zx satisfies the corresponding differential aquation Z4-AZ 0.

3. Determining the differential equation. In this section we seek to deter-
mine A(s) and B(s) so that each yx, satisfies a corresponding fourth order
differential equation y4,) + (Ay1,))1) + Byx,- AiYx, 0. It will be seen that A (s) and
B(s) are infinitely differentiable on 0=<s =< 1. Then, since the set {y,}l is a
complete set of functions in L2(0, 1) and each yx,, 1, 2,. , satisfies the same
boundary conditions, then A1, Ae," is the complete set of eigenvalues (with
corresponding eigenfunctions Yxl, Yx2, ", and corresponding normalization’con-
stants Pl,P2, for the eigenvalue problem (1). Hence, ,

1, ", , is the set of

first n eigenvalues for the eigenvalue problem (2).
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In order to determine A (s) and B(s), one first substitutes the form (3) for yx,
(1)’l(1)(4) + (Aye,into the expression y, +Byx,-Aiyx,. Rewriting AiYx, as Aiyx,

(4)(SZx,, )+ K(s, t)Z4,)(t) dt and integrating by parts, one can obtain for the entire
expression,

(1)(S](1)yx4)(s)+(A(s)y, ,, +B(s)y,(s)-Aiyx,(s)

Ios {Ks(S. t)-K..(s, t)+(A(s)K(s, t)L +B(s)K(s. t)}Z,.(t) dt

(8)

d3
+ Z,(s) 2-s3 (K(s, s)) + 2(K,t Ks),l,= + B(s) +A(s)Kl,=

+-s{AK(s, s) +

+ Z(x.)(s) 2(K K.)I= + AK(s. s) +-s A + 4 K(s. s)

+Z(x,)(s) A(s)+4--sK(S, s) +[-K(s, t)Z(3,)(t)+Kt(s, t)Z(x,)(t)

K,,(s, t)Zl,)(t) + K,,,(s, t)Zx,(t)][,=o.

(The same equation may be obtained for yx ,*. by replacing Ai by A * on both sides of
the above equation.) The contribution at 0 (last bracket term in (8)) from
integration by parts, is zero since K(s, O)= Kt(s, 0)= 0 (by Remark 4 following

7(1)Theorem 3) and since Za,(O)=, (0)= O.
Having obtained the expression (8), we can state the following theorem.
THEOREM 4. Let K(s, t) be the solution of (4) given by (6) and (7). Let ya,(s)

have the form (3), i= 1, 2,.... Let

(9)

A (s) -4
d

K(s, s)
ds

d3

B(s) -AKs[=t + 2(Ks K.)tl,=s 2-s3 K(s, s).

(4)+ (A (s)y (xl,)(s) (1)) +Then, yx, satisfies the fourth order differential equation yx,
S(s)yx,(s)- &yx,(s) 0, 1, 2, .

Proof of Theorem 4. The proof consists first in showing that the above given
choice for A (s) and B(s) insures that each bracketed term, [. ], in (8) is equal to
zero. The choice for A (s) and B(s) and the fact that Zx,(0)= Z(,)(0)= K(s, O)=
Kt(s, t)lt=o, yields that we need only show, given A (s) and B(s) as in (9), that

2(Kss K.)(s, t)lt=, + AK(s, s) O.
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This may be shown to be true more easily by establishing the following notation.
Let , Z, Lr be the 1 2n row vectors

’= (El,""", F., G1,""", Gn),

z (z,,..., zo, z,..,..., z.),
(z,, , z., -z.,, , -z

Let F be the 2n 2n matrix F R +A where R and A are the matrices

0

R "" 0 A A A]
Pl* -A12 -A22J

Ooo

and Aq, i,] 1, 2, are n n matrices and the i, jth components.of.Alx,A12,A22
are (Zx,, Zllj)(s), -(Zx,, Zx,)(s), (Zxt, Zx,)(s), respectively. Let F, R be the same
as F and R respectively except that each component in the last n rows has the
opposite sign as the corresponding component in F or R. (Hence lY" =/ + and ft.
is symmetric.) Then, the linear equations of (7) can be written in matrix notation as

-T____F-1. ZT or ZT---F" ,.T or T____[’, T.
Suitable differentiations yield (noting that K(s, s)= (s). r(s))

(T)(1) ’,. [__(T)(1)_]_ K(s, s)T],
(yr)(2) . [_(or)(2)_ K(s, S)(--(oT)(1) q K(s, s))

+ K(s, s)+K(s, t)lt=s
and hence that

2[Kss K,]lt=s + AK(s, s) 2[--(2) r_. (Nr)(2)]
_4[-(). yr+. yr()], yr= 0.

Having shown that all bracketed, [. ], terms in (8) are zero, it can now be
shown that yx, satisfies the ordinary differential equation. This is done by first
letting

PiPi y Ai(4)
_

(Ay(xl,))(1) + By,- Aiyx,, 1 n,

O*i-,,Pi Yx,_. +(AY(1) (1) .,,._. + By_.- A i-,Y,_., n + 1, , 2n.

If P is the 1 x 2n column vector with ith component, Pi, then (8) together with the
similar equation for yx,*. yields, after using (6) and the relations yx, =-pF and
yxt =-pG, 1, 2,. , n, that F. P 0. We have already shown (see proof of
eorem 3) that F is nonsingular for 0sl. Hence P0 and yx,, i=
1, 2,. , n, satisfies the fourth order ordinary differential equation

yi) + (AyeS)(’) + By,- A,yx, O;

similarly yx,*., 1,-.., n, satisfies

y (.! + (Ay())(1) +By,*. h/*Yx ,*- 0.
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This, in turn, implies, with the aid of ya, =-piF and y,=-p*Gi, i=
1,2,... ,n,

Kssss(s, t) Kt,t(s, t) + (A(s)Ks(s, t)) + B(s)K(s, t)=0,

and hence, by (8),

y4,)(s) + (A (s)y(al,)(s))(1 + B(s)yx,(s)- Aiyx, (s) 0 for n+l,

Remark 1. In contrast to 2, use was made in this section, in particular to
obtain expression (8), of the fact that Zx satisfies the differential equation

(s) o.
Remark 2. We have been requiring that for every A > 0,

Z(x4-Z O, 0 <_- s <_- 1,
and

Zx(0) ZI)(0) Zx(1) 0.

Further, for the particular values of A, A h *, 1, 2, we have rtl)0.,z(1)t
With this assumption, the generated functions, yx,, 1, 2, , have been shown
to satisfy the boundary conditions y,(0)= y(l,)(0)= y,(1)= y(xl,)(1)= 0.

These assumptions have made our analysis easier. It is possible, however, to
carry out the analysis under more general circumstances. That is, the Zx’s could be
replaced by Yx’s where for A > 0, each Yx satisfies the equation Y(x4- h Yx 0,
plus two boundary conditions at s -0 and one boundary condition at s 1. That
is, there exist real ai,/3, "/i, 1, 2, 3, 4, independent of h and with

4 4 4
2 Eta, Ev  0,

i=1 i=1 i=1

such that Z4

i=1 aiY(i-1)(0) 0 Yi4--1/3iYai-1)(0) and Y4=1 3,iY(a-l)(1)= 0. Further-
more, p*, h*, 1, 2, 3,.. , are replaced by ti, i, 1, 2,. -, respectively,
where hi, 1, 2,. ., is the entire set of eigenvalues (and fii the corresponding set
of normalization constants) for the eigenvalue problem

y(4)-Ay= 0,
4 4 4 4

0= E oiy(i-1)(0) E Jiy(i-1)(0) E iY(i-1)(l) Z iy(i-1)(]),
i=1 i=1 i=1 i=1

(here 6 is real, independent of A, i= 1, 2, 3, 4, and ]=a 6 # 0). Further, it is
assumed that each A is simple.

The boundary conditions given above are further restricted so that the above
eigenvalue problem is self-adjoint and also so that for all , A > 0, Yx and Y,
satisfy

IVan3)_ Vx2, 2,2)+
ese conditions insure that i is real, i= 1, 2,..., and that the analogies of
eorems 1, 2 and 3 of 2 can be proved. Further, the boundary term in (8), with
Za being replaced by Ya (and h being replaced by di, 1, 2,. ), i.e.,

[-K(s, t) ])(t) + Kt(s t) ])(t)-Ktt(s, t) l,)(t) + Kttt(s, t) Yx,(t)][t=o
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would still be zero. Hence, the analogue of Theorem 4 could be proved; that is, if

Iox,(s) Y,(s) + K(s, t)Y,(t) dt,

then there exists A(s) and B(s), independent of A, such that each x, satisfies
X(4) _[_ (Ax’ )’, x + Bxx, Axx, O, l, 2

The boundary conditions satisfied by xx, would not in general be xx,(0)=
x,(0) xx,(1)= x,(1)= 0 but would be related to the four boundary conditions
satisfied by xx,, 1, 2, . The proof that all xx,, 1, 2, , do satisfy the same
set of four, self-adjoint, boundary conditions is contained in 4.

4. Other boundary conditions. It has already been shown that the set of
functions {Y,,}i 1, generated in 2, form a complete orthogonal set on 0 =< s =< 1,
and that each yx, satisfies a differential equation of the form

y4,)+ (Ay(,))(1) + Byx,- Aiy,x, O,

where A and B are the same for each A. In addition, it has been shown that

(1)(0y,(O) yx,. )= y,(1)= y(’,)(1)= O,

that is, that the boundary conditions for y,, 1, 2, , are the same as those for
Z*,, 1, 2, . This was shown directly by examining the form given for yx, and
the solution K(s, t) of the integral equation (4).

As mentioned at the end of 3, if the Z*,, 1, 2,. , were chosen to be
solutions of an eigenvalue problem with the same differential equation Z(4)-

AZ 0 but with more general boundary conditions, and if the analysis of 2 and
3 were repeated with this new set of Z*,, 1, 2, and (also) the appropriate
new set of eigenvalues An+l, An+2,’’" and normalization constants Pn+l,

P,+2,’’’, then the boundary conditions satisfied by the resultant y,, i=,, would not necessarily be the same as those satisfied by Z*,.
One can, however, show that each y:, satisfies the same set of self-adjoint

boundary conditions. That is, we can prove the following theorem.
THEOREM 5. If {y,}= is an orthogonal set of C(4)[0, 1] functions, and if each

yx, satisfies a fourth order differential equation of the form
(1)x(1)(4) _+_ ,-qY a, + Byx, Aiyx, 0,Yx,

where A C1[0, 1] andB C[0, 1], A andB are the same realfunctionsfor each Ai,
1, 2, , Ai is real-valued for each 1, 2, , and A < A2 < , then each

y, satisfies the same set offour linearly independent, self-adjoint boundary condi-
tions.

Proof. Since {yx,}l is an orthogonal set on 0=<s =< 1 and since each
(4) _[_ (Ay(1)(1) + Byx, Aya, 0, then for # j we havesatisfies y, ,

0 (I-)t)y,y, ds [y,{y(4,) + tY, +By}-

{y+(Ay[)( + By.,}] ds

(3) (1). (2) (2) (1) (1))]]sS([y)jy(]) ya,y y y, + y y, +A (yxiyl,) Yx,Y hi
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Hence, if each yx, satisfies the same set of boundary conditions, then these
boundary conditions are self-adjoint [4, p. 189].

To show that the same set of four boundary conditions is satisfied by each yx,,
let ,k, , 1, ,p, Aq be arbitrary but distinct real numbers from the set {Ai}i_-1. Then,
for each 1, 2,. ., the following set of four linear equations in yx,(0), yl,)(0),

(2) (3) (1)[1 .(2)yx, (0) Yx, Yx,yx, (0), (1), (1), y3,(1), is satisfied:

[(_Ay(xl,) y))yx,+(Ayx,+y(x))y(xl,)+(_ (), (9.) =0,

=k,l,p,q.
There are five cases to consider.
Case 1. Suppose for some distinct k, l, p, q that the coefficient matrix has rank

4. Then for these values of k, l, p, q the above four linear equations yield four
linearly independent boundary conditions.

Case 2. Suppose that there is no set of distinct k, /, p, q such that the
coefficient matrix above has rank 4. Suppose further that there exists some distinct
k, l, p, q such that the coefficient matrix has rank 3. Then the above set of linear
equations yields three linearly independent boundary conditions, say (without
loss) with j replaced by k, and p. The fourth linearly independent boundary
condition comes from the coefficient matrix; we merely replace Yxq and its
derivatives by Ya, and the corresponding derivatives and set the determinant of the
resulting matrix equal to zero.

Case 3. Suppose that there is no distinct set of k, l, p, q such that the
coefficient matrix has rank 3 or 4 but that there exists some distinct k,/, p, q such
that the coefficient matrix has rank 2. The proof is similar to Case 3.

Case 4. Suppose that there is no distinct set of k, /, p, q such that the
coefficient matrix has rank 2, 3 or 4 but there exists some distinct k, l, p, q such that
the coefficient matrix has rank 1. The proof is similar to Case 3.

Case 5. Suppose for each distinct k, l, p, q the coefficient matrix has rank 0.
This is impossible since then y Jl)(0) 0, j 0, 1, 2, 3, while also yx, 0 in 0 < s < l.
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Part I. Introduction.

1. Aims. In this paper we study the behavior of the solutions of recursions

(1.1) xi+l Aixi, >-O,
where {xi} is a sequence of vectors and {Ai} is a sequence of n x n real or complex
matrices such that Ai+l is close to Ai for all i. As is well known, (1.1) contains as a
special case the (n + 1)-terrn linear homogeneous scalar recursions (see also Part
V).

Often such recursions have solutions of very diverse growth characters. The
solutions of fastest growth character are usually called the dominant solutions,
whereas those of slowest growth character are called the minimal or dominated
solutions.

This is very well known for the case of a 3-term scalar recursion like
(1.2) U+z+(2i+2)u+l-u=O, i>=O,

which is satisfied by the rapidly decreasing sequence of coefficients of the
Fourier-Chebyshev expansion of exp(x) on [-1, 1], but which has rapidly
increasing solutions as well.

Our main concern will be to give accurate estimates for the growth character
of the different types of solutions. For instance, for (1.2) we will be able to estimate
[Um/Ukl for any m and k and for both types of solutions with an error of only a few
percentage points (see 18, Example II), and this is not at all unusual.

This will be useful, for instance, for estimating how many terms of a series
expansion (like the Fourier-Chebyshev expansion above) will be necessary in
order to achieve a certain accuracy. But it will also be useful for estimating the
truncation error of Miller’s algorithm (cf. [9], [2]) for determining the dominated
solutions of recursions like (1.2).

In this paper we shall derive upper and lower bounds for the quotient
[Ix ll/llx ll for the various types of solutions of (1.1) and for any k and m.These
bounds will have a ratio close to 1 for any k and m provided that Ai varies slowly
enough as a function of i, but we shall also see that if for all the moduli of the
eigenvalues of Ai differ considerably, the sequence {Ai} may vary quite rapidly
and still be slowly varying in our sense.

Previous research in this area (for an account of which we may refer to [2], [3]
and [ 13]), was mainly concerned with the asymptotic behavior of the various types
of solutions of scalar recursions if the asymptotic behavior of the coefficients in the
recursion is known, a line of research virtually started with Poincar6’s paper [ 12],
in which it is assumed that those coefficients have limits. Of a different nature are
Olver’s results for upper bounds of solutions of 3-term scalar recursions (cf. [10]

This truncation error has been studied by various authors. Notably, Gautschi (cf. [2, (3.15)])
gave an explicit expression for it, but this depends on the values of u,,,/Uk for both the dominant and the
dominated solutions, and these were not so easily accessible. Olver (cf. 10]), got around this problem
for a special case of Miller’s algorithm (viz., normalization on the first term; cf. 10, (2.06) and (5.02)])
in a very elegant way, but his formulas may give considerable overestimates in the more general case
(cf. [10, (9.01) and p. 126, top]), whereas Gautschi’s formula then still is exact. Obviously, our present
paper facilitates the application of Gautschi’s formula; but it also has some meaning for Olver’s
formula (5.02). Finally, in [8] truncation and rounding errors are studied for a Miller-type algorithm
for matrix-vector recursions, and there again expressions like lU,,,/Uk[ play a part.
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and [11]). And finally there is Schifke’s work [13] and [14], giving upper and
lower bounds for the various types of solutions of matrix vector recursions (1.1) if
all A are close together.

In our work we do not require {A} to have a certain asymptotic character, nor
do we require all A to be close together. Yet there is quite some parallelism
between our work and Schifke’s, which we only discovered after our work was
well under way. We believe, however, our approach to be more practical.
Nevertheless we could have made use of a good deal of Schifke’s results. We
refrained from this in the belief that a self-contained account in English might be
useful; also Schifke’s framework of Abelian groups makes his work less suitable
for straightforward application in a linear algebra environment. Nevertheless we
realize that we may have been backtracking on Schifke’s steps. Also we have been
inspired by his work on more than one occasion.

Similar results as have been obtained here for recursions can be obtained for
differential equations. These results will be published separately (cf. [16]).

2. General ideas. In order to show the general idea of the paper, we first look
at (1.1)for the case n=2 and A=A with eigenvalues and p, I 1>1 1, and
corresponding eigenvectors v and w.

Then we know from the well-known power method for determining eigen-
values and eigenvectors of matrices (cf. [18, Chap. 9, 3]) that, as far as the
direction is concerned, {x} approaches v if Xo is not a multiple of w. Moreover, in
each step the ratio of the components of x with respect to w and v is reduced by a
factor/x/, which therefore serves as a kind of directional contraction factor.

Therefore, if Ai does depend on i, with eigenvalues Ai, /J,i, IAil>lm[ and
eigenvectors v and w, if moreover/x/A is in some sense small in relation to the
speed with which vi and w move along as increases, and if x0 is close to Vo, then it
is to be expected that {x,} will follow {vi} rather closely, and that Ilxi/lll/llxill I, il.

It is more surprising, perhaps, that under similar circumstances there is also a
solution {x} following {w} rather closely. Indeed, if A/1 exists for all i, and for
given k we consider the sequence y A/lyi/l, i= k-1,. -., 0with y w, then
according to what has just been said we may expect Yi to be directionally close to

w (i.e., to have about the same direction) for < k, since now the eigenvalue 1/Izi
corresponding to wi exceeds the eigenvalue 1/A of vi in modulus. Thus, in
particular, Y0 will be directionally close to w0. By doing this for k 1, 2, 3, , we
get a sequence of yo(k), all directionally close to w0, and a compactness argument
then proves the existence of a vector Y0 which is a starting vector of a solution of
(1.1) close to {wi}.

Now turning to the case of arbitrary n, we assume that the moduli of the n
eigenvalues of Ai which are largest in modulus are well separated from the moduli
of the other n- n eigenvalues, n independent of i, and that the corresponding
invariant subspaces V/and V vary slowly enough as functions of i. We shall then
again expect solutions starting close to V0 to be close to { V/}, and we shall also
expect the existence of an (n- nl)-dimensional subspace of solutions close to

{v,}.
These observations set the pattern of our paper: we shall decompose each

solution of (1.1) into components lying in { V} and { W/}, where V and W/ are
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reasonably close to invariant subspaces of Ai. Subsequently we shall estimate how
close to { V} or {W} a solution will be if properly started, and this will then yield
the growth character of this solution.

3. Definitions and conventions.
3.1. The space and its norm. For a given natural number n, R will be the

n-dimensional real or complex Cartesian space and I1" wi be a norm on R. We
assume this norm to be absolute, i.e. Ixl II-Ilxll, or (equivalently) monotonic, i.e.,

Ixl--< lyl Ilxll-< Ilyll (el. [1]). T is is particularly so if I[" is the linear, Euclidean or
supremum norm.

3.2. Partitioning of the space. For given natural numbers n and ne, n + n2
n, R denotes the subspace of R consisting of vectors whose last ne coordinates are
0, and Re c R consists of the vectors whose first n coordinates are 0. Hence

(3.1) R=RIR2
where denotes the direct sum.

3.3. Partitioning of vectors and matrices. Correspondingly, we shall parti-
tion vectors and matrices as

(1) (All A12]X-- 2, A
A21 A22]"

This will induce norms I1" I1 and I1" 112 on the n- and nz-dimensional Cartesian
space as follows" [lY]II=II()II if y has n coordinates; Ilzl[2=]l()ll if z has n2
coordinates. Then, because of 3.1, if x R, then Iix1111 --< Ilxll and Iix2]12 --<]lxll. The
norms I1" I]1 and ]1" 112 induce in a natural way norms for All, A12, A21 and A22.

3.4. Notation of sequences and their elements. If we denote a sequence of
vectors in R by x, then the elements of this sequence will be denoted by xi; thus
x {xi}i__>o. Similarly, if x(k) is a sequence in R for any k, then its elements will be
denoted by x(k).

3.5. The recursion and its solutions. We shall consider the linear homogene-
ous recursion over R:

(3.2) Xi+ =Aixi, i>=O,

and any sequence x satisfying (3.2) will be called a solution of (3.2). The
eigenvalues ofA will be denoted as A 1, , Ani in order of decreasing modulus.

3.6. The transformed recursion and its solutions. For any sequence {T} of
invertible matrices we write

(3.3) A (T[+I T)(T[1AT)
D, E

where the right-hand side has been partitioned according to 3.3.
For any solution x of (3.2) we define a sequence y by

(3.4) Yi T-i lxb
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i.e., the coordinates of Yi are the coordinates of xi on a basis consisting of
columns of T (this is the representation referred to at the end of 2). Then

(3.5) Yi+ AiYi.
By L we denote the n-dimensional linear space of all solutions of (3.5). L1

will denote the nl-dimensional linear subspace of L consisting of solutions with
Y0 R1. A subset L2 of L will be defined in 9.

(3.6)

3.7. Bounds for B, C, D and E..
In the following, b,/, c, d, e and Y will be nonnegative sequences such that

IIo,yll_ <= d, llyll, /lly/12 =< ]]Eiyll2 < eillyll2

for all vectors y of appropriate dimensions.
def

Therefore b, <-g.l.b. (B,)( mino0 IlB,vll /llvll ), t;, ->llB, II, etc.

3.8. The SV ease. As a consequence of the observations at the end of 2, we
shall be very interested in the case that for any i,

(a) T is a not-too-skew matrix whose first n columns span approximately an
invariant subspace V of A belonging to A 1, , Anl, and whose last n. columns
span (approximately) an invariant subspace W belonging to Anl+l,i, ", Ani;

(b) T/+I T is close to the unit matrix, indicating that V and V vary slowly as
functions of i.

On account of (a), (3.4) transforms solutions of (3.2) which are close to { V/} or
{W} into solutions of (3.5)which are close to R1 or Re.e Hence, in the.setting of
2 (solutions staying close to invariant subspaces), we should expect Ai to have

invariant subspaces close to R1 and Re.
Now T-1AT is (close to) the block diagonal matrix of Ai with respect to V

and W, and on account of (b), the same will then apply to Ai. But this is not enough
to guarantee that the invariant subspaces of Ai are close to R and Re. We see this
from the 2 2 matrix

(which in the 2 x 2 case would be a possibility for A) where, skipping the indices
for the moment, e >-0 is close to and less than b, whereas c and d are positive and
less than (b-e)/2 (hence c and d are small with respect to b and e)" then the
eigenvalues t and satisfy e < <(b+e)/2<, <b, and the corresponding
eigenvectors (e,) and (2) obviously are not close to R and Re unless c and
d<< b-e.

However, if
(c) c and d << b- e for all i, then it is easily seen, using Gershgorin circles,

that all A have invariant subspaces close to R1 and Re.

2 By saying that a sequence is close to R (or R2) we obviously mean that any element of it is close
to R1 (or RE).
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The case that (a), (b) and (c) hold will be referred to as the case of slowly
varying {Ai}, or the SVcase ]:or short. In connection with (3.5) alone, we shall speak
of the SV case i[ condition (c) holds.

In order to appreciate what is going on, it will often be useful to think of bi and
ei as being approximately tA,,,il and I,/,,,I respectively, although even in the SV
case this is not always realistic, e.g. if A,,,i and/or A,,+l,i has nonlinear elementary
divisors.

Examples (cf. 18) will show that the SV case is very common indeed, and
even includes sequences {A} for which b-eg 0. On the other hand, it will be
clear that for a given sequence {Ai}, the SV case may apply for one value of n and
may not for another value.

The reader is asked to bear in mind, however, that the SV case will only be a
framework for checking the relevance of our results. The theorems are formulated
independently of the SV assumptions, and will have a wider scope.

3.9. Dominant and dominated solutions. We shall say that a solution x of
(3.2) or (3.5) dominates a solution if II ,ll/llx, ll-, 0 for i c.

In the case n 2 it is then usual to call a minimal solution and x a dominant
solution (cf. [2, p. 25]), and any solution which is not a multiple of Y is then
automatically a dominant solution.

We shall, however, use the terms dominant and dominated solutions in a
looser sense. By a dominant (dominated) solution of (3.5) we shall mean a solution
y such that all y are close to R1 (close to Re) in some specified sense. Hence
dominant solutions in this sense do not necessarily dominate the dominated
solutions, although in the SV case we shall expect this to be the case.

The solutions of (3.2) corresponding via (3.4) to the dominant (dominated)
solutions of (3.5) will then be referred to as dominant (dominated) solutions of
(3.2) (we realize that this definition is not altogether nice since it depends on the
choice of { T/}).

Part II. The dominant solutions. (For the notion of dominance, see 3.9.)

4. Dominant solutions ot (3.5). Let y be a solution of (3.5). We partition yi

according to 3.3 and introduce

(4.1) r, -IlYII2/IlY 11,.
Then from (3.5), (3.3) and (3.6)

(4.2)

and hence, if cr < b,

(4.3) ri+<-
di + eiri

bi ciri

(4.4)

(4.5)

bi ciri <-
ilY lli <- f + ciri,

y,+I (B, + rCU)y
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for some n2 x n, matrix U/with IIu/ll(= maxv0 u/ull /llulll)= 1. Indeed, for any
vector y R there exists a matrix U with IIuII- 1 such that ]]Uy 11]--IIlll and Uy is
a multiple of y2 (cf. [ 15, Thm. 6.1]).

For later use, we note that in the SV case we shall expect the factor b, cir, to
be close to bi if ro is small, for the double reason that c, << bi and ri << 1.

Likewise Bi + r,C,U will then be close to Bi, which means that y is almost
transformed by

We now have the following theorem.
THEOREM 4.6. Let a nonnegative sequence {/,} exist that satisfies

di + ei,
(4.7) ,+1

b,- c,, ]’or all >-_ O,

and let {pi} be a majorant of {i} with Po o.
Then all solutions y of (3.5) satisfying Ilyo ll _-< pollyo ll are close to R1 in the

sense that Ily, ll -< p, lly ll for all iand they satisfy
m--1

(4.8) ylm [-[ (B, + p,CiU)y
i=k

]’or some sequence of n2 x n, matrices {U} with ]IUII<= 1..
Proof. After the foregoing, all we have to note is that any solution t of the

recursion in (4.7) with 0 -<o =< Po is also defined and satisfies 0 -< t, -< P, for all
i->O. [3

COROLLARY 4.9.

(4.10)
and

(4.11)

1--1 (bi CiPi) < 1--I (i + CiPi)
i=k -’-Ily]lll ,=

H (bi-’-cipi) < <(l+pm) H (i+ciPi)
1 +Ok i=k Ilyll-- i=k

unless Yk O, in which case also Yk+l Yk+2 O. The estimates from below
shouM be omitted when they contain negative factors (but this will never happen if
Pi i)"

COROLLARY 4.12. In the important case n 1, we may take bi b’
Then (4.10) and (4.11) reduce to

(4.10’)
lyl ’ (bi + Oicipi) with Oi <= 1lye,[ =

m--1

(4.11’) ]]yml___]=l+r/mp_____ II (b+O,co) with]O]<-_l, Onl.Ilyll l+nPi=
Remark 4.13. If the conditions of Theorem 4.6 are satisfied for a certain

choice of {b,} related to {A,} according to 3.7 (i.e., b,--< if nl 1), then
they are certainly satisfied for the choice in this corollary, since this means
replacing the b, by quantities which are not less.

Remark 4.14. For {Pi} we may take any nonnegative solution of (4.7), if one
exists.

Remark 4.15. For later use, we note that if the assumptions of Theorem 4.6
hold, then the estimates (4.10) and (4.11) apply in particular to the elements of the
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set L1 defined in 3.6, and the sharpest results are then obtained if {pi} {i} with
t0 0 (which is obviously allowed for y 6 L).

5. Determination of sequences {p}. In order to apply Theorem 4.6 in a
quantitative sense, we must have sequences {p} at our disposal. Such sequences
will be derived in 15, where it will become clear that the characteristic equation

(5.1) cit2-(bi ei)t + di 0

of (4.7) and its roots a, fl, 0 -< O <: i, which will be assumed to exist, are of
importance. In the SV case those roots wilt certainly exist, and Ol di/(bi-ei),
(b-e)/c. Hence in the SV case, O will be quite small and i will be quite

large.
Therefore the following results are particularly useful in the SV case. For

proofs, more results, more detail and comment, we refer to 15.
THEOREM 5.2. If ei < bi for all and sup a _-< inf/3, then po ao, iOi+ sup oj

suffices in Theorem 4.6. (cf. (1512)). _-<_i

COROLLARY 5.3. In the SV case, o 0 allows all p to be small.
THEOREM 5.4. If e < bi for all and sup a _-< a =< inf fl, then pi a suffices in

Theorem 4.6. More generally, this is true for po a,

(5.5) p, sup ai +(a -sup ai),ill + olj/j

(cf. Theorem 15.16).
THEOREM 5.6. If we define a_ ao, if ei < bi and ai/ai- > ei/bi ]:or all i, then

po ao, pi+ ai suffices in Theorem 4.6 when

1 ei/bi < <
1 fl a/a_ e/b(5.7) 2 sup

1 -(a_/a)(e/b)
=d= inf--a 1 - (cf. (15.23)).

Theorems 5.2 and 5.4 are useful if the sequence {a} does not tend to zero,
and (5.5) says in fact how fast {tS} (cf. (4.7)) may approach sup ai if tSo is not small at
all. This shows that in the SV case, this approach is very fast if ei/b is small for all i,
since a/fl is small, whereas if ei/bi is not small, then the approach is approxi-

m--|

mately as [Io (e/b), as s to be expected from 2 and 3.8. As a corollary of
Theorem 5.4, we have the following.

COROLLARY 5.8. Let the conditions of Theorem 5.4 be satisfied. Ifallfactors in
[-I in (5.5) are at most s < 1, then with po a,

(5.9) Ilyll<-[a +sup+(po-sup)s]e/1-) 1-I (tii+c,sup)llyll.
i=k

We note that the factor [. ] will soon be close to 1 + sup ai, and that, even for
k 0, the factor exp (sk/(1-s)) will be very modest unless s 1, whereas the
important factor 1-I does not depend on po at all.

Theorem 5.6 is useful if {ai} does tend to zero or, indeed, has any behavior
provided it doesn’t vary too quickly. The reader should note that in the SV case
d 2 will be allowed if ai/a-i is close enough to 1. This implies, e.g., that writing
the right-hand side of (4.10’) as I-I[bi(1 +0)] we have IOll<=cipilbi cioilbi
cidi/bi(bi- ei) as the relative uncertainty in the growth factor per step.
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6. Dominant solutions of (3.2). We now consider the solutions of the
original equation (3.2) corresponding (via (3.4)) to the dominant solutions
of (3.5). In order to obtain estimates for those solutions we partition all T/"

(6.1) T/= (T" T/),
where T consists of n columns, T of n columns.

Then
2 2

(6.2) ][x,,,[__] ][Tylm+

The case n 1. Then T just consists of the first column of T/. We now have
the following theorem immediately from (4.10’).

THEOREM 6.3. Let nl 1. Assume b --/i --I(Ai)lll and let the assumptions of
Theorem 4.6 be satisfied. Then all solutions of (3.2) satisfying Xo uT+ Tv (u
scalar) with II, ll <--polul (i.e., in particular if Xo uT) satisfy

(6.4)

unless x O. Here IIT/ ll-  m aoxlIT/  ll/ll ll .
Remark 6.5. We note that in the SV case the terms OiCip are minor

correction terms and the same holds for lliDi provided that IIT/ ll is not too much
larger than liT211 (cf. the not-too-skew clause in 3.8(a)). In this case, then, the
uncertainty in estimating IIxll/llxll is only slightly greater than that in estimating
Ily ll/lly l[ (cf. (4.11’)), and the extent to which it is greater hardly depends on the
number of iteration steps. This means that our theory is just as applicable to
recursions whose solutions have limits or stay in some limited space angle as it is to
recursions whose solutions wander freely about, if only not too fast.

Remark 6.6. We also note that in the case just considered,

(6.7) (llT’mll/llTl ll) H bi
i=k

will be a very good approximation of the growth factor of the iterated vector, and
Theorem 6.3 enables us to estimate how good.

In 2 we conjectured in fact that, A denoting the eigenvalue of Ai of largest
modulus [I"-1i= Ai] would be about the growth factor mentioned in the previous
paragraph. Now, if T is eigenvector to A li and the columns of T/2 span an
invariant subspace of Ai, and if we define

(6.8)

then from (3.3):

(6.9)

Hence (6.7) equals

bi--]’i+lTllA,i [.

(6.10) I-[ IIT)/,II,+I
i=k i=k

and the factor preceding Ilia li[ clearly is independent of the special choice of T (a
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scalar factor being the only degree of freedom since TI is eigenvector). Hence
m-1 m--1 m-1

(6.11) (IITII/IITLII) II b,= l-I I[,I I-I
i=k i=k i=k

where [ denotes the element in the left upper corner of T(+ T if the matrices T
are so chosen that IITII 1 for all i.

This enables us to estimate how far (6.7) may be away from Ili= IA il if the T/
have been chosen as indicated, and it is clear that the fi will be close to 1 if the
eigensystem of {A} does not vary too fast.

Examples. Numerical examples illustrating how remarkably well
approximates the growth of the iterated vector are given in Part V.

The case of arbitrary n. Here (4.6) and (4.10) yield the following.
THEOREM 6.12. Under the assumptions of Theorem 4.6, we have: if

Xo Tu + Tv with Iloll=/llull,--<po, then

g.l.b.(T,,)-Ilr,llp
(b, c,p,)_<-

(6.13)
-< I1 (;, +

e,’e g..b.(T’,)=mi,u.ollT,ll/llull,. Th eama,e from beZow should be omiued
when it contains negative factors.

Remark 6.14. If the columns of all T have about unit norm, and if the
columns of any T are not too nearly dependent, then in the SV case the factors in

m--1(6.13) preceding the expressions I-[i=k will be of the order of unity since the pi are
small, and therefore these expressions bound IIxll/llxll apart from a very modest
factor which can be estimated.

7. Generalizations. If the moduli of the n (in modulus) largest eigenvalues
of Ai are well separated from the moduli of the other eigenvalues, and the
corresponding invariant subspaces are slowly varying as functions of i, then the
requirement bi > ei will not be harsh if Ai is not too close to a defective matrix
(cf. 3.8, biAnl,i, eiAnl+l,i). But if A is (close to) a defective matrix, then
rather skew matrices T may be required to establish bi > e (cf. the reduction of a
matrix to a kind of Jordan normal form with e on the codiagonal instead of ones)
and this may have annoying consequences for c and d.

For such cases, the theorems in this section may be useful. In these theorems,
two or all three of the following assumptions will be invoked:

(7.1)

(7.2) B _-</ 1 for all m e k,
j=

(7.3) N g e for all m k.
j=

for all rn => k,
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Here 1-Ij=k nj denotes~ B,B,,_I .~ Bk, and similarly for 1-Ij=k Ej; we assume the
numbers f-> 1, f => 1, g -> 1, bi > 0, bi and e to be independent of k and m, and b, b
and e need not be as defined in 3.7.

Then, generalizing Theorem 4.6, we have the following two theorems.
THEOREM 7.4. Assume (7.1) and (7.3). Let a nonnegative sequence {fii} exist

that satisfies
gd + efi for all -_> 0(7.5) P’+I b,-fcifi,

and let {pi} be a majorant of {fii} with po rio.
Then all solutions y of (3.5) with Ilyoll_-< oollyll/g satisfy

(7.6)
m-1

(7.7) yl I-I (B, +fpCU)y, IIull < 1

(7.8) Ilyl___J > 1 m--1

Ily,ll--7 ,=[I (b,-fc,p,),

the latter provided that b-fcp 0 for all i.

If (7.2) is also satisfied, then

(7.9) IlYII <f’ (i +ffciPi)IlyLll ,=k

THEORE 7.10. Assume (7.2) and (7.3). Define a sequence {i} by

gdi + eii

ggc,d e for all O, and by

(7.12) ,+=(gd,+e,,)/b,, iO,

otherwise, and let {pi} be a majorant of {i} with Po o.
Then all solutions y of (3.5) with [lyoll_-<roollyAll/g satisfy

m-1

(7.13) Ilylljr It (/ /jrc,,)llyll,
i=0

m-1

(7.14) Ily2ll Vl (/, +c,,)llyll.
i=0

Unfortunately, for k 0, (7.9) is somewhat cruder than (7.13). We have been
unable to remedy this.

Before giving the proofs, we note that (similar to Theorem 5.2), we have (cf.
16) the following.
THEOREM 7.15. If ei <: b and fgcidi <: be for all i, and a denotes the (always

existing) positive root ofcit2 h- (b e)t d 0, then po ao, Pi+ supi__< ai suffices
in (7.13) and (7.14). The same holds for pi a, where a ->sup ai.

In preparation of the proofs of Theorems 7.4 and 7.10, we note the following
three lemmas.
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LEMMA 7.16. Assume (7.3). Let, for any given p-0, quantities vi(i>-_p) be
defined by

(7.17)
,/,=g d.llY]ll+e.d.-llY]-l[+’"+ e/dllY.ll-t e IlYI[. gllyll.

Ily,ll-< v,,

v,+ gd, lly]ll + eivi, > p.

Then

(7.18)

(7.19)

Proofi

y2i+l=Diy]+EiDi_ly_+. .+ Dpyp+ yp.

LEMMA 7.20. Assume (7.2) and (7.3). Let, for any given p >=0, quantities
fi(i >= p) be defined by

/i+1 CiUi + giCi-1 Di-1 -It-’" + Cpl)p / Ily.ll
(7.21) . fllyl,ll,
where the v are according to (7.17). Then

(7.22) Ily211-< tL ip

(7.23) fi,+ =/;fi +jrc,v,, => p.
Proof.

Cy2 + B,C y_, yp. lqyi+ -1 +...+ Cyp

LEMMA 7.24. Assume (7.1) and (7.3). For any given p >= 0 and q > O, p < q,
let quantities u(p <= <= q) be defined by

f{ (qi11 bj)-I (1 bj)-I lqll I(7.25) u= bT,cv+bT, lbJc+v++ ...+ Cq_lVq_ + IIY

u =/llyll,

where the vi are given by (7.17). Then

(7.26) Ilylll < u,, p _-<i = q

(7.27) ui+ biui-fcivi, p <= <= q 1.

Proof.

1 --1 2
Yi -B C/y/2-B-1 G+I YqBi+ yai+ Cq_lYq_l+
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(this follows from the formula in the proof of Lemma 7.20 by the substitution
p--> i, i--> q-1). [-]

Proof of Theorem 7.4. We apply Lemma 7.16 with p 0 and Lemma 7.24
with q- m. Then (7.19) and (7.26) imply

(7.28) vi+ <= gdui + eivi, 0 <= <= tn 1.

Together with (7.27) this yields

(7.29) Vi+ biui fcil)i) Ui+ (gdiui at- eil)i).

Defining ti vi/ u, we obtain
gdi + eiti DO glly)[[

t+l
bi fciti

to <g
Uo u,, Ilyoli-"

Hence ti <= Pi, and since ui+ (bi-fciti)ui, we obtain

(bi--fciti)Uk,
f f

implying (7.8).
Mso, Ily ll/llyLIl<-fv /u implying (7.6) for i: m, but then for any

since m is arbitrary. Now (7.7) is obvious.
In order to prove the last assertion of Theorem 7.4, we expand the product in

(7.7):

H (Bi +fpicigi) 1-I Bi + 2 Bi ffPil Cil Nil) Bi +’" ",
i=k i=k k<zi <-m-1

which in norm is less than or equal to

f 1-I bi + E ffPi, Ci,) + f H (bi +ffpici).
i=k k<=i<:m--I k i+1 i=k

Proof of Theorem 7.10. We apply Lemmas 7.16 and 7.20 with p 0. Then
from (7.19) and (7.22)we have

(7.30) v+ -<_ gdfi + evi for all ->_ 0.

Defining t v/fi, we obtain from (7.30) and (7.23)

gdi + eiti
ti+l i -- fciti t lilyAl[- o,(7.31)

hence

(7.32) ti+ <= (gdi + eiti)/)i
and ti <=piti+l <-pi+ in either case, implying (7.13) and (7.14).

8. Inhomogeneous recursions. For an inhomogeneous recursion

(8.1) Yi+ tiYi + gi,

i as in (3.5), we have

(8.2) Yi+l ,j Yo + gi + Aigi-1 +"" + j go.
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The .previous theory enables us to obtain quite realistic estimates for the
terms (I]k/a j)gk, even if the vectors gk are not close to Ra. Just as in the latter
case Theorem 5.4 and its Corollary 5.8 are useful.

In the particular case n 1 (if this is allowed), our.theory actually says that in
(8.2) all but the first few of the terms gi,/g-, ",HI Aj)g0 are close to the first
basis vector, and grow according to [-I, li. In the inhomogeneous case correspond-
ing to (1.1), we have similarly that the inhomogeneous term gk at stage k of the
recursion gives a contribution to xi (i > k) which has about the direction of the
eigenvector corresponding to A ai and grows like

This kind of argument may give rise, for instance, to a more straightforward
and geometric proof of Henrici’s result for the global discretization error in the
numerical solution of differential equations (cf. [5]).

Another way to deal with vectors gk which are not close to R is to write
gk uk + vk, where uk is the starting vector of a dominating solution
is the starting vector of a dominated solution {v}i>__k (see the subsequent part of

the. theory). Then Theorems 4.6 and 10.4 give estimates for ui and v and thus for
(I-Ik/l -i)gk. We note that there is a close relationship with the decompositions
used in [ 17].

Part III. The dominated solutions. (For the notion of dominance, see 3.9.)

9. The set Lz and its properties. Central to our theory is a set/-,2 of solutions
of (3.5) which is introduced and whose structure is studied in this section. In the
next section we shall estimate the solutions belonging to this set.

DEFINITION 9.1. The sequence z(0), z(1), z(2), , where each z(k) itself is
a sequence {zi(k)}>__o, is said to converge to a sequence z if limk_, zi(k) zi for all
i, and then z is called the limit. A sequence z will be called a limiting sequence of
the sequence z(0), z(1), z(2), if it is the limit of a subsequence of the latter
sequence.

LEMMA 9.2. If limk_oo Z (k) z and limk_oo W (k) w, then limk_,o
[z(k)+ w(k)]=z + w, but if z and w are only limiting sequences of {z(k)}k>=O
and {w(k)}k>=O, respectively, then z + w need not be a limiting sequence of {z(k) +
w(k)}kO.

LEMMA 9.3. For reasons of continuity, any limiting sequence of a sequence of
solutions of (3.5) is again a solution.

LEMMA 9.4. In order that a solution z of (3.5) is a limiting sequence of the
sequence z(O), z(1), z(2), of solutions, it is necessary and sufficient that Zo is a
limit point of the sequence {zo(k)}kO.

DEFINITION 9.5. Let Mk, k any natural number, denote the set of solutions z
of (3.5) with z 0. Then L2 is the set of all solutions of (3.5) occurring as limiting
sequences of sequences z(0), z(1), z(2),.., where z(k)6Mk.

Remark 9.6. The mechanism used in defining L2 clearly corresponds to the
mechanism in 2 for defining the solutions staying directionally close to {w}, but
we have not assumed the existence of A [1.

Remark 9.7. Although each Mk is a linear subspace of L (the space of all
solutions of (3.5)), this does not necessarily hold for L2. We illustrate this by the
following example. Take 2k =( ), 2k+1 A. With Zo= (), we get Z2k
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(), Z2k+l (a-b). Hence z(2k)Mzkc:a 0<:Zo(2k)= (); z(2k + 1) Mzk+lCZ>
a =-bC:Zo(2k + 1) (-. This implies that the limit points of {zo(k)}o have
only two possible types: () and (-). Since a linear combination of two points of
these types need not have one of these types, L2 is not a linear space.

We summarize a number of important properties of L2 in the following
theorem, where the reader may note that condition (A) says, in fact, that all z M
have z0 close to R2 in a certain sense.

TzozM 9.8. Assume
(A) ere exists a numbero such that[or any k and any z M it is true that

(a) dZZ saasf  l &ll
(b) If there exists a sequence {} such that for any k and any z Mk it is true

that I[z ll il[zll g k, then all solutions z L: satisfy z 11[ illll for
all i.

(c) Any solution y 0 in L1 has y 0 for all i.
(d) L2 contains at least one subset L2 with the following properties (e)-(h)"
(e) is an n2-dimensional linear subspace of L.
(f) For any a R there exists exactly one z such that z a.
(g) e relation between a and z in (f) is linear.
(h) L L L2 (direct sum).
(k) L is the union of subsets L having the properties mentioned in (e)-(h).

I in addition w (A), also (B) or (B’):
(B) lim Ilzlll/llylll o for any z Le and any y L1, y O,
(B’) limi Ilzill/llyill: 0 for any z L2 rind tiny y L1, y O,

then
(1) L2 itself has the properties ofL2 in (e)-(h).

(m) The solution in (f) is the limit of the sequence {z (k)}k 0, z (k) Mk,
z (k)=a

Proof. By a limit argument, (a) and (b) follow trivially from (A) and the
definition of L2.

Assertion (c) follows from the observation that y] 0y 6 IlyAll
 ollygll y: 0 since yg: 0 in L.

In order to prove (d)-(h), we define Pk Ao, and we partition
Pk according to 3.3. Then for any y 6 L1 we have y= (Pk)llY; hence from (c),
(Pk) exists. For any z Mk we have, since z= O,

(9.9) 2Z02 0.(Pk)llZo+(Pk),

Conversely, any solution of (3.5) satisfying (9.9) belongs to Mk. Therefore, if
we define Qk --(Pk)-((Pk)le, we have from (9.9), z QkZ for z Mk. Because
of (A), IIQkl[----< ro, hence {Ok} has at least a convergent subsequence, with limit Q,

say. From the definition of L2 it is then clear that any solution z with z0 a
\ a /

any, vector in R, belongs.to L2, and clearly those solutions z constitute an
nz-dimensional subspace L2 of L. This proves (d)-(g), whereas (h) is now trivial.

If z is a limiting sequence of a sequence z(0), z(1), z(2). ., with z(k)
then z(k)--> z for a subsequence {ki}, hence z(k)--> z, Ok,Z)(ki).-> z. Then for a
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subsequence {k’i} of {ki}, {Qk will converge to a limit Q, say, and obviouslyz Qz, which means that z belongs to a set/-7,2 as above and proves (k).
In order to prove (1), all we have to show is that for any a R there exists only

2__ 2one z 6 L2 such that Zo a Suppose that for z, z L2 we would have z z)2.
Then y z-z’6 L1 and if z z’, then y] # 0 for all (cf. (c)). Consequently
Ilzl-zl’ll/lly211 is defined and equals 1 for all i. But (B)implies that this quantity
tends to 0 as -> c, which is a contradiction. We proceed similarly if (B’) is given.

Finally, if the sequence {z(k)} in (m) does not converge, the sequence {z(k)},
which is bounded by  olla211, would have at least two lirnit points, ti and d 1, say,
and both (,,2) and (,,2) would serve as starting point for a solution in L2,
contradictory to what has just been proved. [-1.

Remark 9.10. Obviously condition (B’) states that all solutions in L1 domi-
nate those in La, whereas (B) also requires some kind of dominance. Therefore, in
the SV case this condition will usually be satisfied, and therefore assertions (1) and
(m) will hold frequently.

10. Dominated solutions of (3.5). Introducing S 1/ri:

(10. l) s Ily  ll/lly/ ll,
we may rewrite (4.3) as

(10.2) S <
Ci + eisi+

bi disi+

provided that bi-diSi+l >0, and in the SV case we hope that the S are small for
the solutions of L2. Therefore the relevant relation for bounding the growth of
these solutions is

(10.3)
IIy2+lll

e, + d,s,.,- d,s, ily21[

Hence, by Theorem 9.8(b) we have the following theorem.
THEOREM 10.4. For all k >- 1, let a nonnegative sequence {i}0<_-i-<k exist that

satisfies
C -31- ei.i+(10.5) i- O<-i<--.k -1 (’k --0,
bi di’i+ 1’

and let there exist a common majorant {ri} of all sequences {’i}.
Then all solutions y L2 of (3.5) are close to R2 in the sense that Ily ll_-<  illy ll

for all i, and they satisfy
m-1

(10.6) Y-- H (Ei +o’iDiUi)y2
i=k

for some sequence of nl x n). matrices {Ui} with IIu, 1.
COROLLARY 10.7.

(10.8) H (i dio’i) < .: (ei + dioi)
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and

1
1-[ (Y, d,r,) _-< _-< (1 + ,) H (e, + d,r,)(1 0.9)

1 +trk i=k ]]Yk]] ,=k

unless Yk O, in which case also Yk+l yk+2 O. The estimates from below
should be omitted when they contain negative ]’actors.

COROLLARY 10.10. In the case n).= 1, we may take ei i 1(/i)22]. Then
(10.8) and (10.9) reduce to

(10.8’)
]y[ ’ (e + Odtr) with 10sl --< 1,

m-1

(10.9’) ]]Yml]-- l -f-lmO’m (es + O,d,tr,) withlO]<l

Remark 10.11. If the conditions of Theorem 10.4 are satisfied for a certain
choice of {ei}, then they are certainly satisfied for the choice in this corollary, since
this means replacing the e by quantities which are not greater.

Remark 10.12. For {try} we may take any nonnegative solution of the
recursion in (10.5) if one exists for all i>=0 (and one certainly exists under the
assumptions of Theorem 10.4 (cf. the proof of Theorem 13. l(b)).

Regarding the structure of L2, we have directly the following theorem from
Theorem 9.8"

THEOREM 10.13. Let the conditions of Theorem 10.4 be satisfied. Then"
2(a) L2 contains at least one solution y ]:or any given Yo.

(b) If, moreover, the conditions of Theorem 4.6 are satisfied, if bi cipi > 0 for
all i, and

(10.14) lim tr,, H (e + dri)/(b- cp) O,
rn =0

then L2 is an n2-dimensional subspace of L and L LI)L2.
Again there is a generalization as in 7.
THEOREM 10.15. Assume (7.1) and (7.3). Let for all k >- a nonnegative

sequence {t}o<__i<=k exist that satisfies

fci + eii+l(10.16) i= O<-i<-k-1, k=0,
bi gdii+ 1’

and let there exist a common majorant of all sequences {ti}.
Then all solutions y L2 of (3.5) satisfy

(10.17) Ilyll go’llY 2ll,
m--1

(10.18) Y2m= [I (E + gtrsDU)y2k,
i=k

(10.19) {ly,[I --< g
,=k

(ei + gdio’).
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Moreover, L2 contains at least one solutionfor any given y. Also, if in Theorem
7.4 the condition about the sequence p is satisfied, if bi cipi > 0 for all i, and

m--1

(10.20) lim (r, H (ei + gdi(r,)/(bi--fcip,) O,
m->oo --0

then L2 is an n.-dimensional subspace ofL and L Lq)L2.
Proof. Let k and m be given. We apply Lemma 7.24 with some q > m, and

with y lq 0. We apply Lemma 7.16 with p k. Then (7.29) holds for k _-< _-< q
and yields

(10.21) tli(bivi+ gdildi+l) < vi(eibti+l -f fcivi+l).

Defining ti ui/vi, we obtain

Uq
t < fc + et+

t O.
bi gditi+’ Vq

Hence ti -_<o’i, and since vi/l <-(ei + gditi)vi, we obtain

m-1

Ily ll <- <-_ [I (e, + with Vk glly ll,
i=k

implying (10.19) for y e Mq, but then for y e L2.
A so, IlYLII/llY ll_-< u/(v/g)<-_ g, implying (10.17) for i= k and y e Mq, but

then for any and y e L.. Now (10.18) is obvious.

11. Determination of sequences {try}. For quantitative applications of
Theorem 10.4, we have to establish sequences {tri}. Comparing (10.5) with (4.7),
we note that the present recursion runs backward, and that the roles of
are interchanged. The latter fact implies inversion of the roots of the characteristic
equation (cf. (5.1)).

Now applying Theorems 5.2 and 5.4, we get, with ai and/3 defined as in 5,
the following theorem.

THEOREM 11.1. If ei < bi for all and sup aj =< inf/3j, then
suffices in Theorem 10.4 The same holdsforr a, where a satisfies sup 1//3j _<- a <_-
inf 1/a.

COROLLARY 11.2. In the SV case, all o’i may be taken small.
Similarly the analogues of the remainder of Theorem 5.4 and of Theorem 5.6

hold.
Although in the SV case/3i will be quite large (cf. 5) and therefore o-i quite

small, we cannot state that then I]ei and l-Igi are good upper and lower bounds for
the growth of the solutions of L2, since ei might be very small with respect to d;
actually ei may be zero. If, however, di is at most of the order of ei, then that
statement could be made.

The additional condition in (10.14) is very weak in the SV case. It actually will
then be satisfied if I]0 (ei/bi) 0, i.e., certainly if, for example, ei -< Obi, 0 < 1. This
follows from the following theorem.

THEOREM 11.3. If ditri + cipi <- to(hi- ei) for all i, to < 1, and {o-i} is bounded,
then (10.14) is implied by l-L=0 (ei/bi) =0.
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Proof. Defining Ei bi ei, we have from [I(1 ei/bi) 0 that
ei/bi (x3. Now I-Io (ei -b dioi)/(bi cipi) I-Io (bi Ei -[- dio’i)/(bi cioi)
I]o [1 .q-(cio + dioi -ei)/(bi -cioi)].Ho [1-(1-w)ei/bi]= O since .,ei/bi :o0. ["]

Remark 11.4. Condition (10.14) goes back to condition (B) of Theorem 9.8,
where y L1 is required. Hence, on account of Remark 4.15, for the sequence {pi}
we may take a solution {tSi} of (4.7) with iS0 0. Then, if Theorem 5.6 and its
analogue for {tri} are applicable (as they often are in the SV case), we have
o-7,c/(b-ei) and piadi/(bi-ei). In that case, the condition of
Theorem 11.3 reads 2cid<to(bi-e), to<l, and this condition is already
satisfied as soon as (5.1) has two real roots.

12. Dominated solutions of (3.2). Again returning to the solutions of the
original equation (3.2), we now state the analogues of Theorems 6.3 and 6.12,
which could be provided with quite similar comment.

THEOREM 12.1. Let n2 1. Assume ei -.i "-1(i)221 and let the assumptions
of Theorem 1 0.4 be satisfied. Then for y L2 and xi TiYi,

(12.2) [[xm[[ 1/ TImO" [[T[[ mll <[[T[[(ei + Oidio’i), [Oi ----< 1, [/i -I[ T/2II[Ix ll 1 / IIT ll
unless Xk 0, in which case also xk+l xk+2 O.

Numerical examples illustrating how remarkably well l-[’-1i=k [Ani[ approxi-
mates the growth of the solutions of (3.2) corresponding to La in the case n: 1
are again given in Part V.

THORZM 12.3. Under the assumptions of Theorem 10.4, we have, for y Le
and Xi-- T/y/,

g.l.b.(T)-[[Tl[trm m--ll_i (-’i ditYi)IIT II/IIT I[  i=k

IIx ll IIT II/IIT II  <-- <-- (el + cliO’i).-Ilx ll-g. .b.(T )-IIT ll  
The estimate from below should be omitted when it contains negative factors.

13. Relation between Theorems 4.6 and 10.4. The conditions of Theorems
4.6 and 10.4 are closely related as follows.

THEOREM 13.1. (a) If the conditions of Theorem 4.6 are satisfied, and the
sequence {i} is positive, then the conditions of Theorem 10.4 are satisfied.

(b) If the conditions of Theorem 10.4 are satisfied and, moreover, the
sequences {i} defined by (10.5) satisfy i >0 for any fixed i, if k is large enough,
then the conditions of Theorem 4.6 can be satisfied.

Proof. (a)We note that bi>O. We define r= 1/i and note that
(bi dio’i+l)o’i i -l- eio’i+l. Hence bi diri+l >-0.

We first assert that bi- diu > 0 for all u < o’i+1. This is obvious if bi- dio’i+l
>0; if bi-dio’i+l 0, it follows from the observation that then di

Hence p(u)=(ci +eil)/(bi-diu) is defined for any u < ri+l, and we assert
that p(u) < cri for u < ri+l. We first note that as a consequence of the positiveness
of {fi}, di and ei cannot vanish simultaneously. If ei O, then p(u) is monotonically
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increasing, proving our assertion. The same is true if ei 0 and di 0 provided
that c 0. Finally, if c e 0, then q(u) 0 <

Since tk 0 < O’k it is now clear that tk, , t0 are defined, and
(b) In (10.5), ti is a nondecreasing function of t/l, and therefore if is fixed

and k > i, then &(k) is a nondecreasing function of k (here t(k) denotes the
sequence defined by (10.5)). Hence limk_,o d’(k)=l.u.b.kd’i(k), and we denote
this limit sequence by {#,}, which is obviously positive. Then by a continuity
argument, iS, 1/#i satisfies (b- c,)/1 di + e. Now an exact analogue of the
argument used in the proof of (a) shows that for any iS0 < 0, the solution of the
recursion in (4.7) is defined and nonnegative. Hence P0 < 0, t9 t3 satisfies the
requirements of Theorem 4.6. I-1

Remark 13.2. The additional condition in (a) that {} is positive is satisfied
as soon as p0> 0 in Theorem 4.6, except in such cases where d and ei vanish
simultaneously, causing some kind of decomposition of (3.5). The additional
condition of (b) is certainly satisfied if all c, 0, which is quite common. More
precisely, this condition in (b) is equivalent to the property that e and c, do not
vanish simultaneously and that there is an infinite subsequence of nonvanishing c.

Remark 13.3. The observations at the end of either part of the proof of
Theorem 13.1 should not be taken as an advice to take tri 1/p when applying
Theorems 4.6 and 10.4; indeed, these theorems yield their sharpest results when
the sequences {pi} and {try} are as small as possible, and in the SV case we may
expect these smallest values to satisfy approximately p a, r 1//3, where
a << fli, hence po’ << 1.

14. Further decomposition of L. Roughly speaking, L1 and L2 decompose
L into solutions growing at least about a factor b per step and solutions growing at
most about a factor e per step.

Now suppose that we apply a second partitioning to R, , etc." R R 0)R’2
of dimension n < n l, R2 of dimension n2 n-nl. We shall provide all

relevant quantities with a prime, e.g., b’ and L’2, but we shall partition vectors into
three parts"

and we write

for the ’-partitioning and

yl+2
y3]

for the original partitioning.
Now assuming that the conditions of Theorems 4.6 and 10.4 are satisfied for

both partitionings, we find for y e L1 f’) L"2.
m-1

(14.1) Ily+ll -> FI (b,-c,r,)llYL+2ll since yL1,
i=k
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m-1

(14.2) Ily+ll - Vl (e; + d’,s’,)llyPll since y L.

Also, Ily]ll-s,,y, and IlY?ll-r, llY+=ll. Hence IlYll<-_s,(llYll+llY?ll)<-_
s;(1 + ,)IlY$11 + s;,llY 11, from which

sl(l+ri
(14.3) Ily,ll_-< _rs,)llyll ndsimilarly Ily?ll_-<r’--(--+--s)

1-ris:
provided that rsl 1, which will certainly be the case if we have the SV case for
both partitionings. Consequently

l+s]]y+11 < []y 11 + 11y,311 < + ]]y/11 and ]]y ] +11 < []y 11.1 rs 1 rs
Hence we have the following theorem.

THEOREM 14.4. If the conditions of Theorems 10.4 and 10.13(b) are satisfied
for both partitionings, and pitr 1 for all i, then dim (L1 (3L’2)= nl-n’l and all
solutions y of (3.5) in L t-IL’2 satisfy

mI m-1
(4.g) -’ Ilyll +(b,- cio,) < < 1-] (e, +

and

(14.6)
1 H (b,-c,P,) < <(1+o’) H (e,+d,o-,).1 + Pk i=k [lYkll i=k

A theorem for IIx,ll/llxll similar to Theorems 6.12 and 12.3 is now obvious.
In order to illustrate the implications of this theorem, we consider the case

that the eigenvalues of A are different in modulus for all/: IAI[ > IA2] >...>
]A,[, and we suppose that we have the SV case for n 1,.2, 3,..., n-1.
Then beM,,. Hence for each n there is a solution of (3.2) for which
IIxll/llxllis about =k ,-

Part IV. The nonlinear recursions for the directions.

15. The nonlinear recursion t+l = (di + edi)l(bi cd).
d + et(15.1) ti/
bi cit

We consider this recursion as a "time-dependent" (because the coefficients
depend on i) successive substitution problem, of which Fig. 15.1 is the well-known
graphic representation (cf. [4, p. 131] or [6, p. 7]), where

di + eit(15.2) qgi(t
b ct"

We note that in the SV case the graph of q will certainly intersect the line
y t. Indeed, the equality (d + et)/(b- ct) holds if the characteristic equation
of (15.1),
(15.3) ct2-(b-e)t+d =0,
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i li li fli

FIG. 15.1.

is satisfied, and since ci, di << b- ei, the discriminant of this equation is positive.
Because of our interest in the SV case, we shall always assume bi > e and the

discriminant of (15.3) to be nonnegative, so that (15.3) has real roots ai and/3 for
which 0 -< a _-</3. If ci 0 we shall take/3 o and still say that there are two real
roots.

We have the following trivial but useful lemma estimating the roots of a
quadratic equation.

LEMMA 15.4. Let the equation

(15.5) pt2 qt + r 0

have nonnegative roots a and 3, 0 <- a <= . Then with rt a/,

(15.6) a =(l+rt)r, /3
1 q

q l+rt p’

with 0 <-_ q <- 1. More specifically, q is a monotonically decreasing]unction ofq2/4pr
satisfying

(15.7)
qZ/(4 pr) 2 3 >=4

0.16 0.1 -pr/q

Remark 15.8. We shall call q2/4pr the discriminant quotient (d.q.) of
(15.5). The lemma is useful if we are only interested in estimates of the solutions
which may have an error of several percentage points. In fact, we see that for
d.q. _>-2, the roots are quite well approximated by r/q and q/p, respectively.
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Hence the roots of (15.3) satisfy

di <= ai <= 2di bi ei__< i --.< bi ei(15.9)
hi-el bi-e 2c ci

Since in the SV case the d.q. of (15.3) is large, the factors 2 in (15.9) may then be
replaced by factors quite close to 1. In that case, also

(15.10) ai 1, /3i >> 1.

In view of (15.9) and (15.10), the following theorem, whose proof is
immediate from Fig. 15.1, is relevant.

THZORZM 15.11. If
(a) bi > ei and (b- ei)2 =>4 cidfor all i, so that (15.3) has real roots a, t with

0 <- ai <- ti, and
(b) ai <- ui <-- fli for all for some nondecreasing sequence {ui} then i+ <- ui if

to <- Uo.

Applications. (Here a is some suitable number):

(15.12) If (a) and O _-<a ]i for all i, then ti <-_a if to_-< a.

(5.3) If (a) and 2d/(b- e) <= a <= (b- e)/(2ci) for all i, then t _-< a if
to <=a.

(15.14) If (a) and {a} is nondecreasing, then ti+ a if to<-_ao.

(15.15) If (a) and {di/(bi-ei)} is nondecreasing, then ti/l<--2di/(bi-ei) if
to <-_ 2do/(bo- eo).

In the SV case, the factors 2 in (15.13) and (15.15) may obviously be replaced by a
factor close to 1 in view of Remark 15.8.

In order to assess the sharpness of these results, we note that if b, c, d and ei
do not depend on i, then t approaches the constant value ai, and hence we may
expect (15.12) and (15.13) not to be too poor if all a are in the neighborhood of
the number a (0).

If, on the other hand, {a} varies essentially and the graph in Fig. 15.1
"bulges" nicely, then ti/l will be a good deal closer to a than t is, and
consequently, if ai does not move too fast as increases, we may expect t to follow
ai- rather closely. This settles to some extent the sharpness of (15.14) and
(15.15), but at the same time points out the crudeness of Theorem 15.11 and its
applications if {a} has a decreasing tendency.

Before exploring this more closely, we note that for the same reason, (15.12)
and (15.13) are not very sharp either if to is a good deal greater than sup aj. The
following result is better.

THEOREM 15.16. If ei < b for all and sup aj _-< to--< inf fl, then

(15 17) t. sup a <_ (-I e/b + aj/fl <= -I ei/bi + a/j for all i.
to sup a -=o 1 toc/b =o 1 to/

If ti <-_ sup ai for any >-_ O, then the same holds ]’or all greater values of i.
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Proof. If ti _<-sup aj, then ti+l _-<sup aj, and (15.17) is trivial. Therefore let
t > sup ci. Since

ti+l--Oti di-]-eiti-oi(bi-citi)
ti ai (ti ai)(bi citi)

and di bioti -cia2 2
eiai, the numerator equals eit + act ciai ea

(ti-ai)(ei +aici). With the observation that ci/bi < 1/i, the rest is easy. ]
In order to deal with decreasing {ai}, we write

(15 18) ti OiOl!i--l,

where {a}i=>-i is any positive sequence, which in applications will be assumed to
resemble the behavior of {ai}. Then {0i} satisfies

di + eiot i-10i(15.19) Oi+l bio’i- ciol i-1 ol Oi

with characteristic equation

(15.20)

or

cia i-ai (biai- eia i-1) ’+ di 0

(15.21) c,-7--(c’ ?)2 (hi Oti ei)(o’ ’)q-di=Oi--1 -"-- i--1
i--1 i--1

Hence we have the following theorem from Theorem 15.11.
THEOREM 15.22 If {OI}i=>_ is a positive sequence with a-1 a o and

t/Oi.t i--1) for all i, so that(a) bi(o i_l)>ei and [bi(oi/oi_l)-ei]2>4idi(
(15.20) has real roots ,, , satisfying 0 <-8 <= , and

(b) &i <-- ui <-- for all for some nondecreasing sequence {ui},
then ti+ < uia’ if to<= Uoao.

Although condition (a) does not look pleasant, we note that if a’i/a i-1 is close
to 1, then the substitution ct’i_l ’-- transforms (15.21) into something which is
very similar to (15.3). In the SV case, Theorem 15.11 (a) is generously satisfied,
and therefore Theorem 15.22(a) will then also be generous.ly satisfied provided
that a’i/a’ implying-1 is close enough to 1 and then i ai/a i-1 and fli
that/3i and &i have about the same (large) ratio as/3i and ai.

Since the sequence {a’i} is arbitrary, the condition that a’i/a’i-1 is close to 1
can always be satisfied. If, however, one wishes {a l} to resemble {ai}, as has been
observed above, it should be realized that, although aJai_ will often be close to 1
in the SV case, the SV assumptions do not really prevent {ai} from tending to 0
quite rapidly.

In order to apply Theorem 15.22, we have to specify sequences {al} and to
find sequences {ui}, and from what has been said before it will be clear that we
hope that a constant sequence {ui} satisfies if {a} resembles {ai}. Hence we have
the following applications, which are all parallels of (15.13).
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Applications. Define 3’i ei/bi, and let any sequence {a I} to be defined below
a). Then ti/l /if to-- 0satisfy a i/a’ <’i--1 > i (Ol t_._ < da whenever d satisfies

/i- -3’_: -<d <1 /3 (Ofl/Of I--1) Yi(15.23) 2 sup
1- I /a’)- =inf--c -/ with a ai, i i,

or with

_di fl, bi ei(15.24) Ol
bi ei Ci

or

1 1 tit(.tt. ) tdi, ,b_--< d inf ’- Ti with a / Ji(15.25) 2 sup
1-Ti(al_/a) = a; \ai- c

where again, using Remark 15.8, the factors 2 and might be replaced by factors
close(r) to 1 if the discriminant quotient of (15.21) is large enough.

This shows that under rather liberal conditions (which can easily be made
explicit), we have t _-< 2ai_1 if to -< 2ao. Among these conditions we obviously have
that Oli/Oli-- should be fairly large with respect to Ti ei/bi. We conclude this
section by showing that the latter condition is rather essential if one wishes t to
follow a_ rather closely. Indeed, as is easily verified,

(15.26) ti+ ai ei +
ti CXi bi ] 1 olici/bi)(1 tici/bi)’

which shows that li+l--Oli >(e/bi)(ti-a) if ti > Oli. Now assume that ti > a for
some i, that ej/bj =l (const.) for j >= i, and that aj A j, 0 < A < p < 1, for j >--i
(hence Olj/Olj_ < ei/bi). It is then easily verified that ti+p >
ai+p_l(1-/x)(1 +/x/A +" +(/x/A)p-l) and hence ti+p/a+p-1 increases rapidly
for p -> c.

Finally, we refer to [7], where more refined work on the solutions of the
recursion (15.1) is reported.

16. The nonlinear recursion ti+l (di -[" et)i(b +ct).

d + eiti(16.1) ti+
bi
_

citi.
We shall be very brief about this recursion. The case which is of interest to us

(cf. 7.11) is that
ei < bi, cidi <- biei.

Then the graph of oi(t)=(d +eit)/(bi +cit) is as shown in Fig. 16.1, where eti _->0

and/3 < 0 are the roots of

(16.2) Cite + (bi ei)t- di O.

Obviously, ai < di/(bi el).
THEOREM 16.3. If
(a) bi > ei and cidi <- biei for all i, and
(b) ai <= ui for some nondecreasing sequence {ui},

then ti+l <= ui if to <= Uo.
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y=t

FIG. 16.1

Applications similar to (15.12)-(15.15) are now obvious; all factors 2 may be
omitted, and in (15.12) ai -< a suffices, whereas in (15.13) di/(b e) <- a suffices.

Similar to Theorem 15.22, we have the following theorem.
THEORZM 16.4 If {a ti}i_ is a positive sequence with a-1 ao and
(a) alia’i-1 > ei/b,
(b) ui >= i for some nondecreasing sequence {ui}, where &i denotes the positive

root of
(16.5) ciai-lait +(bai-ea_l)[-d=O,
then t+ < uia’ if to <- Uoao.

Applications. With y ei/b and > (c’i-1 yi -1 a) we have ti+ <- lOl if
to -< tic 0 whenever

1-yi < with a’=di/(bi-ei)(16.6) sup
1- y(c’

or
1 -< witha’ di/bi.(16.7/ sup

1 y, (a ’,_l /a ll ’=

Part V. Applications.

17. Three-term linear homogeneous recursions. Because of the great prac-
tical interest of three-term linear homogeneous recursions, we now reformulate
the preceding results for this case. Numerical results for this case will be given in
18.
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Let
(17.1) Ui+2 q- piui+ "]" qitli 0, i=0, 1,2,...

be such a recursion. A matrix-vector equivalent is

Xi(17.2) Xi+l Aixi, Ai
-qi -Pi Ui+l

The eigenvalues Ai and/xi of Ai will also be called the local characteristic roots of
we assume I ,l I il and define

(17.3) T=
Ii /x

Obviously, if II1<< 1 or I)tl >> 1, then, no matter the ratio t/A, T will be very
skew, thus violating one of the SV conditions. This could have been circumvented
by a different choice of Ai(e.g., cf. [8, (4.10)]). However, this skewness will not
matter here, since we are not going to use properties like Theorem 6.3, for which
purpose we required the nonskewness of the T mainly.

Since
TilAiTi:

0 i.ti
we get for A as defined by (3.3)-

(17.4) Ai 1 (ii(Ii- -ti+ 1)
Ai+ --[Ul’i+ Ai(Ai+

We now define

(17.5)
bi--[Ai(A,-

di:[Ai(Ai+l-Ai)l,

C "-Ii(i- [-I,i+ 1)l,
e [Lti (Ai+I fti)l,

(17.8)

and note that after division by IAi+l-i+l[, these quantities can be used as

bi i, ci, di and ei i, respectively, in (3.6).
We then have the following theorem for the dominant solutions.
THEOREM 17.6. Let IAil > I/zil. Let for some rio >= 0 the sequence

(17.7) fi+l (di + eli)/(bi-

be defined and nonnegative, and let {Pi} be a majorant of {15i}, po o. Then a
solution {ui} of (17.1) with Uo 1, ul=Ao (or more generally, uo=a +b, Ul

/ with Ibl--< ola[) satis es
lUm+l_l_._] l + O’mPmlXm/A, m-1

]Uk+,l- l+O’kpklXk/Ak ’7/’1=2 Hk
where m-1

k

m-1

(17.9) H

1--/i+l/Ai
1 --/,Li+ 1//i+

1
iiii+ 1( 1 f/’i+ 1//i+ 1)

m]_l
k+l

A/.Li
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m--l[ i Aldl, ](17.10) ’W2-- 1 .q!-Oi)iii(ii_Ji+l)
with AI i+l --,i, AIL l,i+l l,i, [Oil 1,1011 a.

This still applies for k -1 if one defines A_ Ao, I-1 Io, p-1 PoAo/lo.
Proof. From xi T/yi, we have

(17.11) tli+l:Aiy+tiy2i=Aiy(l+OlPiti/Ai), 10’,ll.

Hence, from (4.10’),

and now (17.9) and (17.10) are clear.
For the case k -1, we consider (17.2) for -1 with A_ Ao. Since we

then have b’ =Ao(Ao-o), CLl=dLl=0, eL=o(Ao-o) we have o
o-/X0.

Remark 17.12. In the important case k =-1, we have Um-ak IAil [Ao[
IAil (cf. (a7.8)). if, in particular, po=0 (i.e., Ul/Uo=Ao), then (17.8) reads

m--1

(17.13) lu+/Uol=(l+Op/A)l2lAol fl IAil.
0

Again, for k =-1 (but irrespective of po being 0), we have H- =om-1
everhere in (17.9) and (17.10)since AA_ A-I =0.

Remark 17.14. In (17.8)-(17.10), we may replace Am, and p by A_,_
and O-l-/Am-, respectively, and for (17.9) and (17.10) this means

replacing H-1 by m-2.ereplacement of A and is a consequence of u+
being independent of A and (cf. (17.1)), and then we get e’m_l/b’_l
Im-1/Am-ll, Cm-1 =din-1 =0.

Remark 17.15. Obviously, the factors and e will be close to 1 in the SV
case, and in Remark 17.16 we shall estimate how close, in order to see what error
is made if these factors are skipped altogether. For the moment, we note that in
this respect, the penultimate expression for 1 in (17.9) may be advantageous if

AA is very small, whereas the final expression in (17.9) may be advantageous if

A is very small.
Remark 17.16. In any given case, the values of 1 and e (cf. (17.9) and

(17.10)) may be estimated. In this remark we give (possibly quite conservative)
estimates for some special, though rather common, cases. Proofs are contained in
(c) and (h).

(a) If {Ai} has constant signs and is monotonic, then

max NI.l--l <1 <exp(l) if 1
k+lim 1-i/Ai

(b) If {} is monotonic, then for 1 =k+l [1-Ai/(Ai-i)] (cf. (17.9)),

1 2 exp (2) if 2 [m k+l[ max 1/]Ai i] 1.
k+lim-1
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(c) The estimates in (a) and (b) follow immediately from the property

1-Y’.lvil_-<fl (1 +vi)=<exp (Elvil) if all )i >-1,

which may also be used for deriving some more detailed results.
(d) Let (S) denote the property that {Ai} and {/x} are slowly varying, that

i <=tod/(bi-ei) for some constant to (which will often be of the order of 1 (cf.
Theorem 15.22, applications, and (15.9)), and that the quotients Igi/Ai[ are not
too close to 1.

(e) If (S) holds and {A} has constant signs and is monotonic, then

IAgil
if q3 << 1;11 q93 0)1" max

hence ere may be expected to be a good deal closer to 1 than 7r.
(f) If (S) holds and {A} has constant signs and is monotonic, then

=w 1/2_ 1 I/x’A/x’[
ifq94<<lI"g/’2-- 11<q94 " m m=<a---Xm(1-1tz,/A,I)3

(g) If (S) holds and {/z} has constant signs and is monotonic, then

max ifqs<<l.
k<=i<=m

(h) In order to justify (e), (f) and (g) and to indicate under what circumstances
they hold, we note that 7r2 II- [ 1 + w], with

lw, <
,od’,

Comparing the penultimate estimate for w with the penultimate expressn for

i (17.9 jstifi (e). e observation that -1 gAgi[g-g] and
AA/Ai [1/A- 1/Az] justifies (f) and (g).
For the dominated solutions, we have similarly from (10.8’), using u
2

Y, + Yi y(1 + 0,,), IO,I 1.
ThEOrEM 17.17. Let Ix, Let for all k 1 the sequence {},

(17.18) i=(c+ei+l)/(b-di+), Oik-1, O,

be defined and nonnegative, and let {} be a common majorant of all sequences
{i}. en them are solutions {ui} of (17.1) (dominated solutions) such that
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where

m-1

(17.20) "rr3 I-I 1+ Afti
/i+1 jtLi+l

1 [.Lk/k+
1 tZm/A

1+
AiAi+1( 1 ],Li/Ai)

(17 21)7r4 I-]1 [ 1 +Oio
k

with AA, li+l-ii, Aid, [.l,i+l-[.l,i, [Oil 1, [0[--< 1, and these solutions satisfy
Uo a + b, U aho+ bo with. [a 1_-< r0lb [.

Remark 17.22. (a) If {hi} has constant signs and is monotonic, then for
7r3 Hk+l 11 + ftiAXi/AiAi+l(1-ldi/Xi)l(cf. (17.20)),

1 (496 71" exp ((,96) if (06
1 1

max _-< 1.
k+li<=m-1 1 .Li/h

(b) If {jLLi} is monotonic, then

1-q97=<qr3=<exp(q97) if q7=l/x,-/xkl max
k+l<:i<=m

(c) Let (S’) denote the property that {/i} and {fi} are slowly varying, that
’i <= oci/(bi-ei) for some constant co (which will often be of the order of 1) and
that the quotients Ifti/Ail are not too close to 1.

(d) If (S’) holds and {Ai} has constant signs and is monotonic, then

Ir4-11 q8 (.D(496" max
k<:i<=m [[Zi[(1 --IIi/Ai[)2

if q8 << 1.

(e) If (S’) holds and {Ai} has constant signs and is monotonic, then

1
17"/’4-- 11 (,99 O) mm --/-

IAI,_jtLi,
if (4:)9 << 1.max

k<=i<=m (1- I/.zi/Ail)3

(f) If (S’) holds and {Li} is monotonic, then

17]-4-11 < q10 O[/Zm --/at,k[ max
[hiAhi[

k<--i<=m
if 010 << 1.

18. Numerical examples. In these examples we consider four different cases
for (17.1).

Example I. {Ai} and {/i} have finite limits of different modulus.
Example II. {Ai}--> o, {/x}--> 0.
Example III. {Ai} and {/xi} have different finite limits of equal modulus.
Example IV. {A} and {/z} have equal limits.
In Examples I-III, the sequences of eigenvectors of {Ai} automatically also

have different limits as far as their directions are concerned; in Example IV they
have equal limits.

Example I. We consider the recursion

(18.1) (2i+5)ui+2+6(2i+3)ui+l+(2i+l)u=O.
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This (trivially solvable) recursion has as one solution the sequence of coefficients
of odd index in the Chebyshev expansion of arctan (x) on [-1, 1].

We find to reasonable accuracy for all -> 0

2i+3 1 2i+1
hi-6 txi2i+5’ 6 2i+3’

1 1 1
Ahi -6 Alxi(i + 3)2, 6 (i + 2)2,

bi=h =35, c’
9(2i +7)2’

36
di=(i+4)2, ei 1,

4
ai ,-,2, /3i 300(2i + 7)2.

(2i +

Theorem 5.2 yields pi 0.16. Theorem 5.6 yields i 2, pi 2ai-1. Theorem 11.1
yields o-i 0.0001.

For the factors in (17.8) we find: the first factor differs from i by less than 0.01
(using pi 0.16), and by a much smaller amount if p0 0, k 1, m > 2 or if k > 2
(using pi < 8/(2/+5)2); [zrl- 11 <qa _-<0.02 (Remark 17.16(b)); [zr2-1[ < q3<< qa
(Remark 17.16(e) with w 1).

Hence [u,,+l/u,+l[=I-I’-1 [hi[, with an error of only 3% or less (actual
computation reveals no errors of over 1%).

For the factors in (17.19) we find: the first factor differs from 1 by at most
0.0002; 17r3- 11 < q7_-<0.025; Ilzr4-1[ < q8<< q96:<0.02.

Hence lu,.+l/U +ll II I ,1. with an error of only 21/2% (actual computa-
tion shows errors of this size).

Thus our theory gives very accurate estimates for the dominant and domi-
nated solutions.

Also, by Theorem 11.3, we have L L1 L2.
Example II. We consider the recursion

(18.2) Ui+2 +(2i + 2)Ui+l- Ui O.

This recursion has as one solution the sequence of coefficients in the Chebyshev
expansion of exp (x) on [-1, 1].

We find to reasonable accuracy for all _-> 0

hi -(2i +2), /2,i 2i+2’

AAi -2, A/xi

2bi(2i+2) ci

-2
(2i + 2)(2i +4)’

(2i+3)3’
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i4i+4, e’il,
1 (2i +2.7)3

Oi ii+1’ 2

Theorem 5.2 yields 9 1. Theorem 5.6 yields 2, but since the discriminant
quotient (cf. Remark 15.8) of (15.21) is >4, we actually have ti 1. Hence we may
take p0aol (or p0=0), piai_ll/i, i>-l. Similarly, o-i2/(2i+2.4)5,
which is very small for all i.

Now remarks similar to those in Example I can be made, though the error
bounds for k =-1 are now somewhat wider.

Example III. We consider the recursion (p > 0)

2
(18.3) ui+2-,

i, + 1)p Ui+l- ui =0.

Then

Hence (b’-e’)2/4c’d’i 4p-2(i + 1)2> 1 if 2(i + 1)> p. Hence, for p <2, the dis-
criminant of (15.3) is positive for all values of i=>0, whereas for p=<l, the
discriminant quotient is "large" and hence ai d’i/(b’-e’i) and i =(b’-e’i)/ci
We shall assume this henceforth. Hence

.-1
I.Oli-- -pt [i--1 4p 1.

Note, however, that for larger values of i, this is true for much larger values of p.
Theorem 5.2 yields Oi =1/4P. Theorem 5.6 is applicable only if p =< 1, since other-
wise ci/i-1 < e’/b’i and, indeed, it can be shown that in that case {ti} (cf. (15.1))
does not tend to zero. If p-< 1, then ti 4 satisfies (and, indeed, since the
discriminant quotient of (15.21) might again be called large, even fi 2 would be
allowed). Hence, in this case pi =4ai-1 (or even 2ai-1) is allowed. (This corres-
ponds nicely with reality since p 1, to 0 yields tl 1/4, t2, t3 1/2, whereas
o0, O O2 -i-, .).

From the foregoing, it is clear that the first factor at the right of (17.8)-differs
from 1 by less than 0.3 if p-< 1 and m is not too small, and this factor becomes
arbitrarily small if k 1 and m is large.

For the factor 71" in (17.8), we have [Trl-ll<qgl--1/2(Xnl-A-l)
1/2(k-P-m-P), and again [7r2-11<< 17rl- 1[ (cf. Remark 17.16(e)) if, e.g., k > 3.

In the case of this example, therefore, 1-1 IAil still represents the growth of
dominant solutions very well, and similar things can be said about dominated
solutions.
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This shows that for p _-< 1 the difference in growth character of the two kinds
of solutions is quite marked, since then 1-I"/x/I-l" A 0 for m - o, which implies
condition (B) in Theorem 9.8, hence L L 0)L:.

For p > 1, this is no longer the case.

Example IV. We consider the recursion

ui+2--2Ui+l+(1--(i+l)-2P)ui=O, 0<p=<l.(18.4)

Then

Ai- 1 + -p, ta,i_ 1 -p,
AAi_I --pi-p-1 mld,i_l pi-P-1

bl- 2i-PAi-1,

pi-P-1di-1 /J,i- 1,

Ci_ pi-P-lAi_l,

el-1 2i-Pt2,i-1

Hence (b’ 2 2--2p p2 <:i-l--ei-1) /4c di-l4i / >4 (this causes the restriction p 1i--1

since otherwise the discriminant would become negative for increasing i). Thus
the discriminant quotient is again "large", implying

ai-1 1/4pip-l, fli-1 4il-P/P.
Theorem 5.2 yields pi 1/2p. Theorem 5.6 yields i 2, but since in (15.21) the
discriminant is again large, 1 is more appropriate. Hence Pi Oi-1.

The factor 7rl in (17.8) is now unbounded; it is approximately equal to
(m/k)p/2. Hence the factor I-IIAil is now no longer a good estimate of the growth,
although obviously (m/k)p/:z is increasing only very slowly as m increases.
Anyway, this factor 7rl allows a good estimate from above and from below.

The latter cannot be said of the factor 7re in (17.8) if p 1. This factor is then
about Hk-l(l+Oi/Si) (m/k)/8, 101<1, and this means, therefore, an
unbounded uncertainty factor. If, on the other hand, p < 1, this factor is about
1 +[p2/8(1-p)](kp-1-raP-l), bounded therefore.

Acknowledgments. The author wishes to acknowledge many stimulating
discussions with his co-workers R. M. M. Mattheij and M. van Veldhuizen.
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A SOLVABILITY THEOREM FOR HOMOGENEOUS FUNCTIONS*

MURRAY SCHECHTER?

Abstract. Extensions of the solvability theorem of Farkas to include particular homogeneous
functions have been proved by a number of authors and have been used to derive duality theorems for
particular programming problems. In this paper, the subject of solvability theorems is approached
from the viewpoint of the theory of convex sets and a fairly general theorem is derived. By working in
an arbitrary real space rather than R n, we get as special cases complex as well as real solvability
theorems.

Introduction. Starting with the celebrated theorem of Farkas, a number of
solvability or transposition theorems have been published and subsequently used
to derive duality theorems. In many cases the solvability theorem is of the form:
(u, x)<=ho(X) for all x in some cone K if and only if u satisfies some stated
condition. Here ho is some given positively homogeneous convex function. In the
original Farkas lemma, ho is identically zero. In the theorem of Eisenberg 1], [2],
generalized by Kaul [4] and Mond [5], h0 is the square root of a positive
semidefinite quadratic form and in the theorem of Smiley [7], ho is the support
function of a compact convex set. In this paper, we derive a theorem for a more
general homogeneous function ho which includes, for example, the results cited
above. Furthermore, we use set theoretic rather than matrix methods so that our
results show the relationship between solvability theorems and convexity theory
and is not heavily dependent on polyhedrality of the cone K. Also by working in an
arbitrary real space rather than R , we can get complex solvability theorems as
special cases.

1. The polar of an intersection. Let X be a real finite-dimensional inner
product space with the inner product denoted by (.,.). For any set S in X, we
define the polar of S, denoted by S, by

(1) S--{yl(x, y)_-<l for all xS}.

We will make use of the result, which will be referred to as the bipolar theorem, that
if S is a closed convex set containing the origin then S= S (see [6, Thm. 14.5].)
Note that if K is a cone, then

(2) K= {yl(x, y> <-0 for all x in K}.

THEOREM 1.1. Let K be a closed convex cone and let C be a closed convex set
containing the origin. Then

(K f-I C) cl (K + C).

Proof. It is immediate from (2) that K + CO
_
(K f’l C) and since the polar of

any set is closed we have el (K + C)
_
(K f’l C). To get the reverse inclusion it

* Received by the editors February 6, 1975, and in revised form June 20, 1975.

" Department of Mathematics, Lehigh University Bethlehem, Pennsylvania 18015 and Depart-
ment of Applied Mathematics, Technion--Israel Institute of Technology, Technion City, Haifa,
Israel.
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will suffice to show that

(3) [c! (K + C)]

_
K C

because cl (K + C) is a closed convex set containing the origin and taking polars
reverses inclusion; hence if (3) is satisfied, then the bipolar theorem gives the
desired reverse inclusion. Using the bipolar theorem and the fact that CO contains
the origin, we have (K + C)

_
K K. Similarly we get (K + C)

_
C. Finally,

since a set and its closure have the same polar, (3) is verified and the theorem
proved.

2. Support and gauge functions. In this section, we outline some properties
of the gauge and support functions of a convex set. The properties we list are well
known (e.g., see [6]) but we briefly outline proofs.

Let R’/ denote the nonnegative real numbers with adjoined. Let X be a
real finite-dimensional inner product space with the inner product denoted by
(., ). With each each set C in X we associate two functions: the gauge function
g(. IC) and the support ]’unction s(. IC) defined as follows:

g(xlC inf {t > OIx tC},

s(ylC) sup {(x, y), x C}.

We take the inf of the empty set to be + and we suppose that C contains the
origin. Then both s and g map X into R_. It is clear that these functions are both
positively homogeneous; i.e., they both satisfy f(x) f(x) for - > 0. We cannot
say the same for "r 0 because either function may assume the value .

For the rest of this section let C be a closed convex set containing the origin,
let g=g(. IC) and let s =s(. IC).

LEMMA 2.1. Both s and g are positively homogeneous and convex functions.
(Therefore they are sub-additive.) Furthermore, s is lower semicontinuous and

C= {xlg(x) <- 1} {xl(x, y) -<_ s(y)’y}.

The proof of this result is elementary. We only comment that the lower
semicontinuity of s follows from the fact that it is the supremum of a family of
linear, therefore continuous, functions. Also note that if (x, y) -<_ s(y) for all y, then
the strict separating hyperplane theorem implies, by contradiction, that x lies in C.

The following simple observation, the proof of which we leave to the reader,
allows us to relate the gauge and support functions of a set and its polar and is also
generally useful.

LEMMA 2.2. Let h x - R’+ be a positively homogeneous function. Then

{yl(x, Y) = h(x)Vx} {x]h(x) <= 1}.
LEMMA 2.3.

g g(" Ic)= s(. IC),
s s(. Ic)= g(-Ic).

Proof. It suffices to prove the first assertion, the second then following by the
bipolar theorem. By Lemma 2.1,



698 MURRAY SCHECHTER

By applying Lemma 2.1 and Lemma 2.2, we get

co {yl<x, y> --< s(xlC)Vx} {xls(xl c) <- }o.
The lower semicontinuity of a support function implies that {xlsxlC) a} is
closed, hence the bipolar theorem gives C Coo {xls (xlC) _-< 1}. Comparing
our two representations for C we deduce that g(x) _-< 1 if and only if s(x[C) <-_ 1.
From the fact that both g and s(. ]C) are positively homogeneous, it follows
easily that the functions are equal.

LEMMA 2.4. Let h be a convex, positively homogeneous and lower semicon-
tinuous function from x into R’+. Then h is the gauge function ofsome closed convex
set containing the origin and it is also the support function oj: some such set.

Proof. Let C={xlh(x)<-_ 1}. Then C has all the stated properties. From
Lemma 2.1 we have h(x)_-<l if and only if g(xlC)<-l, and by positive
homogeneity this implies h(x)= g(x]C) for all x. Finally, h(x)= s(xlC).

3. The solvability theorem. Let a closed K and a closed convex set C
containing the origin be given. Let the function h be defined by h(x) s(xlC) if
x K, h(x) oo otherwise. Then

{xlh(x) 11 g {xlsxlc) ! g C,
where we have used Lemmas 2.3 and 2.1. By Lemma 1.1,

{xlh(x) <-_ 1} (g Cl C) cl [g + C].

But by Lemma 2.2,

{xlh(x) <-_ 1} {yl(x, y) <-- h(x)Vx} {yl(x, y) <- s(xlc)vx K}.

Thus we have proved that (x, y)_-< s(xlC) for all x in K if and only if y is in
cl (K+ C). Now we show that this result holds even without assuming that the
origin lies in C. Suppose Xo is a point of C. Then C-Xo is a closed convex set
containing the origin, and therefore from what has already been proved, we may
write that

(x, y)<-s(xJC-xo)= s(xlC)-(x, Xo) for all x in K

if and only if y is in cl (K+ C-Xo)= cl (K+ C)- Xo. Replacing y by y + Xo we
have therefore proved the following theorem.

THEOREM 3.1. LetKbe a closed convex cone and Ca closed convex nonempty
set. Then (x, y) <-_ s (xlC) for all x in K, if and only if y cl (K + C).

COROLLARY 3.1. Suppose C and K are as above and K + C is closed. Then

(x, y) <-_ s(xlC) Vx K

if and only if there exist u and v satisfying

y u + v, u K, g(vlC) <- 1.

Note that if we are given an arbitrary positively homogeneous, convex lower
semicontinuous function h from X to R /, not identically oo, we are able to apply
the last two results with h in place of s(xlC) by defining C= {xlh(x)<-1}.
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4. Special cases. In this section, we will show how the result of the preceding
section includes a number of previously obtained alternative theorems and we will
obtain a new specific result.

First, in Theorem 3.1, let C {0}. Then s(xIC) 0 for all x and our theorem
therefore says that (x, y) -< 0 for all x in K if and only if y is in K’, i.e., we get the
Farkas lemma.

Now, suppose C is compact. Then K+C is closed and

s(xlC) sup {(x, y), y e c} max {(x, y), y C}

and hence (x y) =< s(xlC) if and only if there exists Yo in C such that (x, y) =<(x, Y0).
Then Theorem 3.1 takes the following form:

x K implies (x, y Y0) =< 0 for some Yo in C if and only if y e K + C.

Now let X C" m-tuples of complex numbers. Note that X is a real space
(as well as a complex space). Write the elements of X as columns and let
superscript H denote conjugate transpose. Define (x, y)= Re yx. It is easily
verified that this is a legitimate inner product. Let M be an n n matrix and S a
closed convex cone in Cn. Define the cone K in X by K {y IAr e sO}. K is closed
since a linear transformation is continuous. Furthermore, it is easily verified that
K= cl A(S). Hence Theorem 3.1 gives us almost immediately the following,
which reduces exactly to the theorem of Smiley [7] in case $ is a polyhedral cone.

THEOREM 4.1. Let S be a closed convex cone in C, A an m x n matrix and Ca
closed convex set in C".

Anx SO implies Re xH(y Y0)--<0 for some Yo in C if and only if y
cl A(S)+C.

As another special case we can get a result of Mond [5] which is an extension
of a result of Kaul [4] which is itself an extension of a result of Eisenberg [ 1], [2].
To do this we need a lemma about positive semidefinite matrices.

LEMMA 4.1. Let B be a positive semidefinite linear transformation on X. Let
H= {x](x, Bx) <- 1}. Then BH is compact and H BH.

Proof. Let L be the nullspace of B. Restricted to L +/-, B is nonsingular so there
exists a positive constant t such that [IBx[I >= l[IX[I for all x in L +/-. Also it is easily
proved that H=LO)(L+/-fqH). To show that BH is closed, let Z be in clBH.
There is a sequence {x,} in H such that Bx->Z and because of the above
decomposition of H, we may suppose xn lies in L’fqH. Then Ilxnll<llBxnll/r$1--->
Ilzll/ , and hence {x,,} is a bounded sequence. The closure of BHfollows from the
fact that it has a convergent subsequence. To show that BH is bounded, we note
that BH B(H f’l L-). Since B restricted to L H is nonsingular, there exists a
positive constant 82 such that (Bx, x) >= 211xll= for x in L +/- f’l H; hence for any x in
HfqL-,

IIBxll-< IIBII. Ilxll-< IIBII. (Bx, x>/32

Therefore BH is compact.
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Now let us show that BH =/_/o. For any y and x in H,

(By, x) =<[(x, Bx)(y, By)]1/2 _<- 1.

Therefore By lies in H. Now suppose u is in H but not in BH. By the preceding
part, BHis closed and it is surely convex, so u andBHmay be strictly separated by
a hyperplane; i.e., there exists a d such that

(d, u) > 1 >sup {(d, x), x BH}= (d, Ud)1/2,
where we have used the Schwarz inequality to evaluate the supremum. But this is a
contradiction because the last inequality implies that d lies in H and yet (d, u) > 1;
therefore H BH.

Now to use this lemma to get the desired solvability theorem let C=
{x[(x, Bx) <= 1}, where B is as in the lemma. Then the last lemma says C BH.

s(xlC) sup {(x, Bz)l(z, Bz) <= 1}= (x, Bx)/2.

With this choice of C, Theorem 3.1 gives

xK implies (x, y)<-_(x, Bx)1/2 ifandonlyif y6K+BH,
where we have used the compactness of BH to get the closure of this sum.
Choosing the space X and the inner product as in the preceding theorem, we get
the following, which is exactly the theorem Mond gets in [5] in the case of
polyhedral S. In order to get better notational agreement with [5] we put -b in
place of our y.

THEOREM 4.2. Let S be a closed convex cone in C’, A an m n matrix and B
an n n positive semide]inite matrix. Then

AxeS implies [xHBx]l/Z+Rebt>=O

if and only if
-(b+Bv)6cl (AHS) forsomevsuchthatvtBv <= 1.

To conclude this section, we give an example of a new concrete solvability
theorem derived from Theorem 3.1. We get such a theorem for p norms, p >-1.
With X C" let

Ilxll Ix,[ for l_-<.p<

Ilxll o max {Ix, I, i= a, 2,..., n},

and let q be the conjugate exponent, i.e., let q be the unique solution to
p +q 1. When p= 1, we take q +oo. Let C-{xlllxll <- It is-well known
that CO= {ylllyll --< Aso C is compact. Then taking, for the sake of familiarity
of form, the case of a cone defined as in Theorem 4.2, we get the following from
Theorem 3.1 and the results of 2.

THZORFM 4.3. Let S be a closed convex cone in C" andA an n m matrix. Let
p and q be conjugate exponents. Then

Ax S implies Re ynx _-< Ilxll
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if and only if
y v cl AS forsome v satisfying

5. More general spaces. The setting for all the results obtained so far has
been a real finite-dimensional inner product space. Finite-dimensionality has
been used explicitly only in Lemma 4.1 and implicitly it has been used by invoking
the bipolar theorem and separating hyperplane theorem. Both these work in a
Hilbert space so the results of this paper, except for those involving the positive
semidefinite transformation, are valid for a Hilbert space. More generally, let X
and Y be a dual pair of locally convex spaces. Now (x, y) does not mean the inner
product of x and y but the continuous linear functional y evaluated at x or the
continuous linear functional x evaluated at y. Then the separating hyperplane and
bipolar theorems still hold ([3, p. 182 and p. 195]). The proof of Lemma 2.1 may
easily be modified to work in a locally convex space, hence the main results
obtained above hold in this more general setting.
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ON EXPANSION PROBLEMS: NEW CLASSES OF
FORMULAS FOR THE CLASSICAL FUNCTIONS*

M. E. COHEN’t

Abstract. Using operators, a theorem is initially proved which generalizes a pair ofknown Lagrange
expansions. These expansions are subsequently employed in the derivation of generating and multi-
plication theorems, giving new families of formulas involving the Gegenbauer, Laguerre, Hermite
polynomials, as well as the Bessel and other functions. The salient feature of these results is that the
degree of the polynomial is incorporated in the argument through an arbitrary parameter I. The known
classical results present themselves by letting go to zero. The second half of the paper deals with the
more usual generating and multiplication theorems. With the aid of another pair of Lagrange expan-
sions, we generalize known formulas of Fields and Wimp [7], Verma [19], and others..

1. Lagrange’s generalization of Taylor’s theorem is a powerful tool when
trying to find interesting generating functions. For example, Jacobi [11] found
his well-known generating function for Jacobi polynomials by use of Lagrange’s
theorem

(1.1) rP(")(x)= 2+’p-1(1 r + p)-(1 + r + p)-’,
n=O

where p (1 2xr + r2) 1/2, and

(1.2) x)’tl + x)eP"x)= i[ x)"+’ + x)"+]

Elementary proofs of Lagrange’s theorem have been given by Schur [16] and Car-
litz [4]. These proofs, while elementary in a technical sense, are reasonably com-
plicated. However, it is possible to give simple proofs for some of the key results
which are usually proved by use of Lagrange’s theorem. For example, P61ya
and Szeg6 [14, pp. 301-302, problems 210 and 214] give the expansions

(co)"(ln + I)"-1
(1.3) e-Z= 09=-ze

zl

,=o n!

e (og)"(ln + 1)"
(1.4) 1 + zl o n

Theorem 1 in this paper is a generalization of (1.3) and (1.4), obtained with the aid
of operators. The subsequent theorems are then proved using (1.3) and (1.4).
These theorems give new families of generating functions and expansions for the
classical functions. The degree of the polynomial is incorporated in the argument
through an arbitrary parameter I. Letting l--, 0 gives the well-known classical
results.

* Received by the editors January 29, 1973, and in final revised form June 17, 1975.
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The second half of the paper is devoted to employing the problems 212 and
216 of P61ya and Szeg6 [14, pp. 301-302]. Again these Lagrange expansions aid
in proving formulas that generalize equations (1.9) and (1.10) of Fields and Wimp
[7], equation (11)of Srivastava [17], equation (3.1)of Verma [19]. Earlier workers
in this area have been A1-Salam [1], Brafman [2], Brown [3], Carlitz [5], Chaundy
[6], Gould and Hopper [9], Feldheim [8], Niblett [13], Toscano [18], Zeitlin
[21], and others. The generalization of some of the classical polynomials have
ramifications of interest. For example, the generalized Hermite polynomial
treated by Gupta et al. [10] and others is a useful tool in probability distribution
problems.

THEOREM 1. Let fl and be real or complex. Then

(1.5)
(fl) E-ze]k(lk + 1)

k=O (k + fl)k
=exp(-z),F1[1; fl+ 1;z(1 -ill)I,

where ]zl exp (1 zl)l < 1, and fl is not a negative integer.

Proof For the case a nonnegative integer,

(1.6) (Dx){(1 x’)"}
(--n)k(lk + 1) ,k

k=0 k!
x

(1.7)
(-n)(lk + 1)"

(Dx)"{(1 "xl)n} /_,a xlk
k=O k!

where D =- d/dx. Now

J’ f (-n)k(Ik + l)"xtk
(1.8) xm- I(Dx)"{(1 x’)"} dx xtt-1 dx.

0 k-O k!

Integrating the left-hand side by parts n times, and evaluating the right-hand side
directly, one has

(--n)k(lk + 1)"_ (1- fll)"n!
(1.9)

k=O k (k + fl) (fl + 1).

This equation holds for a nonnegative integer. Now both sides are rational
functions of l, hence the relation is true for complex values of 1.

(1.10)
z" (-n)k(lk + 1)"_ (1- fll)"z"o .. k’(k + fl) (fl)(1 + fl)."k=O n=O

By applying the transformation

In/s]

(1.11) Z Z f(n,k)= f(n+ sk, k)
n=0 k=0 n,k=O

to the left-hand side of (1.10) gives the required theorem.
Taking fl 1/I in Theorem gives the result (1.3), and letting fl --* o gives

(1.4).
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THEOREM 2. Let {Ck} be a sequence of arbitrary complex numbers, and let
be complex. Thenfor any positive integer s,

(2.1) (a) , t’(ln / 1)"
n=O n! F,(x)- exp(z) {Ck}Xkzsk

1 lz kk-’O

(2.2) (b)
n=0 n!

{Ck}XkzSkF,(x) exp (z) o k I(1 + lsk)’k-"

where

(2.3) t (_ 1)sk(_ n)sk{Ck}X
F.(x)

k=O’ k! (In + 1)sk

t=zexp(-zl), ]zl exp (1- zl)l < 1,

In is the greatest integer notation.

oo"G.(x) exp (z) {c.}x"z"Is
(2.4) (c) 1 slz n’

n=0 n. n=0

o".(x) {c.}x"z"/
(2.5) (d) (ln + 1)= exp(z) o )’.=on. n!(ln + 1

where

(2.6) tJ (_ 1)k(_n)k(ln + 1)k{c._k}X.-Sk
6.(x) k=OZ k!

09 z/ exp (- lz), and Izls exp (1 zls)l < 1.
On the right-hand side of each of the above equations, the infinite series is

convergent.

Proof of(a).

(2.7) .=o (ze-Z)"n!
(2.8)

Now

tl (- n)sk(-- 1)k{Ck}X
--(In / 1)" )skk=O k!(ln + 1

{ck}(z.e z)kxk(ln + Isk + 1)"(z e-zl)
n,k=O k!n!

(2.9)
(ln + lsk + 1)"z" exp (-zln)__ exp [z(lsk + 1)]

.=o n! 1 lz

Hence (2.8) simplifies to give the right-hand side of the theorem. The transformation
In

(2.10) 2 2 f(n, k) 2 f(n + sk, k)
n=0 k=0 n,k=O

is used in obtaining (2.8) from (2.7).
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Proof of (b). For the proof of this equation, the same procedure is followed
as above. The essential difference lies in using

(2.11)
(ln + lsk + 1)"-lz"exp(-zln)

,=0

instead of (2.9).
Proof of(c).

(2.12)

(2.13)

exp [z(lsk + 1)]
lsk + 1

Zn/s -lnzxn [_.le (--n)sk(-- 1)sk(/n + 1){c,-}
.=o n! =o k! x

E (ln + Isk + 1)kx"z"/* e-’"’z e-’*.{c.}
n,k=O

The summation over k is simplified with a suitable modification of (2.9) to give the
right-hand side of (2.4).

Proof of (d). For the proof of this equation, a similar procedure to the proof
of (c) is adopted. Instead of using (2.9) one employs (2.11) in the simplification
process.

The following special cases of Theorem 2 appear to be new. We deduce four
families of generating functions for the Hermite polynomial, two families for the
Laguerre, and three families for the Gegenbauer polynomial.

Hermite polynomial. The representation [15, p. 191] is used in the following
four cases, in Theorem 2.

1. From 2a, one obtains

(2.14) (l)"H,[y(ln + 1)]
n-’-0

exp [z z2/4y2]
1 Iz

where 2y z exp (- zl).
2. From 2b,

n’ (-n + 1)
H,[y(ln + 1)] exp (z) 1F1

/21" z2

/21 + 1;

3. From 2c,

(2.16) y’, ({2)"(/n + 1)(1/2)"
,,=o n!

Y 1 exp (2yz 1/2 z)
H, (In + 1) 1/2 + 21z

where {2 Z1/2 exp (lz).
4. From 2d,

({z)"(ln + 1)((1/1)’-1)
n!n=O

H,,
(In + 1) 1/2

exp (-z) 1F1 1/1 + 1; 2yzl/21
(2.17)

For equations (2.14) and (2.15), ]z/exp(1- zl)l < 1. For (2.16) and (2.17)
[2zl exp (1 2z/)l < 1.

Letting l 0 in all the above special cases gives the known generating
function [15, p. 190].
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Laguerre polynomial Using the representation [15, p. 203] in 2a and 2b,
respectively, gives the two special cases below.

1.

(2.18)
t"(ln+l)" al x 1 F(a+l)e,o ii - a, L, In + 1 (1 lz)(xz)l/z)"J"([axz]x/2)’

where z exp (- zl).
2.

(2.19)
t"(tn + 1)"-1

.=o (1 + a).
x

=exp(z) xF2 1 +a, 1/l+ 1;L" In + 1
xz

For (2.18) and (2.19), Izl exp (1 zl)l < 1.
When 0 the known result [15, p. 201] is obtained in both cases.
Gegenbauer polynomial.
1. Using [15, p. 280], in 2a,

,=o (2v),
t"[(ln + 1)2 + y2]1/2), (In + 1)

C" [(In + 1)2 + yZ]a/2
e

(2.20)
1 lz

Fl[- v + 1/2; -y2z2/4]

(2.21)

F(v + 1/2)eZ2v-(/2)
(1 lz)(yz)v-(1/2) J,-I/:)(YZ),

where z exp (-zl). For 0, the known result [15, p. 278] is obtained.
2. Using [15, p. 280], in 2b,

t[(ln + 1)2 -4x](1/2 (ln + 1)
,=o (2v),(ln + 1) C" [(In + --- 7#x)]1/2

F1/2/;exp (z)1Fz[_v + 1/2, 1/21 + 1; XZ21
0 gives the known Bessel function generator [15, p. 278].
3. Using [15, p. 282], in 2b,

(2.22)
[ 21n+2+xt"(ln + 1)ta/2)"-l(ln + 1 + x)(1/2)n

2(ln + 1)x/2(ln + 1 + x)112,=o (2v),
C,

Fv, l/l; ]exp(z) zFz[_2v, 1/t + 1;
xz

Letting l0 gives [15, p. 278]. For equations (2.20), (2.21), and (2.22),
Izl exp (1 zl)l < 1.

THEOREM 3. Let {Ck} and {dk} be sequences of arbitrary complex numbers,
and let be complex. Thenfor any positive integer s and nonnegative integer r,

(3.1) (a)
(ln + 1)"-1

n=O n! F,(x)A,(z) {Ck} {d’k}XkZk
0 k (1 + lsk)
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where F,(x) is defined through (2.3), and

(3.2) A,(z) 1)Ptd"+’Jz"+P,(- 1)(/n +
p=o P!

(- 1)(1 + lrs)r!/_, (In + 1)"-(-rs),F,(x),(3.3) b) xrn
(rs)!{cr} ,=o n!

G,(x)B,(z)
{%} {d,} (xz)"

(3.4) (c)
(ln + l)n n(ln + 1)=0

where G,(x) is defined through (2.6), and

(3.5) B,(z)
(- 1)"(/n +

p=O P
(tr

(3.6)
{c} =o k (r sk)

G_(x),

where A,(z) and B,(z) are convergent series, and the right-hand side of (a) and (c)
are convergent series. The domain of convergence is as in Theorem 2.

Proof of(a). From Theorem 2b,
(ln + 1)-z"exp {-z- zln} (-n){c}x

n=O n k=O k (ln + 1)sk
(3.7)

On the left-hand side, let

(3.8) exp {- z zln} 2
(- 1)(/n + 1)zp"

p=O P
With this change, and taking transforms with respect to z on both sides of the
equation, introduces the arbitrary sequence {d.}.

Proof of(b). The expansion formula presents itself with the aid of

(3.9) Z 2 f(n,k)= 2 Z f(n,k-n),
n=Ok=O k=On=O

and equating coefficients of z on both sides of the resulting equations.
Proof of (c). Using Theorem 2d as we have used Theorem 2b in the proof of

part (a), gives equation (3.4).
Proofof(d). Following the same procedure as in the proof of (b), but employing

instead

(3.10)
In

2 Z f(n,k)= Z 2 f(n-sk, k),
n=O k=O n=O k=O

proves (3.6).
For 0, s 1, Theorem 3 reduces to essentially equation (1.10) of Fields

and Wimp [7].
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All the following special cases of Theorem 3 appear to be new. Other new
results for the classical functions may also be derived, as required.

1. From 3b, the Hermite polynomial representation yields

(3.11) y2p
(-1)*’(1 + 21p) (ln + 1)2p-"-l(-2P).H.[(ln + 1)y]

(1/2t -(2-y3

For 0, a known result is obtained.
2. From 3d,

(lp + 1)p! t__l (lp 2ln 1)tl/2)’-
(3.12) y,

2’ /-" 2n)I,=0 n.(p

For 0, [15, p. 194] presents itself.
3. From 3b, the Laguerre polynomial representation gives

Hp-2n (lp- 21n + 1) 1/2

(3.13)
(ln+l)P-l(-P). [ Y ]y=(1 +a)p(1 +Ip).=o (1 +a). L" in+ i

The known result [15, p. 207] is obtained for 0.
4. Using [15, p. 280], and 3b,

(3.14)

(v + 1/2)p(1 + 2lp) (ln + 1)2p-"-x(-2p).[(ln + 1)2 4y]
yP

22(1/2) .=o (2v).

In+C" [(ln+ 1)2-4y] 1/2

for the Gegenbauer polynomial.
5. Using the representation [15, p. 108] in 3a gives a type of generating function

for the Bessel function

(t + In + 1)"y".o n!2"(ln + 1)(1/2)(n+a+z)Jn+a[y(ln + 1)1/2]

F(a+ 1)
lF2[1,/1; a + 1, 1/l + 1; ty2/4].

--. 0 gives the known result [20, p. 141].

THEOREM 4. Let {ek} be a sequence of arbitrary complex numbers, and let, l, and m be complex. Then for any positive integer s,

v" (a)m.
C.(x)

(1 z)
I)(x, z).(4.1) (a) -! [1 + z(m 1)]

(4.2) (b)
vn ()mn

./-"o n ( + 1)(m_ 1)n
D.(x) (1 z)(x, z),
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where

(4.3) C,(x)

(4.4)

[,,/IV, (-n)st( + mn)u’{et}xt
t/-"o k !(o + + rnn n)(+t)
[,/1 ((a + msk + lk)/a)(-n)st(a + mn),t{et}x

D,(x) E
k=O k!(mn n + o + 1)(+t)

(4.5) O(x, z) E {et}xtz*t(1 z)’t
k=O k!

and v(1 z)"= (-z), v(0)= 0, and O(x, z)is convergent, z lies in the connected
component of the origin of the set which satisfies

and
mrnZ

(m 1) 1(1 z)

Proof of (a).

(4.6)

(4.7)

Using

F( + msk + lk + mn)(-z)" (1 zy +m*k+’k

(4.8)
F(o+ msk + lk + mn,=o n. n)(1 z)"" [1 + z(m- 1)]

gives the right-hand side of the theorem.
The transformations

(4.9) Z Z f(n, k) Z f(n + sk, k) and (- n)s
(n sk)n=O k=O k,n=O

are used in going from (4.6) to (4.7).
Proof of (b). The same procedure as above is followed except the transfor-

mation

(msk + + lk),,,,,(-z)" z),,,t +It(4.10) n! (rusk + lk + 1)77;,] Z z),,,
(1 +=

is used.
For 1= 0, Theorem 4a reduces to the generating function of Srivastava

[17, p. 32]. For Theorem 4b, there is no corresponding known result for 0.
However, Brown [3, eq. 8, p. 265] is a special case with 0, s 1, and m 1/2.
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Special cases. From 4b, we obtain as a special case a hypergeometric trans-

formation

Flm, A( a + 1, m); zm

.+F.L/ml- + 1, A(e a + 1, m 1); (1 z)m(m 1)"-11
(4.11)

[o(m, a; ](1 z) 2F1Lo/m + ;z
where A(c, m) c/m, (c + 1)/m, ..., (c + m 1)/m. Equation (4.11) is deduced by
letting l--0, s 1, x 1, ek (a)k/(e + mk) in (4.2). z lies in the connected
component of the origin of the set which satisfies

From 4a

Izl < and
mmz

(m 1) 1(1 Z)

(4.13)

From 4a,

(4.14)

(1 z) 1F1
s/ xzS(1 z)

l_ms+l
+ 1;

(o:),,,v" [A(- n, s), A( + mn, I), c; xsSl J,o n! (e)m,-n + + 1Fs+/.[.A(x_ + mn n, s + I)’, (S + 1)s+

(1 z)
(1 + zm z)

{1 xz(1 z)} -c.

A corresponding expression to (4.14) may be deduced from Theorem 4b. A known
generating function for the Jacobi polynomial [15, p. 254] and two known gen-
erating functions for the Gegenbauer polynomial [15, p. 277, p. 279] are special
cases of Theorem 4. A generating function for the generalized Hermite polynomial
[10, (2.1)] may also be deduced. The above examples of Theorem 4 are not among
those obtained by other workers.

(4.12) o ((Z)mnUn
lFs [A(-n,s),A(+ mn, l)" xsl 1n! (),,,_ + +/[.A( + mn- n,s + 1); (s + 1)+i

(1 z)
exp [xzS(1 z)l],

(1 + zm z)

where v(1 z)" (-z), v(0) 0.
The above polynomial is a type of generalized Laguerre polynomial, s 1,

--, 0 gives a result of Carlitz [5, eq. 8].
From 4b,

(t)mnl)n
lf FA(- n, s), A(e + mn, 1)" xsSll

’ I( + 1)ran s+ +/LA(- + + mn n,s +l) (s + l)s+lJn=O n"
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THEOREM 5. Let {ek} and {fk} be sequences of arbitrary complex numbers,
and let , l, and m be complex. Then for any positive integer s,

(5.1) (a) (- 1)"(a)m,
o n !(z + 1),,_,

D,(x)E,(y) O(x, y),

where

(5.2) E,,(y)
(ran + o + ln/s)(I/s+,)p{f,+p}y

p=O p! (mn + + + In/S)lp/s

(5.3) O(x, y) ’, {ek} {fk}xkYk
k--O k!

and D,,(x) is defined by (4.4).

(5.4) (b) xr= l,D,(x),

where
(-1)"(0 + msr + lr)( + mn + ln/s)( + mn n)lr+sr

It. (o + mn)(o + mn n)n! (rs n)! (o + mn + ltr{e}
E,(y) and O(x, y) are convergent series. The domain of convergence is as in

Theorem 4.
Proof of (a). In Theorem 4b, let

(5.6) (1 z)-""- ln/s E (mn + o + ln/s)(t/ + 1)pzP(1 z)lp/s

p=O (mn + a + + ln)lp/sP!

Making the change of variable

y z(1 z)/s

and taking transforms of both sides of the resulting equation creates the function
e,(y)

Proof of (b). (5.4) is proved by comparing coefficients of y on both sides of
(5.1), suitably transformed.

In Theorem 5a for s l, 1= 0, one obtains essentially equation (3.1) [19]
ofa recent result by Verma. Note that there appears to be a misprint in his equation.
The factor [(eu) + k]+,_ has been absorbed in ck and ds+ and should be omitted.
The Theorem 5 is also a generalization of the two sets of equations (1.9) and (1.10)
given by Fields and Wimp [7]. Letting m l, l, s l, one obtains essentially
(1.9), and m l, 0, s l, gives equation (1.10).

The generalized Hermite polynomial is defined by Gupta and Jain [10] as

(5.7)
[n/s] n (D sk,k

H, (ag, 2)
0 (n sk)! k!

From 5a and 5b, respectively, one obtains

(5.8)
(z/2oo)"H,,s(Og,).)J,,+,,(z) (1/2z)"+1 a + a + s. 2z2s

.=o n. =F(a+ 1)F s ’--s
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and

(5.9) 2 ,=o n!(-cY-"r!(rsn)! U,,(o) ,2).

The above special cases are among those results not derivable from either
Fields and Wimp, or Verma. For known special cases of the multiplication
theorem, which are many and varied, see Chapter 9 of Luke [12] for an excellent
exposition.
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HALF-PLANE REPRESENTATIONS
AND HARMONIC CONTINUATION*

H. D. MEYER"

Abstract. Representations of boundary-integral type are presented for solutions of Laplace’s
equation on the half-plane. These are derived using related Lions-Magenes inspired results of Saylor
[9], [11], and conformal mapping. Applications to numerical harmonic continuation are briefly
discussed. Results carry over to R.

1. Introduction. The object of this paper is to present two representations of
boundary-integral type for solutions of Laplace’s equation on the half-plane.
Also, we will discuss briefly how such representations can be used to numerically
continue harmonic functions to all or part of the half-plane given approximate
function values on particular finite subsets of points.

For the sake of simplicity, the functions involved in this paper will be taken as
real-valued, and results will be discussed only for the plane R2. However, the
discussion can be carried over to complex-valued functions and to finite-
dimensional spaces of higher dimension (also to solutions of more general elliptic
type equations).

The main representation comes from using Lions-Magenes [6] inspired
results of Saylor [9], [11] along with conformal mapping. It has the form

(1 1) u(x) 2 (q)A, P(xl, x2, y) d/2o(y),

where/5 is a function related to the Poisson kernel ,q) is the qth iterate of an
operator related to the Laplacian, the {/2q} are Borel measures whose total
variations satisfy a boundedness condition, x =(xl, x2), and u has boundary
values in a (distributional) space to be specified later. The second representation
to be presented will be an offshoot of the one above.

As concerns the applications segment of the paper and continuation, it is
important to point out that the process of harmonic continuation is unstable. That
this is so can be seen by considering the standard example which involves the
harmonic functions

(1.2) u(z) Re z Xl + ix2,

which converge to zero on {Izl<R} and diverge otherwise. The imposition of
global a priori bounds eliminates the difficulties arising from instability.

Related boundary-integral results for both elliptic and parabolic problems
are found in [5], [7], [9], [11]. Of particular interest with respect to continuation
procedures here are the papers [1], [2], [3], [4], [8], [10].

2. A unit disk result. Before treating the half-plane situation, we present a
representation for (distributional) solutions of Laplace’s equation on the unit disk.

* Received by the editors September 6, 1974, and in revised form June 20, 1975.
t Department of Mathematics, Texas Tech University, Lubbock, Texas 79409.
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For the sake of completeness, its proof will be indicated briefly. This result, in
more generality, is due to Saylor [9], [ 11], and the reader is referred to his work for
more detail since the discussion here is only sketchy. In the next section, we will
use the unit disk representation and conformal mapping to obtain the half-plane
results.

First we need some notation and some spaces. Let x =(xl, x2) be a
typical point in Euclidean R2 space with Ixl x/X + x. Take U= {Ixl < 1} to be the
unit open disk, 0 its closure, and OU={Ixl 1} as the boundary. Also let
A 02/Ox + 02/Ox be the Laplace operator.

We designate by g(U) the space of all infinitely differentiable functions on U
and by N(U) Those functions in g(U) with compact support. Both of these are
equipped with the usual Schwartz topologies, g’(U) and @’(U) represent the
strong duals of g(U) and (U) and are the standard distribution spaces of
Schwarz.

For K any compact subset, let

(2.1) 114,11c/ ) sup I x)l
xK

Then, C(K) is the space of all infinitely differentiable functions on K provided
with the norm (2.1).

The next spaces, as will be seen shortly, are connected with the traces of the
harmonic distributions. Define H(OU) to be the space of all real analytic functions
4 on 0 U. It can be described equivalently as the space of all functions b C(OU)
for which positive constants A and B exist such that

(2.2) IIA)611 0 ) <--_ A (2q)!Bq, q O, 1,....

In (2.2), A is the Laplace-Beltrami operator and the superscript (q) indicates a qth
iterate. If (x, x2) is replaced by polar coordinates (r, 0), then A 2/002 on OU.
Occasionally, a subscript will be appended to operators such as A to denote the
particular variable with respect to which the operator acts.

H(OU) is topologized by writing it as

H(OU)= U Ht

and with respect to this giving .it the inductive limit topology. In the above,

(2.3) C (0U)I I1’ 11 sup []A(q)([lc(og)<
q (2q)B

Each Hn is equipped with the topology provided by the norm I1" I1 andis a Banach
space.

Define H’(OU) to be the dual of H(O. Elements h in H’(OU) can be
represented as

(2.4) h() 2 a(q)6(x dq(X)
q=0 u
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for all b H(O U), where the {q} are Borel measures on 0U satisfying

A(e)e q

(2.5) var (/Xq) (2q)!
q-0, 1,.-.,

for any e )0. In (2,..5), A (e) is a positive function which in general tends to infinity
as e approaches zero; var (/Xq) is the total variation of/Xq.

The unit disk representation will hold for distributions in the space

(2.6) S {u 6 @’(U)lAu 0},

where Au is taken in the distributional sense and S is provided with the induced
’(U) topology. Note that members of S can also be regarded as classical
solutions since the distributional solutions can be corrected on a set of measure
zero to make this so.

For elements in S, it is possible to define a linear trace operator y which maps
S onto H’(OU) and which for functions u C(/]) f’) S just gives the restriction of
u to O U. Thus the functions in S can be considered as that class of harmonic
functions whose boundary traces fall in H’(OU).

Note that it can be shown that the problem

Au=0, u ’(U),
(2.7)

y(u) u0., Uo H’(0U),

has a unique solution. Also note that 3’ defines a topological and algebraic
isomorphism between S and H’(OU). The topologies involved are the induced
weak * of @’(U) for S and the weak * for H’(OU).

We are now ready for the unit disk representation.
THEOREM 2.1. Let u be a harmonic solution belonging to S. Then it has

representation

IO
2

(2.8) u(x) q2 A(tq)P(r, O; t) dtxq(t),

where the {/Xq} are Borel measures on [0, 2-] satisfying

A(e)e q

(2.9) var (/Xq)_-<
(2q)!

q =0, 1,...,

for any e > O. In (2.8), x re i,
1 1 r2

(210) P(r,O t)
2r 1-2rcos(0-t)+r

and A(e is a positive function which depends on the choice of u.
Sketch of Proof. It can be shown that with respect to the g(U) topology,

S f’l C( is dense in S. Thus, given any u S, it is possible to pick a sequence of
harmonic functions {Uk} c S f3 C(O) such that Uk -- U in g(U). Since the Poisson
integral formula holds for functions in S 71C(t_, we can write

2"re

(2.11) Uk(X) | P(r, O; t)u(e") dt= (P(r, 0;. ),
o
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where x rei U and (,) represents the duality between H(OU) and H’(OU).
The bracketed part of (2.11) is legitimate since it is possible to show that
P(r, O; t) H(OU) when it is considered a function of y

If we now let k oo and recall the continuity properties of 3’, we have that

(2.12) u(x) (P(r, 0;. ), 3"(u)).

Recalling (2.4), reconsidered here in terms of the polar coordinate variable
ingtead of x, we find that (2.8) then follows.

3. Half-plane representations. We turn now to a study of the half-plane
results. Let v =(Vl, v2) represent a point in the Euclidean plane R: and x
(Xl, x2) a point in the plane R. Polar coordinates for v will be (r, 0). U,/3’ and OU
will be the same as before and are taken as subsets of R 2 Let R 2

+ {x Rxlx2 > 0}
with/ its closure and OR2 {x R2

+ + +Ix2 0} its boundary.
We will be using the transformation

2/92
Xl (1 +/)1)2 q_/)2

(3.1)
1-(v+v)

X2 (1 -t-/)l)2-k- U2
with inverse

1-(x+x22)
/.91---

(3.2)
2xl

/)2

which maps 0 1-1 onto 2 2
+. It takes {Iv] 1} onto OR+ and maps concentric circles

{Ivl-- r < 1} onto circles C in R2+. The circles C are symmetric with respect to the
x2-axis and C, falls inside Cr if rl < r2.

The derivatives

(3.3)
0__0Ol -Xl(1 + x2)

OXl

(3.4)
1 2 2 0 0

D2 -z[x -(1 + x2) ]=---- x, (1 + x2)
Ox2’Z oxl

0
(operating on OR 2+),(3.5) + x

[ o]2 (operating on OR2+)(3.6)

will be relevant to our discussion. They come from writing O/Ov, 0/0/)2, O/OOlr= 1,

and AI,=I, respectively, in terms of R 2variablesx Taking/ (/l,/2), differentia-
tion involving components of/ will be referred to as/-differentiation.
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Using the above, we can define spaces which are analogues of the spaces
encountered in the last section. Let (R2+) be the space of infinitely/-ditterential

2functions having compact support on R /. To topologize it, let K be any compact
subset of R2+ and let ’(K) consist of those functions in (R2+) having their
support in K. Topologize (7(K) by means of the seminorms

(3.7) IIbllm, sup
{ll<=m x_K

where (/1,/2) is a multi-index, 11 and 12 are nonnegative integers, I/I- 11 + 12,
and /l /11//221 Then represent (R) as U (K) (the sets K becoming.
increasingly larger)2nd equip it with the inductive limit topology. Let N’(R) be
the strong dual of (R).

Next, let (OR) be the space of all infinitely 3-differentiable functions
2 for which positive constants A and B exist such thaton OR+

(3.8) I[(q)6llC(OR) A(2q)Bq, q O, 1,"’.

In (3.8), 1. I1  0  )is defined the same as 1]. ][c(m. If

(3.9) { e (0R)I II1 111 sup
q (2q)Bq

then II1" II1 is a norm, n is a Banach space, and we specify the inductive limit
topology for (OR) U n(OR). Let ’(OR) be the strong dual of (OR).

Paralleling the space S, the half-plane representations will hold for distribu-
tions in the space

(3.10) 3 {u 0},

where, just as in the last section, these can be considered as classical solutions. S is
equipped with the induced ’(R) topology.

Again, it is possible to define a linear trace operator. Transferring
to RZx, we obtain an operator which maps onto ’(OR) and which gives as its
map the restriction of u to OR 2

+ for functions u e() . Functions in can
be considered as those harmonic functions whose traces fall in ’(OR).

2Because of (2.7) and the correspondence set up between U and R+, the
problem

au=0, ue’(R),
1)

Uo, Uo e

has a unique solution. Also, defines a topological and algebraic isomorphism
between S and ’(OR), where the topologies are the induced weak * of ’(R)
for and the weak * for ’(OR).

With the background above, we now can present the main representation.
THZORZM 3.1. Let u be harmonic on R and belong to (with boundary trace

in ’(OR)). en it has representation

(3.12) U(X) qO (q)Ay P(x, y) dlq(y),
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where the {/.q} are Borel measures on (-oo, 00) satisfying

(3.13)
var (/2q)

A(e)eq

5-i q=0, 1,...

for any e >0./n (3.13),

1 X2(1 + y2)(3.14) iS(x, y)
ST (X y)2_}_ X2

and A(e is a positive function which depends on the choice of u.
Proof. This follows easily considering the discussion above and transforma-

tion (3 1)./3 corresponds to P, ,(q) to Aq), and the {/2q} on (-oo, oo) to {/xq} on
[0, 2rr], so that applying (3.1) to the representation given by Theorem 2.1 gives
our result.

Consider now P(r, O; t) as given by (2.10). We have that AtP=O;P/Ot2=
02p/o02. Further, for r < 1, 0/00 transforms into

(315) 1)4(1-x-x) 0 O

Xl -1- X1X20X2"
Define

[(1-x-x) 0@2]2(3 16) ix--/24 O-}-XlX22

If we replace A, in (2.8) with 021)/002 and map this over to R2+, we have

(3 1 7) (q)u(x) 2 (q)ax P(x, y) dl2q.
q =O

If we next replace each of the measures {/2q} by measures {;q} such that duq
(1 + y2) dl2q, we have the following corollary to Theorem 3.1 in which/5 is replaced
by the standard half-plane Poisson kernel.

2COROLLARY 3.1. Let u be harmonic on R/ and belong to (with boundary
trace in I2I’(OR2+)). Then it has representation

(3 18) u(x) (q)Ax P(x, y) d3q(y),
q--O

where the {q} are Borel measures on (-oo, 0o) such that dq =(1 +y2)dftq,
q =0, 1,. ., where the {/2q) are Borel measures satisfying (3.13). In (3.18),

1 X2(3.19) /3(x, y)
r (x,- y) + x"

Before closing this section, it should be noted that solutions given by the usual
Poisson integral formula clearly fall in the class of solutions covered by (3.12) and
(3.18).

Also note that representation (2.8) extends to spheres in higher dimensional
Euclidean R spaces. Thus the representations given above carry over to n
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dimensions if one uses the transformation
2vi+1 1,. , n- 1,2x (l+v)+v+ ...+v.

(3.20)
1-(v/’’ "/)

x,
(1

which takes a sphere in R onto the upper half-plane R+ {x, => 0} of Euclidean
R7 space. The applications in the next section also will carry over for the
n-dimensional case.

4. Applieations. We conclude by discussing the application of the represen-
tations just derived to numerical harmonic continuation. Douglas, Cannon,
Saylor, Meyer [ 1], [2], [3], [4], [8], [ 10] and others, as mentioned previously, have
studied continuation procedures of a related nature.

Consider first the approximation of harmonic functions u on all of the
half-plane assu.rning the following"

1. u(x) S;
2. lu(x)-F(x)l < e, where F is known on a finite set of points {xJ}c Co,

0<p < 1 (the {xj} correspond to points {vi} on {Ivl O});
3. A(e) (appearing in (3.13)) is known.

Note that A(e) serves as the global bound mentioned in the Introduction as
needed.

Using (3.12) and picking positive integer parameters Q and N, we have

Q N

(4.1) U(X) 2 2 (q) k-l/2, yk+Ar P(x, yk)/2q([y ,/2]),
q=0 k=l

where points (yS, O) are images of the points

(4 2) i(2,,-,-s/N)v=e s=O, 1/2,...,N,N+I/2,

which are equally spaced on the unit circle in R 20. Explicitly, the {yS} are given by

cos (27rs/N)
(4.3) yS=

1 +sin (27rs/N)’
s=O,I/2,...,N,N+I/2.

Each of the measures/2q can be decomposed into positive and negative parts

(4.4) /xo /./,q .l,q,

where

(4.5) /-([y k- 1/2, y +1/2]), /([y-/2, y k+1/2]) > 0’--

~+(4.6) var (tz), var (t2) <
A(e)eq
(2q)!

Let us substitute the sequence of parameters {ak,q, bk,q} for the parameters
k 1/2 k+l/2{/j,~+irqttYk-l/2, Yk+l/21"]), #2([y y ])}. Corresponding to (4.5) and (4.6), we
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require

(4.7)

(4.8)

(4.9)

ak,,, bk,, --> 0,
N N

ak,q, bk,q <= Aq, q 0," , O,
k=l k=l

Aq =- a(1- R)(1- R)q/(2q)’2 2

where R is selected so that 0 < p < R < 1.
The above and (4.1) then suggest the following form for our approximation:

O N

(4 10) Uo,u(X, {ak,q, bk,q}) E Z "(0) ’Ay P(x, y )(ak,q bk,q).
q=0 k=l

The actual approximation Uo,u(x) now comes from picking a set of {ak,q, bk,q}, not
necessarily unique, such that

(4.11) max If(xJ) UO,N(Xj, {ak,q, b,q})l

is minimized subject to the constraints (4.7)-(4.9). Determining the {ak,q, bk,q}
amounts to treating a standard linear programming problem.

~(q) ykNote that in evaluating the terms A P(x, used in the approximation it is
easier to evaluate instead the equivalent versions of these terms in R 2

The procedure presented just above, by virtue of (3.1), matches up with a
corresponding unit disk harmonic continuation procedure based on (2.8). This
latter procedure is essentially the same as still another procedure for the unit disk
discussed by Douglas [4].

Douglas bounds the error in his approximation by estimating-the error on
{]vl p} and {Iv] R} and then applying Hadamard’s three-circle theorem. The
estimate on {[vl=p} comes from knowing A((1-R)/2) and that for {Ivl R}
comes from the data.

It is an easy matter to modify Douglas’ error results so that they hold for our
unit disk case. If these results, in turn, are transferred to the half-plane, it is then
easily seen that we have the following error estimate.

THEOREM 4.1. Let u satisfy 1-3 and UO,N(X be determined as discussed
above. Let 0 < p < R < 1. Then

(4.12)

lU(X)-- UO,N(X)I < 21/2 1

,valt/tl--[ln(r/R)/ln(o/R)][2F_,R

for x on Cr, p < r < R, where the constants Mn and Cn depend on the choice of R
and 6 supll__ {maxlv v]}.

From (4.12), we see that Uo,u(x) converges to u(x) as e and 6 tend to zero
and N and O to infinity. It should be pointed out that the constants in (4.12)
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become large as R tends to one. It also should be pointed out that a bound for
]u- Uo,NI inside Co is given by the estimate

(4.13) lu--Uo,Nl<=2e+fR(2-+N-1+62).
This estimate bounds u- UO,NI on Co (it is obtained in the course of deriving
(4.12)) and holds for u inside Co by virtue of the maximum principle.

A second minimax approximation based on (3.18) can be set up in a fashion
paralleling that for Uo,u(x). The error estimate will be similar.

Note further, that our hypothesis that data be given on some Co is not
unreasonable. For many distributions of data points in R2+, it is possible to take
the information from these and bound the error on some Co. When this is so, we
are in essence treating the same situation as above as far as the error estimate is
concerned. When data is given this way, the approximation is determined by
proceeding as before only using the new points {xj} in (4.11).

Observe, also, that the continuation problem 1-3 is not a practical one for
values of O close to one. In such instances, one would be measuring data at points
tending toward infinity.

Before closing, we will briefly discuss continuation assuming data is given in a
second way. We assume

u(x) g,
2’. lu(srj, Y) F(sri, Y)I < e, where F is known on a finite set of points {(4, y)}

on the line {x2 Y},
3’. A (e) is known,

2and we wish to continue u to some region = {IXll -< X, rt -< x2 -< Y R/.
This is done by picking an approximation of form

(4.14)

which is required to be a best minimax fit to the data, subject to the constraints
(4.7)-(4.9). In (4.14), yk (sck 0). We pick the sc such that : kAx and " is an
appropriately chosen parameter. The R in (4.9) must be picked sufficiently close
to one in the range 0 < R < 1.

Error bounds can be found using techniques similar to those employed by
Cannon and Douglas in [2]. An alternative approximation procedure based on
(3.18) can also be formulated.
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SELF-INVERSE SHEFFER SEQUENCES*

JAMES WARD BROWN" AND MAREK KUCZMA:

Abstract. The sequence of Laguerre polynomials is known to be self-inverse in the group of Sheffer
sequences, and our main goal here is to furnish a generating function characterization of all the self-
inverse Sheffer sequences. We present our result in the broader context of generalized Appell sequences
of arbitrary order and obtain it by solving a system of functional equations.

1. Let P {P,(x)},% 0 be a polynomial sequence generated by a relation of
the form

(1) $,P,(x)t" G(t)(xH(t)),

where

(2) (t) qS,t", 4), 4: 0, n 0, 1,2,.-.
n=O

It is understood, moreover, that tt(t) and G(t) represent power series of the types

(3) H(t)= hktk, h #0, and G(t)= gkt, go 4:0,
k=l k=O

respectively, our entire discussion being in the context of formal power series
with complex coefficients. Such sequences were first treated in their full generality
by Boas and Buck [3], [2] who called them generalized Appell sequences since
they reduce to Appell [1] sequences when (t) expt and H(t) t.

As was done in [5] and [4], we use () to denote the class of all generalized
Appell sequences generated by relations of the form (1) when a fixed (t) is taken,
the most important of those classes being the class (exp) of Sheffer [8] sequences
which occurs when (t) exp t. Note that for any given sequence P in (), the
pair H(t) and G(t) appearing in (1) is uniquely determined since the identity

(4) G*(t)*(xH*(t)) G(t)*(xH(t)),
where the pair H*(t) and G*(t) is also of type (3), implies that

(5) H*(t) H(t) and G*(t)= G(t).

To see this, simply set x 0 in (4) to get the second of identities (5). Equation (4)
then becomes

dp,(H*(t))"x"= c,(H(t))"x",
n=0 n=0
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and the first identity in (5) is obtained from this by equating the coefficients of
powers of x on each side.

Boas and Buck pointed out that each P,,(x) is of degree exactly n; and in refer-
ences [5] and [4], mentioned above, the class () was exhibited as a group where if

Xk(6) P,(x) P,,k n O, 1,2,
k=0

the product PP of P and a sequence P {P,(x)},=o in () is the sequence of
polynomials

(PP),(x) p,,kP(x), n O, 1,2,
k=0

Also, it was shown there that if

is the generating relation placing P in (), then

(7) ck,(PP),(x)t"= G(t),(H(t))(xB(H(t)))
n=0

is the corresponding one for PP. The identity element I is evidently the sequence
of polynomials I,(x) x", n 0, 1,2, ..., generated by

qb,I,(x)t" (xt).
n=0

We plan here to establish necessary and sufficient conditions on the pair
H(t) and G(t) in (1) such that pN 1 for any given positive integer N. Our chief
aim is, however, to provide a generating function characterization of those se-
quences in (exp) such that p2 I, or, in terms of the polynomials themselves,

p,,kPk(X) X", n O, 1,2,
k=0

The problem is suggested to us by the fact that the sequence of Laguerre poly-
nomials Lt,’)(x), n 0, 1, 2, ..., generated by

(8) L(.’)(x) (1 t)--x exp
n=O

has this "remarkable" self-inverse property, so described by Rota, Kahaner
and Odlyzko I7, p. 729] in their recent and exhaustive study of Sheffer sequences.
While it is not usual to include the n! on the left side of (8), we follow the afore-
mentioned authors in doing so. As they pointed out, their notation also has
precedent in the literature.
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The general problem is treated in 2, and its solution in the special case of
(exp) when N 2 is given in 3.

2. Our result in the general case is as follows.
THFOREM. Let P {P,(x)}= o be a generalized Appell sequence generated by

(1), and let N be a positive integer. A necessary and sufficient condition that pN I
within the group (0) is that the pair H(t) and G(t) appearing in (1) be of theform

(9) H(t) V- a(rV(t)), G(t) a exp (U(V(t))),

where r and a are Nth roots of unity, V(t) is a power series of the type

(10) v(t) vt, v O,
k=l

V-l(t) is its power series inverse defined by V(V-l(t))= V-a(V(t))= t, and U(t)
is a power series of the type

(11) U(t) ut
k=a

satisfying the identity
N-1

(12) U("t) O.
n--0

Proof As remarked upon in 1, the pair H(t) and G(t) is unique for any given
P in (O). Hence it is immediate from (7) that pN I if and only if that pair is a
solution of type (3) to the system of functional equations

(13) HN(t) t,
N-1

(14) 1--[ G(H,(t)) 1,
n=0

where

Uo(t and U,(t) H,_ a(H(t)) n 1,2,..., N

(cf. [6, (0.3) and (15.1)]). It is a simple matter to verify that (9) is actually such a
solution, once it has been observed that the first expression there generalizes
to

(15) H,(t) V-a(r"V(t)), n O, 1,..., N.

The sufficiency part of the theorem is therefore evident.
To prove the necessity part, we let H(t) and G(t) be any pair of power series

of type (3) satisfying (13)-(14) and show that it must be of the form (9).
We note from (13) that h 1, where h is as indicated in (3), and consider

first the possibility that h 1:

H(t)= t+ hktk.
k=2
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The fact that (13) is satisfied implies that h 0 for all k __> 2. For, supposing the
contrary, let hm be the first of those coefficients which is nonzero and write

H(t) + hmtm -+- ..., hmO m>=2.
It is then easy to see that

HN(t + Nh,,t" +
and, because of (13), it follows that h,, 0. But this contradicts the fact that
hm : O. Hence H(t) and, in view of (14), G(t) a where a is an Nth root of
unity. The pair H(t) and G(t) is therefore of the form (9) with z 1, that choice of
r forcing (12) to become U(t) O.

If hi 4: 1, it must be some root v of unity other than unity itself; and we use
r to define the power series

N-1

V(t) H.(t)/"
n=O

(cf. [6, (6.47)]). With (13), it is straightforward to show that

(16) V(H(t)) V(t).

Furthermore, the series V(t) is as stated in (10), where vl N 0; and it is
consequently invertible. Hence (16) is equivalent to the first of expressions (9).
Turning now to G(t), put a G(0) go and set 0 in (14) to see that a must be
an Nth root of unity, not necessarily the same as r. Evidently then,

G(t)/a 1 + (g/a)t"
k=l

and so log [G(t)/a] represents a well-defined power series vanishing at 0.
Putting

(17) U(t) log [G(V-l(t))/a],
we are thus assured that U(t) also represents such a power series, as indicated
in (11); and (17) is readily inverted into the explicit expression for G(t) given in
(9). It remains only to show that (12) is satisfied. In view of(14), this can be accomp-
lished by referring to definition (17) of U(t) and then generalization (15) of the
first expression in (9), that expression having just been established. To be precise,

N-1 N-1

U(r"V(t)) log [O(V-’(r"V(t)))/a]
n=0 n=0

and (12) follows if we replace by V- (t) in this result. The proof of the theorem is
now complete.

Observe that in the necessity part of the proof we did not actually need to
treat the case h separately. That case does, however, deserve special attention,



SELF-INVERSE SHEFFER SEQUENCES 727

not only because it can be handled in an especially simple manner, but because it
occurs when the sequence P is monic, or when p,,, 1 in (6). Indeed, the formula
[2, (6.4)]

p,,, goh], n 0, 1,2,

reveals that both ha and go are unity for such sequences. According to our theorem,
then, the identity sequence is the only monic sequence P in () such that P I.

Finally, we note that the sequence in the theorem may, in fact, be a group
element of order N. This occurs, for example, when either r or a is a primitive
Nth root of unity.

3. When (t)= exp and N 2, our theorem yields the result that is of
particular interest to us, a generating function characterization of self-inverse
Sheffer sequences. The reader will note that the characterization remains valid
even within the context of formal power series with real coefficients. For con-
venience, we shall exclude what we call the trivial self-inverse sequences {x"}2_-0
and x"}= o, occurring when z 1.

COROLLARY. A necessary and sufficient condition for a Sheffer sequence
P {P,(x)}= o to be a nontrivial self-inverse element of the group (exp) is that it be
generated by a relation of the form

(18) P,(x)-fi.. s exp [U(V(t)) + xV-1(__ V(t))],
n=O

where s +_ 1, V(t) is a power series of the type V(t)= =1 vktk, v : O, V-1(0
is its power series inverse, and U(t) is a power series of the type U(t) = utt2k- 1.

Observe that

when

s exp (U(V(t))) (1 t) 1,
it

V-(-V(t))--

s= 1, V(t)=log(1 t)-- (-1/k)t,
k=l

ty(t) -( + )t.

Thus the sequence of Laguerre polynomials, generated by (8), is indeed a self-
inverse element of (exp).
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ADJOINT SEMIGROUP THEORY FOR A CLASS OF
FUNCTIONAL DIFFERENTIAL EQUATIONS*

J. A. BURNS AND T. L. HERDMAN"

Abstract. We consider the semigroup and adjoint semigroup for a class of linear functional dif-
ferential equations with infinite delays, which includes certain linear Volterra integro-differential
equations. In particular, we show that by an appropriate choice of the state space the semigroup
constructed by Miller [13] can be considered the adjoint semigroup of the semigroup constructed by
Barbu and Grossman [2]. This provides a useful characterization of Miller’s semigroup which can be
applied to obtain additional information about the semigroup defined by Barbu and Grossman.

1. Introduction. In recent years, considerable attention has been given to the
semigroup theory for a class of functional differential equations with infinite
delays. In order to construct a theory which extends that for finite delays, much
of the work has been done in spaces with fading memory (see [4], [53, [103, [11],
15]). However, it has been noted that for the case of finite delays, the Lp spaces are
sometimes more suitable for certain applications (see [1], [3], [6], [7]).

In this paper we consider a linear functional differential equation with in-
finite delays in a product space of the form C" Lp(-, 0) (compare with [6],
[7]). Using C" Lp(-, 0) as the state space, we construct a Co semigroup.
In 2 the infinitesimal generator and its adjoint are computed, and this is applied
to compute the "adjoint" semigroup in 3.

Section 4 is devoted to an application of the semigroup theory to a class of
Volterra integro-differential equations. In particular, we show that by an appro-
priate choice of the state space the semigroup constructed by Miller 13] can be
considered the adjoint semigroup of the semigroup defined below, which in turn
corresponds to the semigroup constructed by Barbu and Grossman in [2]. This
provides a useful characterization of Miller’s semigroup.

Let 1 =< p =< + and n be fixed. The usual Lebesgue space of C"-valued
functions defined on an interval with endpoints a and b (- =< a < b =< + )
will be denoted by L,(a, b). The space of bounded continuous functions on an
interval such as (a, b] will be denoted by BC(a, b]. If x’(-, ) C" is given,
then x, "(- , O] C" is defined by xt(s) x(t + s) for >= 0 and s __< O.

We assume that L is a linear function with domain in the linear space of
C"-valued Lebesgue measurable functions defined on (-, O] such that L restric-
ted to BC(-oz, O] is a bounded linear operator. Moreover, we require that the
following hypothesis hold"

(oug) If t > O, 1 <_ p < + , then"
(i) For each x L(- , t), L(x,) defines a function almost everywhere

(a.e.) on [0, t], and depends only on the equivalence class of x.

Received by the editors April 2, 1975, and in revised form July 24, 1975.- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061.
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(ii) There is a continuous function F such that if xLp(-o,tl), then
g(t) L(x,) belongs to LI(0, ta) and

]In(x31 ds __< r’(t) Ix(s)l ds

for all [0, t].
(iii) If x Lp(- , tx) BC(- , tl], then g(t) L(xt) is continuous at

0 from the right.
The system is defined by the linear retarded functional differential equation

with infinite delays

(1.1) x’(t) L(x,) + f(t), >_ O,

and the initial data

(1.2) x(0) r/, Xo q,

wheref is measurable and bounded on fiaite intervals, r/ C", and 99 Lp(- o, 0).
A solution to system (1.1)-(1.2) is a function x Lp(-, t) for each > 0,

such that x is absolutely continuous (a.c.) on compact subsets of [0, + ), x
satisfies (1.1) a.e. on [0, + ), x(0) r/, and Xo(S) q(s) a.e. on (-, 0].

The above formulation is analogous to the formulation for finite delays
found in Borisovi6 and Turbabin [3] and Banks and Burns [1].

Throughout the remainder of this paper, the state space (i.e., the space of
initial data) will be the product space Zp C" Lp(-, 0), with norm defined
by

It should be noted that Zp is not a hereditary space in the sense of Coleman and
Mizel [4], [5]; however, Zp is equivalent to the state space (denoted by Mp) used
in some of Delfour’s and Mitter’s work (see [6], [7]). It will become clear that the
choice of Zp and the explicit representation of Zp as a prodtlct space has many
advantages.

The following result guarantees the existence, uniqueness, and continuation
of solutions to (1.1)-(1.2). It is not obvious that the stated conditions imply exis-
tence. However, standard techniques (i.e., the contraction mapping principle)
are used to prove the following theorem. For completeness, we give a sketch of the
proof. The interested reader can easily fill in the details.

THEOREM 1.1. /f (3f) holds, (tl, qg) Zp, and f L(O, t2)for all 2 > O, then
there is a unique solution of(1.1)-(1.2) defined on , + o).

Sketch of proof. Let a > 0 be such that K f (F(t))p dt < 1, and define the
operator T: Lp(- o, ) Lp(- o, a) by

[T] (t)
q(t),

L() ds + f(s) ds, 0<= <= a,

t<0.
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It follows that

]lL(ff z311 ds dt

F(t) /(s) Z(s)]l p ds dt

=< IF(t)]p dt IlO(s) z(s)ll ds

KII Z p,

p

and since K < 1, the operator T is a contraction. Therefore, the contraction
mapping principle implies that there is a unique fixed point for T, say x x. Clearly
x is a solution to (1.1)-(1.2) defined on (-o, a].

Let r/a= xX(a) and qgx(t)= x,(t). The above procedure yields a solution
x2(t) defined on (- o, a] with initial data (r/1, qgx). Define x on (- o, 20] by

xl(t),
X(t)

X2( 00,

and note that x is a solution of (1.1)-(1.2) with initial data (r/, qg). By continuing
this process it is clear that x can be continued to + o.

An application of Gronwall’s inequality yields the uniqueness of solutions.
If(W) holds, then there exists a unique solution to (1.1)-(1.2) for each (r/, qg)eZp.

Also, suppose x is a solution to (1.1)-(1.2) with (r/, 99) (r/a, qX) and y is a solution
to (1.1)-(1.2) with (r/, q) (r/2, (/92). Let /(t) be defined by

///(t) sup {2.r(s).} + 2p,
O<s<t

and B(t) be defined by

B(t) 2p + /(t)e + //(s) e ds
0

An application of Gronwall’s inequality yields the following inequalities.
If >= 0, then

(1.3) IIx(t)- y(t)ll p (It/’ r/211 p 4- IIq9 q92[lP)’(t)e’’),

(1.4) IIx,- Y, II r/211P + 1 4- /Z(s) eat) ds I1 q921[ p,
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and hence we have that

(1.5) I[(x(t), x,) (y(t), yt)lJ v <= B(t)(Jl(q q)l) (r/e, q)e){{v).

If x is the solution to (1.1)-(1.2), then

lim x(s) q(s)ll p ds 0.
tO

Consequently, we have that

(1.6) lim (x(t), x,) 01, q))llv 0,
tO

and this now allows us to define a semigroup on Zp.
For >= O, S(t)’Zp -- Zp is defined by

(1.7) s(t)(,, q) (x(t), x,),

where x is the unique solution to (1.1)-(1.2) with f(t) =- O. In view of (1.5) and
(1.6), it follows that S(t) is a Co-semigroup defined on Zp.

For 1 < p < + , p’ is defined by (l/p)+ (1/p’)= 1 and if p 1, then
p’ + . Therefore, it follows that the adjoint space of Zp is Zp, for 1 =< p < +
If (q, q) Zp and (, ) Z, then we shall use the symbol ((r/, q), (, )) to
denote the "product" (, P)((r/, q)). Thus, by definition we have that

<(,, o), (, )> (u,) + (,)= <u,, > + (,, >.

Example 1.1. Let A and B be constant n n matrices and K(s) an n x n
measurable matrix function such that _o IIK(s)ll ds < + . Given a real number
r > 0 let L be the operator defined by

L(q) Aq(O) + Bq(-r) + K(s)tp(s) ds.

It follows that L(q)) is defined for all q Lp(-, 0) f’)BC(-, 0]. More-
over, if x Lp(- o, t), then

g(t) L(x3 Ax(t) + Bx(t r) + K(s)x(t + s)ds

is defined a.e. on [0, t] and depends only on the equivalence class of x. Therefore,
hypothesis (i) is satisfied.

Define h(t) o__ K(s)x(t + s) ds for [0, t], where x Lp(- , t). By the
convolution theorem the function h is in Lp(0, tl). thus it follows that g(t) LI(0, t).
Applying elementary inequalities to (1.8) we have that

[[L(x)l] ds <= [IA[I ]lx(s)ll ds + IIBll Ix(s r)ll ds

+ [[K(s)[l[x(s + u)]] ds du
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t- /( A / B II) x(s)II ds

+ tp 1)/p Ilg(s)ll ds llx(v)llP’dv

for [0, t]. Consequently,

IIg(s)ll ds Z(x)ll as r(0 IIx(s)ll p ds

for 0 t, where F is the continuous function defined on [0, t] by

F(t) (p-1)/p Ilall + IIBII + IIK(s)ll ds

We now have that (ii) is satisfied.
For x BC(-, t] it follows that h(t)= K(s)x(t + s)ds is continuous

on [0, t]; therefore, g(t) is continuous at 0 from the right. In particular, hypothesis
(iii) is satisfied.

We shall need the following three lemmas.
LMMa 1.1. If fLp(-,t) is a.c. on compact subsets of (-,t] and

f’ Lp(- , t), then f BC(- , tl].
LMM 1.2. Given r O, is a.c. on compact subsets of (-,-r],
L(-, -r) and ’ L(-, -r), then lim,._ I1(01 0,

The above Lemmas are easily obtained by using elementary arguments.
Remark 1.1. It is to be noted that Lemma 1.1 together with (iii) implies

that g(t) L(x) is continuous at 0 from the right whenever x Lp(-, t) and
x is a.c. on compact subsets of (-, tl] with x’ Lp(-, tl).

We shall use this result throughout the remainder of this paper.
LMMa 1.3. Let q p’ and suppose that g is locally integrable on (-

r O, and f Lq(- , r]. If

ds 0

for all Lp(-,-r) such that is a.c. on compact subsets of (-,

’ Lp(- , -r), (- r) 0, and has compact support, then f is a.c. on compact
subsets of(- , r] andf’(s) g(s) a.e. on (- , r]. Moreover,L (- , r)
is a.c. on compact subsets of (-, -r], ’ Lp(-, -r), and (,g) L(-,
-r), then [(,f)]’ belongs to L(-, -r), lim,,_l((t),f(t))l 0 and

[<O’(s),f(s)) + <O(s),g(s))] ds [<O(s),f(s));’ ds O(-r),f(-r)).

Proo Let < -r and suppose that is a.c. on It, -r] with O(t) O(-r) 0.
It follows that

[e’(s),f(s)) + e(s), g(s))] ds [e’(s),f(s)) + e(s), g(s))] ds O,
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where

(qg(s), if t__<s__< -r,
qg(s)

O, ifs _< t.

By the fundamental lemma of the calculus of variations, (see [17, p. 112]), we
have that f is a.c. on It,-r] and f(s)= f(-r) + -r g(u)du. In particular,

f(t) f(- r) + g(u) du

and since < -r is arbitrary, it follows that f is a.c. on compact subsets of
(-, -r] and f’(s) g(s) a.e.

Suppose q9 Lp(- o, -r) is a.c., 99’ e Lp(- , -r), and (q, g) LI(- c, -r).
Sincef Lq(-, -r), it follows that (qg,f) and (qg’,f) belong to LI(- , -r).
Consequently, [(q0,f)]’ (q0’,f) + (o,f’) (q)’,.f) + (q), g) and [(q,f)]’ is
also in L(-oe,-r). An application of Lemma 1.2 yields that lim_oo [(q(t),
f(t))[ exists and equals zero. Moreover,

S S[(qg(s),f( ))] ds lim [((p(s),f( ))] ds
t’

lim (qg(-r),f(-r)} (qg(t),f(t)}
t-

and this completes the proof.

<q(-r),f(-r)>,

2. The infmitesimal generator and its adjoint. Since S(t)’Zp Zp is a
Co-semigroup, it follows that there exist constants M > 0 and ? > 0 such that
IlS(t)ll _-< Met’. Also, S(t) has a closed densely defined generator, .

THEOREM 2.1. If is the infinitesimal generator of S(t), then"
(i) The domain of is given by (z) {(r/, tp)[q9 is a.c. on compact subsets

of(- oo, 0], (p’ Lp(- o(3, 0), and r/= (p(0)}.
(ii) /f (r/, qg)e (s), then sC(rl, q)) (L(q)), q)’).
(iii) If Re 2 <__ O, then 2 belongs to the spectrum of
(iv) IfRe 2 > O, then 2 belongs to the point spectrum, P,(s), or 2 belongs to the

resolvant of sO, p(s). Also, if Re 2 > 0, then 2 P,(s) if and only if
det A(2) 0, where

A(2) L(e’) 21.

Proof. Recall that (r/, q) e @(a/) if and only if lim,_,o t- [S(t)(r/, q) (r/,
exists.

Suppose (,/, tp)e Z, is such that tp is a.c. on compact subsets of (-c, 0],
q)’ tt’ Lp(- oo, O) and /= to(O). As a consequence of Lemma 1.1 we have that
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q9 is bounded on (-oe, 0]. Consider

It-l[S(t)(r/, 99) (r/, qg)] (L(qg), tp)

t-’Ix(t)- r/] L(qg)[[ p + [[t-’[xt- qg] tp p

lit-1Ix(t)- x(0)] g(qg) p + lit-[x(t + s)- x(s)] qg’(s)l[ p ds,

where x is the solution to (1.1)--(1.2) with f(t) O.
Since x is a.c. on compact subsets of [0, + o) and Xo qg, we have that

x Lp(-- oo, tl) BC(- oo, tl] for tl > 0. Consequently, g(t) L(x,) is continuous
from the right at 0 and hence lim,_.o+ t-o L(xs)ds L(xo)= L(qg). Since
t- [x(t) x(0)] t- o L(xs) ds, it follows that

Ilt-XUx(t)- x(O)]- L(qg) p O.

Let xt(s)= - +’ x’(u) du, and note that x’(s)= t-i[x(t + s)- x(s)]. It is
well known that x’ converges to x’ in mean of order p on (-oe, 0] as t- 0+

(see Graves [9, pp. 254-259]). Hence

lim [It-X[x(t + s)- x(s)] 99’(s) p ds
t-O+

O

lim IIx’Ks)- q)’(s) Pds
tO+

lim xt(s) x’(s) p ds O,
tO

and this proves that (r/, qg) e @().
Conversely, suppose (r/, qg)e(s). There exists a (, q)eZ such that

limt_.o+ t-[S(t)(r/, qg) (r/, qg)] (, q) and by definition, st(r/, q) (, W). Let
x be the solution to (1.1)-(1.2) with f(t) =- O, and note that x e L(- oe, 1). Define
FN on (-oe, 0] by

l/N fs+ 1IN
FN(s) N x(s + u)du N

0
x(u) du.

The following facts concerning Fu are well known (see Graves [9, pp. 254-259]).
(e) Fu is a.c. on compact subsets of(-, 0] and F’u(s) N[x(s + l/N) x(s)]

a.e. on (- oe, 0].
(/3) Fu e L(-oe, 0] and Fu converges to x in mean of order p. Because

limt_,o+ t-[S(t)(r/, qg) (r/, qg)] (, q), we have that

lim t-1Ix(t) x(0)]
tO

and

lim t-[x- x]
tO
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Consequently, it follows that

N[x(s + 1/N) x(s)] UP(s) p ds --. 0

as N . But N[x(s + l/N) x(s)] F’(s), and this implies that Fv converges
to UP in mean of order p. Since the differential operator on Lp(- , 0) is closed, and
FN -, (p and Fv --, UP, we have that q is a.c. on compact subsets of (-, 0] and
q)’= UP Lp(-oe, 0). The solution x is continuous from the right at zero, thus

1/ x(u)du--, x(0)= q, and since Xo q is a.c. it follows thatF(O) Nfo
q x(0) Xo(0) rp(0). Now we have that x is a.c. on compact subsets of(- oe, 1],
xLp(-oe, 1), and x’Lp(-oe, 1). Again by the Remark 1.1, the function
g(t) L(x,) is continuous from the right and

,-,o+lim t- 1Ix(t) x(0)]
t-,o+lim t- fl L(x) ds L(q)).

This completes the proof of parts (i) and (ii).
Suppose that (r/, q)e @() and (s’ 2I)(r/, q) (, UP). This is equivalent

to the equations

and

q(s) =rt ez + f] eX(-t)UP(t) dt

L(rl ext’)) 2rl + L

=(L(eX(’)I,)-2I,)rl+ L(fl")

A(2)q + L eX(e)-’)UP(t) dt)
However, it is clear that if q is to belong to Lp(- , 0), then Re 2 must be positive.
In particular, if (, UP) (, 0), then q(s) r/e

xs e L(-, 0) and Re 2 __< 0
implies that r/--0. Consequently, L(q)- 2q 0 and nothing of the form
(, 0), # 0 can belong to the range of s’ 21, if Re 2 N 0. This proves that
{2IRe ; __< O}

_
a().

On the other hand, suppose Re 2 > 0. Define Kx’L(-oo, 0) C" by

Kx(UP) L eX((’)-UP(t) dt

and observe that ( 2I)(q, q) (, UP) is equivalent to

(2.1)
a(2)r/ Kx(UP),

q(s) r/e
xs + eX(-UP(t) dt.
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If det A(2) - 0, then we have that (2.1) is equivalent to

(2.2)
r/= [A(2)]-1({_ Ka()),

q(s) e + eX(-(t) dr.

If (- 2I)(r/, rp)= 0, then in view of (2.1) it follows that A(2) 0 and
q(s) r/e. However, A(2) 0 has a nonzero solution if det (A(2)) 0, and for
this case 2 belongs to the point spectrum of s, P(s). On the other hand, if
det A(2) 0, the only solution to (s 2I)(r/, q) 0 is (, q) (0, 0) and
(s 21)-1 exists. Also in view of (2.2),

( 2I)- 1(, kI/) E(, q)), E(, q) ex(’) + e((’)-t)q(t) dt

where

(.3) E(, W)= [zX(2)]-1[
Moreover, ( 21)-1 is bounded since K(q) L(f), where

f(s) e-(t) dt

is in L(-oe, 0) 0 BC(-oe, 0), L is a bounded operator on BC(-, 0], and

Therefore, it follows that 2 e p(s) and the resolvent R (s 2I)- is given
by (2.3).

Remark 2.1. Working in a space with fading memory, Hale [10], [11] con-
sidered equation (1.1). In [10] Hale applied the theory of e-contractions to obtain
exponential estimates on the solution operator. As pointed out in that paper, these
estimates are applicable to the semigroup S(t) defined on Z,. In particular, if

{2IRe 2 > 0 and det A(2) 0}

is empty, then for any e > 0, there is an M > 0 such that

IlS(t)(rl, q))ll <= M etll(ri,

for > 0.
However, our prime interest is in the study of the adjoint semigroup, and some

of its stability properties. For this reason, the state space Z, is a useful space in
that the computation of the adjoint is almost trivial.

Also, it should be noted that results similar to Theorem 2.1 may be found in
Naito’s paper [15]. However, again it should be noted that Naito was working
in a space with fading memory.

In order to compute the adjoint semigroup we shall need the adjoint operator
*. However, as we shall see below, the choice of Zp as the state space allows us
to compute sO* very easily for a large class of operators L. In particular, we shall
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restrict attention to the case where L is defined by

(2.4) L(q)) Mq)(O) + Nq)(-r) + K(s)q)(s) ds,

where M and N are n x n constant matrices and K is an n x n matrix function
such that o_ IIK(s)ll ds < + oe, and r _> 0. As shown in Example 1.1, the operator
L defined by (2.4) satisfies hypothesis Jog. Moreover, in this case s is given by

sO1, q)) (Ml + NO(-r) + K(s)q)(s) ds, q)’(. )).

In order to simplify notation, we define the functions q- and q/ as follows.
If t’ is continuous on (-o, 0] except for a jump discontinuity at -r, then
q- e cg(_ oe, -r] and q / e cg[_ r, 0] are defined by

W(s), s < -r,
W-(s)--

W(-r-), s=-r,

and

q’(-r+),q’+(s)

THEOREM 2.2. If SO* denotes the adjoint of s, then:
(i) The domain ofsO* is given by (s’*) {(, P)e Zlq- is a.c. on compact

subsets of (-o,-r], g+ is a.c. on I-r, 0], K*(. )- g’(. )e Lq(-C, 0), and
N* [g( r +) P( r-)] }, where q p’.

(ii) If (, W) (s*), then s*(, W) (M* + q’(0), K*(. ) W’(. )).
(iii) If 1 < p < + c, then sO* is densely defined, i.e., !(s*) Z Zq.
(iv) If p- 1, then * is not densely defined and (s[*)= Z-, where Z(

is the closed subspace of C" x Lo(-oe, 0) given by

Z- {(,W)[ W-eBUC(-o,-r],W +

and N* tP+(-r)- q-(-r)},

where BUC (-oe, -r] is the space of bounded uniformly continuous functions on
(-oo, -r].

Proof. Recall that (, P) e (,*) if and only if there is a (, ) e Z* such that

<s(,, q), (, q,)> <(,, q), ($, %> o

for all (r/, (p)e (e), and in this case, s*(, q) (,
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Concentrating on the left side of (2.5) we obtain

(L(rp), ) + (’(s), W(s)) ds (, ) ((s), (s)) ds

<Me(0), ) + NO(-r), ) , ) + K(s)e(s), ) ds

If (, )e (), (0) 0, and for s N -r, O(s) (-r) 0, then (2.5)
implies that

Consequently, the fundamental lemma of the calculus of variations implies that
is a.c. on I-r, 0] and ’(s)= K*(s)- (s) a.e. on I-r, 0]. In particular,

(s) K*(s) ’(s) and K*(. ) ’(. )e Lq(-r, 0).
Also, if (, )e (), (s) 0 for -r N s N 0, and has compact support

on (-, -r), then (2.5) implies that

[<q,’(s), e(s)> + <q,(s), K*.(s) ’i’(s)>] as O.

From Lemma 1.3, it follows that q is a.c. on compact subsets of (-oe, -r] and
q"(s) K*(s)- qd(s) a.e. on (-oe,-r]. Therefore, we have that (s)=
K*(s) q’(s) and K*(. ) q’(. e Lq(- oe, r). Again applying Lemma 1.3,
we have that

E(’(s), q(s)) + (go(s), K*(s) W(s))] ds

[(q(s), ’I’(s))]’ ds + [(q(s), ’I’(s))]’ as

(q,(o), ,I,(O)) (q,(-r), ’I’(-r+)) + (q,(-r), (-r-)),

and hence if (r/, 09)e (), then (2.5) reduces to

0 (q(-r), M* + q(O)- ) + (q(-r), N* [q(-r +) q(-r-)]).
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Thus, it follows that

and

M* + tP(O)

N* (P(-r +) P(-r-)),

and we have shown that if (, P) s (*), then t’ is a.c. on r, 0], and on compact
subsets of (- o, r], K*(. ) t"(. s Lq(- oe, 0), and N* (P(- r +)
P(- r-)). Moreover, for (, P) s (*),* is given by s’*(, t’) (M* + P(0),
K*(. ) P’(. )). To complete the proof of parts (i) and (ii) one need only reverse
the above equalities.

The proof of (iii) is well known since Zp is reflexive (see [16, p. 270]). For the
case where p 1, it is clear that N(s’*) is not dense in Zoo. If (, P)e N(*),
then P- is a.c. on compact subsets of (-oe,-r] and K*(.)- [P-(.)]’=
@(. )e Loo(-oc,- r). In particular, we have that P-(t) P-(-r)+ ft_r [K*(s)
CP(s)]ds and hence Y-(t) is a bounded, uniformly continuous function on
(-oc,-r]. Consequently, @(s*)c_ Z-. Let K be defined by K {FIE- and
[F-]’ e BUC (-,-r], F+ and [F+] e C[-r, 0]}, and for each eC" define the
set Ye as follows"

Y {F[F s K and F/(-r) F-(-r) N*}.
For each (, q) Zi and e > 0, it follows that there exists a F Y such that
]l(, F) (, q) < e. Let {(, q)lq-(s)

_
K*(t) dt + F-(s), P+(s)

_oo K(t) dt + F+(s), where F Y}, and note that @ is dense in Z. Moreover,
@(sO*) Z implies that (s*)
Remark 2.2. It should be noted that if r 0 and N 0, then system (1.1)-(1.2)

becomes the Volterra integro-differential system

x’(t) Mx(t) + K(s t)x(s) ds,

x(O) l, Xo

In this case, !(s’) is given by !(s’)= {(r/, q)lq is a.c. on compact subsets
of (- oc, 0], o(. e Lp(- oe, 0), q’(. e Lp(- oe, 0), and /= o(0)}, and s(r/, q)
(Mrl + o_oo K(s)q)(s)ds, q’(. )). Also, (s’*) is given by (s’*) {(, P)[P e
gq(--oo, O), is a.c. on compact subsets of (-oe, 0], and K*(.)- g’(.)e
Lq(- oc, 0)}, and *(,) (M* + g(0), K*(. ) g’(. )). In particular, if
p= andq= o,then

zi c" x BUC(-o,0].

Note that for this case there is no restriction on q at 0.
Also, it is clear that the above arguments can be made for more general

operators L. For example, L could be defined by

L(tp) Mi(P(-ri) q- . Ki(s)tp(s)ds,
i=0 i=
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where 0 r0 < r < < r,. In this case, one would have to take into account
the jumps of P at r l, r2, rn.

3. The adjoint semigroup. In [16], R. S. Phillips developed a general theory
for the "adjoint" semigroup of operators. Earlier, Feller [8] had formally obtained
an adjoint semigroup and applied his formal theory to parabolic differential
equations.

In this section, we shall present a brief description of the construction of the
"adjoint" semigroup as defined by Phillips in [16]. Also, we shall restrict our
attention to Co-semigroups.

Let X be a Banach space and T(t) X --, X a Co-semigroup with infinitesimal
generator C. It is clear that T*(t) X* X* is a semigroup on X*. IfX is reflexive,
then it follows that T*(t) is a Co-semigroup with infinitesimal generator C* (see
16, p. 277]). However, if X is not reflexive, then T*(t) need not be a Co-semigroup;

in fact, C* may not be densely defined. One is able to avoid some of these difficulties
by taking the "adjoint" semigroup to be the restriction of the adjoints T*(t)
to a properly chosen "adjoint" Banach space X +, which in general will be a
proper subspace of X*. Moreover, X +

_
X* shall be the largest domain for

which the ordinary adjoint T*(t) is a Co-semigroup and the generator of the semi-
group, C +, turns out to be the maximal restriction of C* with domain and range
in X +.

To be more precise, let X + !(C*) and T+(t) be the restriction of T*(t)
to X+. The following results may be found in [12, p. 429] or [16].

THEORF_N 3.1. If T(t) is a Co-semigroup, then T+(t) is a Co-semigroup on X +.
Moreover, if C+ denotes the infinitesimal generator of T+(t), then (C+) {x*
(C*)[C*x* X+ and C + is C* restricted to (C+).

It is clear from the above theorem that one may be able to obtain certain
properties (i.e., such as stability) for the semigroup T(t) from known properties
of T + (t). For example, ifX is reflexive, then X + X* and if T*(t)y* T + (t)y* 0
for all y* X*, we can conclude that T(t)x 0 weakly for all x X.

THEOREM 3.2. If T(t) is a Co-semigroup, then p(C) p(C+).
We shall not devote time to the general theory of the adjoint semigroup for

the system (1.1)-(1.2), but rather to a specific application to a Volterra integro-
differential system.

4. A Volterra integro-differential system. In this section we shall consider
the linear Volterra integro-differential equation

(4.1) x’(t) Mx(t) + g(s t)x(s) ds, >= O,

with initial data

(4.2) x(0) q, Xo(’) q(’).

System (4.1)-(4.2) was studied by Barbu and Grossman [2] via semigroup
methods. In [2], the state space was BCt(-o, 0], i.e., the space of bounded con-
tinuous functions on (-o, 0] with finite limit at -o. Also, r/was identified with
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qg(0). Their method of constructing the semigroup is direct and analogous to the
construction of the semigroup S(t), presented in 2.

In [13], R. K. Miller also studied system (4.1)-(4.2) by semigroup methods,
under very mild assumptions on the kernel function K. (However, we shall always
assume that K(. )e LI(-oo, 0).) The method employed by Miller is indirect and
involves embedding system (4.1)-(4.2) in a larger class of problems. As indicated
by Miller, the indirect approach has certain advantages. In particular, the semi-
group constructed by Barbu and Grossman can be uniformly bounded, but cannot
tend strongly to zero. On the other hand, the semigroup constructed by the in-
direct anethod can have both of these properties.

As we shall now show, by appropriately choosing the state space, one may
consider Miller’s semigroup as a restriction of the adjoint of the semigroup con-
structed by Barbu and Grossman.

Remark 4.1. Note that if fLv(O, +), then fLv(-o,O defined by
f(s) f(-s) provides an obvious identification of C"x .L,(0, +) with
C"x Lp(-,0). Also, note that under this identification, If(s)]’ -If’](s).
We point this out because Miller’s semigroup is defined on a subspace of
C" x L,(0, + ), whereas the adjoint semigroup mentioned above will be defined
on a subspace of C" x L,(-, 0). With the identification given above, it will be
clear that the two semigroups are the same. We continue now assuming that the
reader has Miller’s paper [13] at hand.

Let the state space for the system (4.1)-(4.2) be Z1 C"x L(-,0).
In view of Remark 2.2 and previous theorems we have the following facts:

(i) If S(t):Z Z is defined by (1.7), then the infinitesimal generator
is given by

(s) {(q, qg)lq9 L(- oo, 0), q9 a.c., q)’ Lx(- oo, 0) and r/= qg(0)}.

Moreover, if (r/, 99) (1), then (rl, 99) (Mrl + o K(s)qg(s) ds 99’(" ))
(ii) By Theorem 2.2, Z] (’*) is given by Z; C" x BUC (-o, 0],

where (z*) {(, W) ZoIW(.) is a.c. and K*(. ) tp,(. L(- , 0)},
and if (, W) @(*), then *(, W) (M* + q(0), K*(. ) W’(. )).

(iii) From Theorem 3.1, we have that S/(t) is S*(t) restricted to Z and
is * restricted to

(d+) {(, w) (*)1*(, ,I,) zi }

{(, qOlq( e BUC (- oe, O] and K*(. ) q’(. )e BUC (- oe, 0]}.

(iv) The resolvent set of and + is given by

p(s) p(s +) {/1.1 Re 2 > 0 and det A(2) 4 0},

where

[ f0A(2)=L(eZI)-2I= M+ K(s) eds- 21
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THEOREM 4.1. If (, ) Z, then the semigroup S + (t) is defined by

(4.3) S + (t)(, q) (y(t), yt(. )),

where y is the solution to

(4.4) y’(t) M*y(t) + K*(s t)y(s) ds + (-t)

with initial value y(O) , and y(. is defined by

(4.5) y’(s) W(s t) + K*(v + s t)y(v) dr.

Proof It suffices to show that (4.3) holds for (, W) s (’/) since(/) Z.
However, if (,W)(+), then z(t)= S+(t)(,tP)= (x(t), y(t; .)) belongs to
(+) and satisfies the system

d
dtZ(t) A + z(t), => 0,

and z(0) (x(0), y(0; )) (, W(. )). If we define g(u) by g(u) y(u;u + s t)
for >= 0 and s =< 0, then in view of the definition of ’/ we have that (c/cxj means
derivative with respect to the jth variable, j 1, 2)

d c c3
dqg(,) --y(,; + t) + 2y(,; , + t)= K*(, + t)x(,).

Therefore, it follows that

g(t) g(O) + K*(u + s t)x(u) du,

or

y(t, s)= y(0; s t) + K*(u + s t)x(u) du.

W(s t) + K*(u + s t)x(u)du.

Moreover, x(. satisfies

d
dX(t) M*x(t) + y(t;O)

M*x(t) + K*(u t)x(u)du + q(-t),

with x(0) . Consequently, x(. satisfies (4.4) and y(t;s) xt(s) which completes
the proof.

We now direct attention to the construction of the semigroup presented in
[133.
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by
If F BC (-, 0], then (F)= f is the function in BUC (-, 0] defined

[Le(F)](s) f(s) K*(u s)F(u) du,

(compare with 2.1 in [13]), and Y(K*) will be the subspace ofZ given by

Y(K*) {(x, f)]f Z(F), x F(O), V BC (- , 0]}.

Moreover, the closure of Y(K*) will be denoted by Y.
Let U(t) be the restriction of S+(t) to Y. In particular, if (x,f) Y,, then

U(t)(x,f) S+(t)(x,f)= (y(t), y’(.)), where y satisfies (4.4) with y(0)= x and
y’(. is defined by (4.5) with f(. ty(. ).

The following results may be found in [13].
THEOREM 4.2. Let , Y and U(t) be as above. Then"

+ where x(i) The space Y contains all pairs of the .form (x, (F)) Z
and F is uniformly bounded and piecewise continuous on each interval of the form
I-T,0].

(ii) The operator U(t) maps Y into Y and is a Co-semigroup on Y.
(iii) The following statements are equivalent; (a) det A() 0 for Re _> 0.

(b) sup { U(t) It >= 0} < + andfor each (x,f)
As Miller indicated in [13], the semigroup he constructed can be embedded

in a larger semigroup. Moreover, we have shown above that U(t) is actually the
restriction of S +(t), the adjoint semigroup of S(t). Although stability of the semi-
group U(t) (or even of S+(t)) does not imply the corresponding stability for S(t),
one is still able to obtain some information about S(t) from S+(t) and U(t). For
example, consider the following obvious result.

THEOREM 4.3. Let (rl, go) Z and suppose that x(. is the solution to system
(4.1)-(4.2). Ifdet A(2) - Ofor Re 2 __> 0, then x(t)

Proof Let e C" and 0(. denote the zero function. Since (, 0) e Y, we have
that

(x(t), ) ((x(t), x,( )), (, o))

(s(t)(, o), (, 0))

((, o), s*(t)(, o))

((r/, go), U(t)(, 0)) --} 0.

Since e C" is arbitrary, we have that x(t) O.
In conclusion, we should also note that Miller in [14] has considered the

Volterra integro-differential system (4.1)-(4.2) in a Banach space X. In this paper,
Miller constructed the semigroup U(t) and indicated that U(t) could be extended
to a semigroup on the space of bounded and uniformly continuous X-valued
functions. It is clear that under certain assumptions that again this extension may
be considered as the adjoint semigroup, S + (t), where S(t) is the semigroup defined
in 2 for the X-valued system (1.1)-(1.2). (For the finite delay system in a Banach
space see Borisovi6 and Turbabin [3].)



ADJOINT SEMIGROUP THEORY 745

Acknowledgment. The authors wish to thank Professor Ken Hannsgen for
reading a preliminary version of this paper and making many helpful suggestions.

REFERENCES

Ill H. T. BANKS AND J. A. BURNS, An abstractframeworkfor approximate solutions to optimal control
control problems governed by hereditary systems, Proc. Internat. Conf. on Differential
Equations, Academic Press, 1975, pp. 10-25.

2] V. BARBU AND S. I. GROSSMAN, Asymptotic behavior of linear integrodifferential systems, Trans.
Amer. Math. Soc., 171 (1972), pp. 277-288.

[3] Ju. BORISOVIt AND A. S. TURBABIN, On the Cauchy problemfor linear nonhomogeneous differential
equations with retarded argument, Soviet Math. Dokl., 10 (1969), pp. 401-405.

4] I. D. COLEMAN AND V. J. MIZEL, On the stability of solutions offunctional differential equations,
Arch. Rational Mech. Anal., 30 (1968), pp. 173-196.

[5] ., Norms and semigroups in the theory qffading memory, Ibid., 23 (1966), pp. 87-123.
[6] M. C. DELFOUR AND S. K. MITTER, Hereditary differential systems with constant delays. I." General

case, J. Differential Equations, 12 (1972), pp. 213-235.
[7] , Controllability, observability, and optimalfeedback control of affine hereditary differential

systems, SIAM J. Control, 10 (1972), pp. 298-328.
[8] W. FELLER, The parabolic differential equations and the associated semi-groups of transformations,

Ann. of Math., 55 (1952), pp. 468-519.
[9] L. M. GRAVES, The Theory of Functions of Real Variables, McGraw-Hill, New York, 1956.

[10] J. HALE, Functional differential equations with infinite delays, J. Math. Anal. Appl., 47 (1974).
I11] ., The solution operator with infinite delays, to appear.
12] E. HILLE AND R. S. PHILLIPS, Functional Analysis and Semi-Groups, Waverly Press, Baltimore, Md.,

1957.
El3] R. K. MILLER, Linear Volterra integrodifferential equations as semigroups, Funkcial. Ekvac.,

17 (1974), pp. 39-55.
14] --, Volterra integral equations in a Banach space, Ibid., to appear.
[15] T. NAITO, On autonomous linear functional differential equations with infinite retardations, J.

Differential Equations, to appear.
16] R. S. PHILLIPS, The adjoint semi-group, Pacific J. Math., 5 (1955), pp. 269-283.
[17] W. T. REID, Ordinary Differential Equations, John Wiley, New York, 1971.



SlAM J. MATH. ANAL.
VOI. 7, No. 5, October 1976

AN EXPLICIT A PRIORI ESTIMATE FOR PARABOLIC EQUATIONS
WITH APPLICATIONS TO SEMILINEAR EQUATIONS*

ALAN ELCRATf AND VINCENT G. SIGILLITO$

Abstract. A coercivity inequality for the first initial-boundary value problem for a second order
parabolic equation is established. This result is applied to a semilinear problem.

Introduction. We establish here an a priori estimate for second order
parabolic operators with bounded coefficients. The spirit of this work is similar
to that of recent work of one of the authors [13 in which explicit estimates were
given for elliptic operators satisfying analogous hypotheses. The estimates provide
a bound for the L2-norm of the second spatial derivatives and the time derivative
of a function u in terms of the L2-norm of Lu, where L is the operator in question,
with an explicitly given constant. If the number of space variables is less than four,
the Sobolev embedding theorem implies a bound for the maximum norm of u
and a corresponding a posteriori estimate for the approximation of the solution
of a linear parabolic equation by linear combinations of functions which satisfy
the boundary conditions (cf. [2]). (We impose the Dirichlet boundary condition
on the lateral boundary, but it is anticipated that analogous results can be derived
for mixed boundary conditions.)

In the second part of the paper, we apply the above result to obtain a con-
structive existence theorem for a semilinear equation of a type that occurs in
nonlinear heat conduction. An interesting feature of this is an a priori estimate
for the solution of a nonlinear equation which followed from a version of the
strong maximum principle for weak solutions of parabolic inequalities [3].

1. An a priori estimate. We will study the parabolic operator

Lu aiju,i -t- biu,i au cu

acting on functions in D f [0, T] which belong to the Hilbert space W’I(D)
of functions with finite norm

(11u112,)2 fo (u2 + Ivul2 + ID2u12 + u)dx dr,

where the gradient is with respect to space variables, and IOaul represents the
sum of the squares of all the second derivatives with respect to space variables.
We denote by I1" Iio the norm in La(D). We assume immediately that the n-dimen-
sional domain f has a piecewise smooth boundary with nonnegative mean
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curvature and that

aijij >= v21l 2

for some positive constant v, all n-vectors and all (x, t) in D. This assumption
about the mean curvature of t?f can be weakened somewhat (as indicated in [1]),
but we will not pursue that further here. Further, we will use the notation ,i to
denote t?/c3xi; used as a subscript denotes t?/t?t, and the summation convention
is used so that repeated indices are to be summed over the spatial coordinates,
i.e., from 1 to n.

Our goal is to establish an inequality of the form

Ilullz, =< CIILullo

for functions u WzZ’l(D) with zero trace on the parabolic boundary of D and
to obtain specific information about the dependence of C on the coefficients of L.

The assumptions about f imply that for each t, u(x, t) Wz,o(f) wZ(f)
l?(f) and that any function in this class is the norm limit of functions in C2()
which vanish on t3f. We will denote the subspace of Wz’I(D) whose elements
vanish on the parabolic bohndary of D by Wo.

The results obtained here utilize similar estimates for elliptic operators
which were given by one of the authors in a recent paper [1], and these are sum-
marized below following our assumptions about the coefficients of L"

(A2) (Regularity of coefficients) aij(x, t) W(D), bi, a L(D), c c(x)
wig(n).

(h2) If we define S sup Ib- (aj),jI and ao inf, a, then S < f v: and

ao > x/S- v:. Also, we assume inf c > 0.
In the above, denotes the lowest eigenvalue of -A in ft. See [4 and

for methods of estimating .
The constant S may be taken to be a measure of formal self-adjointness of

the operator Lo, that is, if S 0, LoU (au,), au. In any case, the Faber-
Krahn inequality [5] implies that the restrictions S < x/ V2 and a0 > xf S -/v2

are automatically satisfied if the volume of f is sufficiently small.
In order to state the previous results in a convenient form, we denote by

Lou aiju, -I- biu, au

the elliptic operator obtained from L by deleting the term -cut and holding
fixed.

LEMMA 1. The inequality

Lou)
z dx >-_ (ao + 2v:z Sx/)2 u2 dx

holds for u in W
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LEMMA 2. The inequality

fnlVul2 dx <= Cx f(Lou)2 dx

holds for u in W22,o(f), where

S
ao / S if ao -> S,//+ ,

)2C1
$2

2/o + sv/ + - :o o + z: sv/
S2

if ao < 2v2 Sx/- q-

Now we define

Pu aiu, ij and. B supl(aijau aikafl),k[
D

then we have the next lemma.
LEMMA 3. The inequality

V2ff f n4B2;D2 ID2ul 2 dx <= (Pu)2 dx +
2v2 IVul 2 dx

holds for u in W,o(f).
These results are derived in [1]. It is remarked there that if n 2, Lemma 3

may be replaced by an inequality which does not involve the gradient on the
right-hand side.

The basic identity used in proving Lemmas 1 and 2 is

-fn uLudx= fn a’iu’iu’idx+ fn au2dx+ fn [(a,),-b,]u,,udx,

and its analogue in the present situation is

()
fl ULu dx dt fo a,u,,u, dx dt + fn au2 dx dt

+ fn [(a,j),j-b,]u,,u dx dt+ f cuu, dx dt for u e Wo.

If we also observe that

(2) cuu, dx dt c(u2), dx dt - CU2(X, T) dx >= 0

and that, by integrating the usual inequality,

(3) 2 fou2 dxdt folVul2 dxdt,
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results analogous to Lemmas 1 and 2 follow immediately. In particular, we have
the following results.

LEMMA 1’. The inequality

fD (Lu)2 dx dt >= (ao + 2V2- SN)2 fou2 dx dt

holds for u Wo.
LEMMA 2’. The inequality

folVul2 dx dt <= Cl fo(Lu)2 dx dt

holds for u Wo, where C is as defined in Lemma 2.
LEMMA 3’.

(4) - IOZul 2 dx dt <= (Pu)2 dx dt + 2v2 IVul 2 dx dt for u Wo.

We are now ready to give our main estimate. We will define the norm by

([[u[[2,)z--v2 fD[D2u[ " dx dr+ fo (Cut)2 dx dt

in Wo.
THEOREM 1. Assume A and Az. Then there is a constant C such that

Ilul12,a CIIZullo

Proof By repeated applications of the weighted arithmetic-geometric mean
inequality to (1), we obtain

()
fo (Lu)2 dx dt >_ (Pu)2 dx dt 5 (biu,i)z dx dt

-5foaZuZdxdt-5fDcuZdxdt.
In order to estimate the last term on the right, we observe that

fD c2u2 dx dt fo (cut)Lu dx dt + fo (cut)Lou dx dt

so that, for positive

1 c2u2 dx dt <_ (Lu)z dx dt + cu,Pu dx dt

+ fD cu,biu,i dx dt fo cutau dx dt.
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The second term on the right can be written as

fo (cuaiju’"’J dx dr-;o cu’(a’i)’iu’i dx dt-fo cu’i’aiu’i dx dr-fo c’iutaiu" dx dr.

For the first term in this expression, we have

(cutaiju,i), dx dt cu,(Ou/Ov) dS dt O,

where v denotes the conormal direction associated with aj on , and the third
term can be written as

fo 1;o1
(caiju,iu,), dx dt + - c(aii),u,iu,i dx dt

2

t=T
dx + c(aij),u,u,j dx dr.

Since the first term in this last expression is nonpositive, we obtain

)fO l fo fO2u2 dx dt <__ ee (Lu)2 dx dt + cut[b (aij),j]u,i dx dt

fD fD C,j+ cuau dx dt --aiju,icu dx dt

+ - c(aij),u,itl, dx dr,

and by further applications of the arithmetic-geometric mean inequality, we obtain

(6)

l fo (cut)2 dx dt < 4 fo (LU)2 dx dt + 2a fo u2 dx dt
2

+ (2S + 27a + ])2)f IVul 2 dx dt,

where a supo lal, supo lajI, and ])1, ])2 are the suprema of IVc/cl, Ic(a0,1,
respectively, over D. The inequalities (4) and (5) imply that

V2 fD ID2ul 2 dx dt <= 8 ;o (Lu)2 dx dt -F (n4B2v-2 + 40fl2) f9 IV/’/12 dx dt

+ 40a2 fDbl2 dxdt + 40 f:,r (/gt)2 dxdt,
where fl denotes the supremum over D of Ibl. This inequality, together with
Lemmas 1’ and 2’ and (6) above, implies the conclusion of the theorem.
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The above discussion yields the expression

C2= 336 + 204a(ao + 2v2 Sw/)-2

+ Cl[n4B2v -2 + 402 + 402 + 82(2S + 2/71 + 72)]

for the constant C. It is interesting to note that C grows linearly with al.
Remarks. (i) If the coefficients of L are smooth, Theorem 1 implies a weak

maximum principle for L. In fact, if Lu >= 0 for some u Wo, define f Lu,
approximate f in L2(D) by smooth functions f, with f, _>_ 0 and observe that, if
Lu,, f,,, u,, Wo we have

Ilu- u.l12, Cllf-LIIo.
Since u, is smooth, the classical maximum principle implies that u, =< 0 in D,
and we have shown that u is the limit of Wo of smooth, nonpositive functions.

(ii) It appears that much of the above can be carried through for mixed
boundary conditions on Of (0, T). The authors plan to return to this question
in a subsequent paper.

2. An application to nonlinear equations. The results ofthe previous paragraph
can be used to study the initial-boundary value problem

Mu aiu,ij + biu, cut f(x, t, u) in D,
7)

u=0 fort=0 and for (x, t) f (0, T).

We assume that the coefficients of M satisfy A and that S < v2. We also
assume that n =< 3, so that W(f) may be imbedded in C(), and that f is
sufficiently regular to imply that M(Wo) is dense in L2(D).

We also need to assume that f has certain properties which are given below.
First we recall that a function h(x, t, u) defined on D R is called an N-function
if it is continuous in u for almost all (x, t) and measurable in (x, t) for all u. We
denote by N(D) the class of N-functions h for which h(D [- A, A]) is a bounded
set of all A. The operator F is defined on Wo by F(u)(x, t) f(x, t, u(x, t)). We
assume

(F)" f N(D), and, for almost all (x, t), f has three derivatives with respect
to u, and these functions belong to N(D).

The problem (7) may be formulated as an operator equation P(u)= O,
where P(u) Mu f(x, t, u) is thought of as a mapping of Wo into L2(D), and
this is the approach we will take.

Our results are based on the convergence of certain "hybrid" iterative
methods which arise from modifying the first N steps of Newton’s method.
Suppose that P is a twice continuously differentiable mapping of X into Y, where
X and Y are Hilbert spaces, that P’(x) is invertible for all x, and that

[P’(x)]- 11 C.

Further, assume that P" is locally bounded, that is,

IIP"(x)ll K(r)



752 ALAN ELCRAT AND VINCENT G. SIGILLITO

for x in S(0, r). Then it is known [6] that the unique solution of P(x) 0 is obtained
as the limit of the iterative processes"

x,+l =O(x,,N), n= 1,...,N- 1,
(8)

x,+ x,- [P’(x,)]-1P(x,), n N,

independently of the initial guess Xo. The first N steps arise from replacing the
differential equation

(9) 2(0 -[P’(x)]-1P(x), e [0, 1],

with a difference equation with discretization error h (p >= 1), where h 1/N.
The size of N is determined by C and the constant in the discretization error
bound x(1) x.II _-< const., hv. If Euler’s method is used to discretize (9),

(x,, N) x. N- [P’(x,)]-lP(x,).

Our existence theorem uses the following result, which is the analogue of
a result for elliptic equations [1], [7, p. 426].

THEOREM 2. Suppose that u is a solution of (7) and that uf(x, t, u) .>= 0 if lul > m.

Then lul -<_ m,

Proof. It suffices to show that if f(x, t, u) >= 0 for u > m, then u < m.
We note that u is continuous on and vanishes on the parabolic boundary

of D. Let v u m. If v is positive anywhere in D, it follows that there is a point
P (Xo, to) f x (0, T] with

v(P) max v k > 0.
D

Furthermore, we can find a P that also has a "backward neighborhood"

S {Ix- Xol < e} x (to- 6, to]

on which v is positive, but not identically equal to k. Since f(x, t, u(x, t)) is non-
negative on S, we have

My Mu > 0

there. At this point, we make use of a generalization of the strong maximum
principle 3] which applies to weak solutions of parabolic inequalities, and in
particular to v. This maximum principle implies that v is identically equal to
k in S, and we have obtained the required contradiction.

The proof of the following is essentially given in [1].
LEMMA. The assumption (F) implies that F maps Wo into Lz(D) continuously,

F has two continuous Frchet derivatives, and F" is locally bounded.
We are now ready to state our main theorem.
THEOREM 3. Assume that the coefficients of M satisfy A1, that S < xf v2,

and that M(Wo) is dense in L2(D). Further, assume that f satisfies (F), that

uf(x, t, u) >__ 0
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/f lul > m, and that

inff. > x/ S- v2 on D x I-m, m].

Then the iteration (8) converges to the unique solution of (7).
Proof. Since Theorem 2 provides the a priori estimate lul _-< m, we may use

a familiar device (see [8, Chap. 4]) to replace (7) with an equivalent problem with
nonlinear term f(x, t, u), where f coincides with f for lul _-< m and f and its
derivatives with respect to u are bounded. Then we need only observe that

P’(u) M f,,

make use of our hypotheses on M and f, and invoke Theorem 1.
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NEW IDENTITIES FOR LEGENDRE ASSOCIATED FUNCTIONS
OF INTEGRAL ORDER AND DEGREE.

II" EXTENSION TO OTHER POLYNOMIALS*

S. R. SCHACH-

Abstract. The concept of an orthogonal polynomial p,(x) is extended by defining a generalized
orthogonal function pv(x) of nonintegral degree v. A sufficiency condition is then found under which a
generalized orthogonal function which satisfies an identity of the type known as Dougall’s identity
(for a generalized orthogonal function of nonintegral degree), will also satisfy the related S-type identity
(for a generalized orthogonal function of integral degree).

The sufficiency condition is applied to Legendre associated functions, generalized Legendre
associated functions, and to Jacobi functions.

1. In a previous paper [5] we started with Dougall’s identity for Legendre
associated functions Pm(x) of nonintegral degree 1, 3.10(9)] which is of the form

DvPv (x)Pv (y) {sin (vrt)/r} (- 1) D,P, (x)P, (y)
n=0

{1/(v n)- 1/(v + n + 1)}
with D, independent of x and y, and we derived a set of new identities for Legendre
associated functions P?(x) of integral order and degree of the type

SIP(x S,P(x){1/(I- n)- 1/(1 + n + 1)},

where , denotes either ,=o or ,o and where the parameters Sl, S are func-
nl

tions of P?(x) and P(x) respectively and their respective first derivatives evaluated
at the origin (and are therefore independent of x).

We now attempt to generalize these results in two ways. First, in place of
Legendre associated functions we study certain functions p(x) defined on the
interval (a, b) R, which satisfy Dougall-like identities, namely

Dp(x)p(y)= {sin(vg)/g} (-1)"D,p,(x)p,(y)
n=0

n) + n +
for all v 6 R I, for all x, y 6 Y (a, b), with D independent of x and y. We will
refer to the above as a D-type identity.

Second, instead of evaluating our parameters Sl, S, at the origin as in [5], we
investigate whether points Xo (a, b)in addition to the origin exist for which
identities similar to those derived in [5] can be found. More specifically, we obtain
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a sufficiency condition under which a function p(x) which satisfies a D-type
identity will also satisfy an identity of the type

pt(x)-- Sl,,(Xo)p,,(x)(1/(l- n)- 1/(l -+- n + 1)}

for N, for some Xo - (a, b), where we have written S,,(Xo) for Sn(Xo)/SI(Xo).
N is the set of nonnegative integers.

Again , denotes either L0 or -o. As we will see the parameters
n4:

S,(Xo) are very similar in form Whether or not the term for n-- is included in
the summation, and we will thus refer to both types of series as S-type identities.

Meulenbeld and van de Wetering [4] have derived a D-type identity for the
generalized Legendre associated function (or GLAF for short) Pm’"(X). Hence
those functions which can be expressed in terms of GLAF’s (e.g., the Jacobi func-
tion P"a)) will satisfy a D-type identity for nonintegral v, as will those which can
be expressed in terms of Legendre associated functions (such as Gegenbauer or
ultraspherical functions Ca)). Thus the set {p(x)} is certainly nontrivial.

In searching for such functions we will consider only those functions which
are generalizations of the classical orthogonal polynomials p,,(x) to the case of
nonintegral n by expressing p,(x) in terms of the hypergeometric function and
replacing n by v, or by considering the original differential equation defining
p,,(x) and making the same replacement. We shall refer to such functions as
generalized orthogonal functions. Before following this program we must recall a
few basic properties of orthogonal polynomials in order to generalize them later.

2. Properties of orthogonai polynomials. (The results of this and the following
subsection are taken from [1, Chap. 10] and [6]).

Let {p,,(x)ln--0,1,... } be a sequence of polynomials of exact degree n,
defined on the interval (a, b). Further let w(x), the weight function, be a nonnegative
function (measurable in the Lebesgue sense) for which

dx w(x) > O.

Then ifa dx w(x)pi(x)pj(x) exists for all i,j e N (in Lebesgue’s sense) we may
define the scalar product

If

(Pi, Pj) dx w(x)pi(x)pj(x).

(Pi,Pj)=O for i:/=j,

then the sequence {p,(x)} is said to be a system of orthogonal polynomials.
We can show that every orthogonal polynomial system is complete on (a, b)

if the interval is finite.
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The classical polynomials (the Hermite, Laguerre and Jacobi polynomials, and
their special cases) are characterized by three major properties:

(I) {p’,(x)} is a system of orthogonal polynomials,
(II) y p,(x) satisfies a differential equation of the form

(1) A(x)y" + B(x)y’ + 2,y,

where A(x) and B(x) are independent of n, and 2, is independent of x.
(III) There is a generalized Rodrigues formula

d"
(2) p.(x)

K,w(x) dx"(w(x)X")’

where K, is a constant and X is a polynomial of degree at most 2 in x whose coeffi-
cients are independent of n.

Conversely, any one of these properties characterizes the classical orthogonal
polynomial in the sense that any system of orthogonal polynomials which has one
of these properties can be reduced to a classical system. Thus by considering only
the classical orthogonal polynomials we nevertheless are including a wide range
of functions.

From (2) we can deduce that the differential equation for y p,(x) has the
form

() X-dx + Ip(x) + . O,

where

(4) 2, -n{k,K + n- 1)X"}
with k the coefficient of x in p l(x), K1 and X as defined in (2).

Since X is at most quadratic in x, and pl(x) is a linear function of x, (3) can be
reduced to the hypergeometric equation or one of its special or limiting cases.

3. The recurrence and differentiation formulas. Let k., k. be the coefficients
of x", x"-1 respectively in p,(x)’, r, [c,/k, and h. (p., p,). Then [6, (3.2.1)]
p,(x) satisfies the recurrence relation

(5) P, +l(x) (A,x + B,)p,(x) C,p, (x), n O, 1,2,...,

with p_ l(x) 0 where

A, k, + /k,

(6) B, A,(r,+l r,),

C, A,h,/(A,_ lh,-1) k,+ lk,- lh,/(kZ, h,-1).

The differentiation formula [1, 10.7(4)] obeyed by p,(x) is

(7) X
dp"(x)
dx

(a, + ynX x)p,(x) + fl,p,_ l(x),
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where

o, nX’(O) iv,,.-. r
(s)

A,. C,{k,I, + ( )X"},
where X, K1 are defined in (2), r, and k in (5) and A,, C, in (6).

4. Generalized orthogonal functions. Since p,(x), the solution of (3), is a
hypergeometric function or one of its special or limiting cases, let us define the
generalized orthogonal function z pv(x) to be the solution of the equation
(cf. (), (4))

(9)

where

d2x dzx-x + Ip,(x) + z o,

Further, replacing n by v in (5) and (7) we obtain

(10) p + (x) (Ax + )p(x) Cp_ (x), p_ (x) O,

(1) xapv(X)
dx

( + -vX x)p(x) + p_,(x).

This substitution of n by v can be justified rigorously by considering the appro-
priate hypergeometric function for each classical system and using Gauss’ 15
relations between contiguous hypergeometric functions [1, 2.1.2] to deduce (10)
and the differentiation formula for F(a, b; c z) 1, 2.8.20] to obtain (11).

5. The sufficiency conditions. Armed with the above results we can now find
a sufficient condition for a generalized orthogonal function pv(x) which satisfies
a D-type identity to satisfy an S-type identity. We allow p(x) to be a function of
an integer parameter m. However, to avoid over-cumbersome notation, the m-
dependence is not explicitly indicated except where essential.

Our main result follows from Lemmas and 2.
LEMMA 1. Let p(x) p(x, m) m I be a generalized orthogonalfunction defined

on (a, b) c R which satisfies a D-type identity, viz.,

(12)
Dpv(x)p(y) {sin (vn)/n} (- 1)"D,p,(x)p,(y)

n=0

{(1/v n)- 1/(v + n + 1)}

for all v e R,for all x, y Y
_

(a, b), with D independent ofx and y.
Then a sufficient condition that p(x) satisfy an S-type identity, namely

(13) Pt(X) E S.(xo)p.(x){1/( n)- 1/(1 + n + 1)}
n--O
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for all x Y, for e N, for some Xo Y, S.(Xo) independent of x, is that the series

(14)
Dvpv(x)pv(Y) {sin(vrc)/n}

.=o
(-1)D.p.(x)p.(y)

{1/(v-n)- 1/(v/n/ 1)}
is uniformly convergentfor all x, y Y, and that there exists an Xo Y, such that for
all v R, pv(xo) can be expressed as

(15) P(Xo) Mv(xo)cos {(v + m)rt},

where Ml(Xo) lim,,_/N p(Xo)/COS {(v + m)rt} exists with Ml(Xo) =/= 0 for all
N. The parameters S.(Xo) are given by
+ m even"

St.(Xo) -(2/rt) cos {1/2(/+ m)rc} (D./DI)(fl.M._ l(xo)

(16) sin {(n + m)rt} M.(xo){(a. ) + n l)X"xo}

cos {(n + m)n})/(ml_l(XO)fll + (2/)ml(xO){’ + XttXo}
where

+ m odd"

(17) sl.(xo
2

sin {41 + m)t} D.M.(xo)- Diml(xO)
cos {(n + m)rt}.

Proof Differentiate (12) term-by-term with respect to y, and set y Xo; this
step is valid by virtue of the uniform convergence condition (14) (which in turn
implies uniform convergence of (12)). Multiplying both sides by X(xo) we obtain

(18)
DX(xo)pv(x)p’(Xo) {sin(vrt)/n} (-1)"

n=0

D.p.(x)X(xo)P’.(Xo){1/(v- n)- 1/(v + n + 1)}.

Multiply both sides of (12) by { + 1/2vX"y} and set y Xo to give

(19)

D{ + yvX xo}P(x)p(xo)

{sin(vrc)/r} (-1)"D.p.(x){v + 1/2vX"xo}p.(xo)
n=0

{1/(v- n)- 1/(v / n / 1)}.
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Subtract (19) from (18). Using (11) we obtain the result

Dpv(X)flvpv- a(Xo) {sin tvrt)/rt} (- 1)"D,p,,(x)
(20)

.=o

(o- (o) + = + o}(o)
+

Now if condition (1 ) holds, then

(21) p,,(xo)p,,- a(Xo) 1/2M,,(xo)M,,_ a(xo) sin (vn)(- 1)m.
Thus multiplying both sides of (20) by p,,(Xo) gives

(- 1)"D,,fl,,M,,(xo)M- (xo)p,,(x)

(2/n)p,,(Xo) (-1)"D,,p,,(x)(fl,,p,,_ a(Xo)+ {a. + 1/2nX"xo}
n=O

p,,(Xo)- {o + 1/2vX"xo}p,,(Xo)){1/(v n)- 1/(v / n + 1)}.
As in [5] we separate out the term for n => 0. We deduce

(22)

1)"OflM(xo)Mv_a(xo)P(X)

(2/rc)p(xo)(-1)lOlP’l(X)(]lPl_l(Xo)+ {0 -Jr- 1/2IX"Xo}
P1(Xo)- {0% + 1/2vX"xo}p(xo)){1/(v- l)- 1/(v + l+ 1)}

+ (2/rt)p(xo) (- 1)"D,,p.(x)(.p,,_ a(Xo)
n=0

:/:

+ {. + -nx"xo}p.(,o)- { + vX"co}p.(xo))
{1/(- n)- l(v + n + 1)}.

Now take limv_/N of (22). The only nonsmooth term is (using condition (15))

(23) lim p(xo)p,_ a(Xo)/(v l) -@a)M,(xo)M1_ a(Xo) sin2 {1/2(/+ m)r}.
v-l

We substitute this term into limo of (22) to obtain

(24)

M(xo)M_a(Xo)flp(x)D,(- 1)m(1 + (-- 1)t+’’ sine {--(l + m)r})
(2/)(-1)M{(xo)p(x)Dt{a’t + -X Xo} cos2 {(1 + m)}

+ (2)/rOM,(xo)cos {l + m)rc} (-1)"D,,p,,(x)
n=O

(fl.M._ a(Xo)sin {(n + m)rt}
.-lc mn(xo){(o Ol) + n l)X"xo} cos {n +
{1/(t- n)- 1/(1 + n + 1)}.
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The identity becomes trivial unless we assume

(25) M(xo) 4:0 for all N.

Further, from elementary trigonometry we know that

for(l + m) even,
(1 +(-1)+’sin2{1/2(/+m)})=

0 for(l+ m) odd,

and

cos {l + m)z} { (- 1)(’/2)(t+") for (1 + m) even,

0 for (1 + m) odd.

We must therefore assume that (! + m) is even, and (24) then gives

p(x) (2/)cos {1/2(/+ m)} (-1)"+"(D,,/D)
n=0

(26) (fl,,M,_l(Xo)sin {n + m)n} + M,(xo){(a,- l)

+ n l)X"xo} cos {-(n + m)})p,,(x){1/(l- n)- 1/(l + n + 1)}

(Ml-l(Xo)fll + (2/c)M,(xo){a’l + 1/2X"xo}).

Now, sin (1/2k) 0 unless k is odd and cos (1/2k) 0 unless k is even Therefore
defining S(xo) for (l + m) even by (16) we obtain (13) as required.

The corresponding identity for (1 + m) odd is found by setting y Xo in (12)
and multiplying both sides by p,.- l(Xo); we obtain (using (21))

(- 1)"1/2DM,,(xo)M-- l(xo) sin (wc)pv(x)

{sin (w)/7} (-1)"D,,p,,(x)p,,(xo)pv_,(Xo){1/(v n)- 1/(v + n + 1)}.
n=0

As before we separate out the n >= 0 term and take the limit v e N. We
find

(-1)"DM,(xo)M,_.,(xo)p(x)(1 (-1)’+m cos 2 {-(/+ m)})

(27) (2/)Ml_ ,(Xo) sin {(l + m)} (- 1)"D,,p,,(x)
n=0

Mn (Xo)cos {.1/2-(n + m)}{1/(l- n)- 1/(1 + n + 1)}.

Again (27) reduces to a trivial identity unless we assume condition (25);
further (l + m) must be odd, in which case

(1 -(-1)t+m cos2 {1/2(1 + m)z})=
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and (27) reduces to

pl(x) (2/rt) sin {{-(l + m)rc} (-- l) /mD"M"(x)
n=0 DlMl(XO)
nl

cos ((n + m)rc}p,(x)(1/(l- n)- 1/(1 + n + 1)}.
Defining Sl,,(Xo) by (17), we obtain (13) as required. Q.E.D.

It would appear from Lemma that there are many possible values of Xo e Y
for which S-type identities exist.

However, this is not so; in the following lemma we show that Xo must be zero.
In addition, the parameter r, ,]k, must be a constant (independent of n) for
condition (15) of Lemma to be possible.

LEMMA 2. Let Pv(X)= pv(x,m), me I be a generalized orthogonal function
defined on (a, b) c R. If there exists an Xo Y such that for all v R, p(xo) can be
expressed as

P(Xo) M(xo)cos {1/2(v + m)rc},
where Mz(xo)= lim_/.N p(Xo)/COS {v + m)rt} exists, with Ml(Xo):/: 0 for all

N, then

and

Xo=0

r, independent of n.

Proof.
Case A" m even. Assume

Ps(Xo) Ms(xo)cos {(s + m)r} for s _<_ N

(-- 1)l/2)mMs(xo) cos

Choose N even. Then by (5) since m is even,

PN+ l(Xo) (- 1)(’/2)m(ANxo + BN)MN cs (1/2Nrc)

This is zero as required if

or

(impossible by (15))

ANXo + BN O.

Since AN and B N are independent of x this implies

(28) BN=0 and ANxo=O.
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(29)

or

Now Bs As(rs +1 rs), and (28) is equivalent to

Xo =0 and rs+l-rs=0

But AM ks+1 by (6), and AM 0 means that ks+l (the coefficient of
xs + in Ps + 1) is zero, which is impossible because Ps + l(x) is defined to be a poly-
nomial of exact degree (N + 1).

Thus (29) gives

Xo=0, and r,=const, foralln.

Case B" m odd. Choosing N odd leads to an analogous proof.
Combining Lemmas and 2 we deduce (again not explicitly indicating m-

dependence except where essential) the following.
THEOREM 3. Let Pv(X) pv(x, m), m I be a generalized orthogonal function

defined on (a, b) R for which r, r (a constant, independent of n), and which
satisfies a D-type identity, viz.,

Dvp(x)p(y {sin (vzt)/zt} (-1)"D,p,(x)p,(y){1/(v- n)- 1/(v + n + 1)}
n=0

for all v R, for all x, y Y (a, b), where 0 Y, with Dv independent ofx and y.
Then a sufficient condition that p,(x) satisfies an S-type identity

pl(x) Sl,p,(x){1/(l- n)- 1/(1 + n + 1)}
n=0
nl

for all 1 N and for all x Y, is that

(30) Dpv(x)p’(y) {sin (vrO/zt} (- 1)"D,p,(x)p’,(y) { 1/(v n) 1/(v + n + 1)}
n=0

is uniformly convergentfor all x, y Y, and thatfor all v R, p(O) can be expressed as

(31) p(0) M cos {(v + m)zt},

where m lim_s pv(0)/cos {v + m)t} exists with mt 4: Ofor all e N.
The parameters Sl, are given by

(1 + m)even

Sl, -(2/rt)cos {-}(/+ m)zt}(D,/Dl)(B,M,_ sin {(n + m)zt}
(32) M,(, -,0/)cos {-(?/--[- m)rc})/(Ml_ ll
(l + m)odd

(33) OnmnSl. (2/rt)sin {(l + m)rt} DIMI COS {(r/ q- m)zt}.

Proof The proof follows from Lemmas and 2. Q.E.D.
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In equations (22) and (27) we removed the term for n >= 0, thereby giving
in Theorem 3 an S-type identity with infinite sum ,o"

::
As in [53 we now replace the n term to obtain ar S-type identity summed

over all values of n, since we have shown in Lemma that the apparently diverging
term exists. (In fact, for (l + m) odd, the n term is zero, as can be seen from
(27). This result agrees with equations (I.45) and (1.47) of [5]).

We immediately deduce the following.
COROLLARY 4. If the conditions of Theorem 3 hold, then an S-type identity for

p,(x) of the form

Pl(X) Z Sl.p.(x){1/( n)- 1/(1 + n + 1)}
n=O

exists. The parameters Sl. are given by (33)for (1 + m) odd, andfor (l + m) even we

find
S -(2/re)cos {(I + m)rt}(D./Dl)(fl.M._l sin {(n + m)rt}

M,,(,,- ,)cos {n + m)rt} )/Ml_lI.

6. Application to Legendre associated functions. Let us apply Theorem 3 to
Legendre associated functions P(x) with m fixed. Since {P’(x)} satisfy a differential
equation of the type (1) they can be reduced to a classical system.

We are going to show that Sl, of equations (32) and (33) are in agreement
with equations (I.19) and (I.20) of [5].

Using Lemma of [5] we can show that

(34) ]:v,mPmv(x)p’vm(y)--{sin(vrt)/rt} (-1)n/n,m
n=O

P’(x)P"(y){1/(v- n)- 1/(v + n + 1)}

is uniformly convergent for

-rt<0+_ <rt, wherex =cos0, y=cos,
v,m F(Y m + 1)/F(v + m + 1).

We see that the range of validity of (34) is not in the form required by Theorem
3, but following the methods of [5] the extension of Theorem 3 to include limits
of this nature is straightforward.

Comparing the differentiation formula for Legendre associated functions
[1, 3.8(19)] with (7) we deduce that

,, -O, fl,,-- n + m, X x2

whence from (8) we obtain
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By uniform convergence of (34) condition (30) is satisfied with

Dv 7v,mo

Finally, from (I. 15) we know that

pm(0 2mt 1/2 COS {2-(V -- m)t}r’(1/2 + 1/2v + 1/2m)/F(1 + 1/2v 1/2m)
whence (cf. (31))

M, 2"rt-1/2F(1/2 + 1/2v + 1/2m)/F(1 + 1/2v 1/2m).
Thus {P,m(x)} satisfies the conditions of Theorem 3, and on substituting the

above values in (32) and (33) we find:

(1 m) even’St,

(I + m)odd" St,

7n,mPl (O)P. (0),

.n.mPmn(O)pim(O);

these results agree with Theorem 3 of [5] (equations (I.19) and (I.20)).

7. Application to generalized Legendre associated functions (GLAFs) and to
Jacobi functions. We have noted that Meulenbeld and van de Wetering [4] have
derived a D-type identity for the GLAF P’"(x). Starting from this identity and
making use of the fact that the Jacobi function P"’) can be expressed in terms of

m,.P we derive a D-type identity for the Jacobifunction and using Theorem 3

investigate whether an S-type identity can be derived for P(,"’). We work with
Jacobi polynomials rather than GLAF’s, because the former are a set of classical
orthogonal polynomials.

We define the GLAF w Pm’"(Z) to be the solution of the differential equa-
tion [3, (1)]

d2w dw
+ {v(v + 1)- 1/2m2/(1 z)- 1/2n2/(1 + z)}.

In [4, (6)] we find the following D-type identity for GLAF’s with v nonintegral,
with m and n constants such that m, 2X(n- m) and (n + m) are nonnegative
integers"

7,,(1/2)(m_n)P’"’-m(cos O)P’"(cos )

(35) {sin (vt)/rt} (- 1)qTq. i/2(m_,)Pq-"’-m(cos O)
q= 1/2(m+n)

Pqm’"(cos ){1/(v q)- 1/(v + q + 1)}, -r < O+ < re.

The Jacobi function P(y’a), the generalization of the Jacobi polynomial,
satisfies the differential equation 1, 10.8(14)]

(1 -x2)y’+(fl-a-(a+fl+2)x)y’+ v(v+a+fl+ 1)y=0.
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It can be shown that [2, (4)]

""(x) 2-"(1 -k- X)(1/2)n(1 X)(1/2)mr(v + 1/2[m + n] + 1) ia(m,n)Pv F(v 1/2[m n] + 1) -v-(1/2)t"+n](x)’

whence (35) may be shown to reduce to

F(v 1/2[m + n] + 1)F(v + 1/2[m + n] + 1)r,,,,")
F(v- 1/2In m] + 1)F(v + 1/2In- m] + 1)-- 1/2t"+"1’’--1/2t"+,l(Y)

{sin (vrt)/rt} Z (-1)q

(36)
q=l/Z("+n)

F(q 1/2[m + n] + 1)F(q + 1/2[m + n] + 1)19(n,")
"F(q 1/2In m] + 1)F(q + 1/2In m] + 1)-"-1/2["+n](X)
19(" ,n)
_q_ 1/2l"+,,l(y){1/(v q)- 1/(v + q + 1)},

with m, (n m) nonnegative integers, which is a D-type identity for the Jacobi
function.

For the Jacobi polynomial P,’a) [1, 10.8(5)]

r, n(- fl)/(2n + + fl).

Thus r, is a constant if e _+ fl, and for these two cases an S-type identity exists
assuming that the uniform convergence condition (30) holds and that P,m’+m)(O)
has the required form. However, we need not check this explicitly because we can
show that

(x) 2"(1 X2) (1/2)" I-’(V + 1)(- 1)"
Pray(X)

F(v + m + 1)

and

I1 + xl(1/2)"I-’(v- m + 1)(--1)"
(37) P(vm’-(x) T--5xl r(v + 1)

P’(x).

Uniform convergence of (36) then follows in both cases from uniform con-
vergence of (34).

Consider first the case e + fl m. From (37) we see that

(" m) 22"7Z 1/2P. :(0) (--
F(n + 1)F(1/2 + 1/2n + 1/2m)

F(n + m + 1)F(1 + 1/2n 1/2m)
cos {n + m)rt}.

Theorem 3 is satisfied; the constants Sl,, are found to be

+ m even" St,, FZ(n + m + 1)
FZ(n + 1)

+ m odd: S ’))n,m 2-2mp(m’m)H’YD’(m’m)IfY-" ,,l,tl ,,!

F2(n + m + 1)
F2(n + 1)

The coefficients for the S-type identity for P(nm’-")(x) can be found similarly.
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REMARKS ON A PAPER OF A. ERDILYI*
N. M. TEMMEt

Abstract. An alternative asymptotic expansion is given for an integral, which was recently con-
sidered by Erd61yi by means of fractional derivatives. The new expansion is simpler and the bounds of
the remainder terms are of the same kind.

1. Introduction. In a recent paper [3], Professor Erd61yi considered integrals
of the form

(1.1) F(z, a) e-Z"-a)ta- g(t) dt,

where a __> 0, 0 < 2 < 1, and z is a large parameter. In order to obtain an asymp-
totic expansion for z --, , uniformly valid for a => 0, he replaced the function
a- lg(t) by a fractional integral I- f(t), the operator 1" being defined by

1Iy(t) (t s) xf(s) ds.

By an integration by parts procedure, Erd61yi obtained the uniform expansion

(1.2)
n-1 n-1

F(z, a)= Q r(k + 2)g*(O)z-/k! + y z-IZf()(a) + R,,
k=O k=l

where Q is related to the incomplete gamma function and is given by

(1.3) Q z- e"ZF(2, az)/F(2).

The remainder R, is estimated uniformly in a for a _>_ 0. The expression Iaftk)(a)
is explicitly given in terms of derivatives of the function g(t) at 0 and a as

(1.4)

aa-m [ r(k)F(m- 2) (_Iaf’)(a)
(k m)

(- 1)m-
m=l F(m)F(1 -g m)(a)

F(k + 2- m) ,.(k_ m)(o)7
F(2- m + iis J k= 1,2,...

As remarked by Erd61yi, the expansion (1.2) could.have been obtained via in-
tegration by parts of (1.1), but the explicit form (1.4) in (1.2) is not easily obtained
in that way.

In this note we give an alternative expansion of F(z, a), which is simpler than
(1.2), and in which the bounds of the remainder terms are of the same kind. Both
expansions may be derived from each other by formal rearrangement of infinite
series.

* Received by the editors December 30, 1974, and in revised form May 7, 1975.
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2. From a numerical point of view, (1.2) is not attractive because of the
Iafk)(a) in the second series. Recurrence relations for these factors based on
(cf. [3, (2.3)])

d
izf(t) f(O)ta_14- ’f(t) -F + IZf’(t)

are not suitable for numerical evaluation of a sequence of IZfk)(a), k O, 1, ..., n.
Furthermore, the terms gk(0) in (1.2) are somewhat surprising. Of course,

the singularity at 0 due to z- gives a hint that this point may significantly
contribute to the asymptotic expansion, especially when a is small. But for moderate
and large values of a, we cannot expect relevant information from the function
values at 0.

In our opinion, the expansion (1.2) can be considerably simplified. Let us
suppose that g and its first n derivatives are continuous and bounded on [0, oo).
We write

n-1

g(t) ck(t- a) + rn(t), c gk)(a)/k !.
k=0

Then we have

n-1

(2.1) F(z, a) ckFk+ Rn
k=O

with

(2.2)

(2.3)

F e-Zt-ata- l(t a) dt,

R, e-Z(t-")ta- Ir,(t) dt.

The first few functions F are easily computed. It turns out that

(2.4) Fo F(2)Q, V (2z- a)Fo + aZz-,
where Q is essentially an incomplete gamma function and is defined in (1.3).
By partial integration of (2.2) we obtain

(2.5) Fk+, Z-l[(k -[- ,7[ az)V + akFk_,], k >= 1.

Hence, if Fo is computed, the remaining F can be generated by (2.5).
The functions F are confluent hypergeometric functions. In the notation of

[1 ], we have

(2.6)
Fk k!ak+ZU(k + 1,k + + 2, az)

k!z-k-zU(1 2, 2 k, az).

The second representation enables us to write for 0 < 2 < 1,

(2.7) Fk
k! Z -k-a [-’,o
F(1 Z -2-) ao

e-"tt-a(1 + t)-k-’ dt,
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from which follows, by majorizing the exponential function in the integrand
by 1,

(2.8) F <__ z-k-r(k + 2).
As follows from (2.2), this bound is also valid for 2 1.

If on [0, oe) an estimate is known for gtk), say [g(k)(t)[ =< ak, and a, 2 and z are
real, then R, in (2.3) may be majorized by JR,[ __< a,F,/n !. Using (2.8), we obtain
uniformly in a for a >= 0,

[R,[ =< a,z-"- 4F(n + 2)/n
Consequently, in the notation of I2], we have

F(z,a) CkF {z-k-4} aszoc.

This shows that (2.1) is an asymptotic expansion, holding uniformly in a for a _>_ 0,
with respect to the asymptotic sequence {z-"-4}, which does not depend on a.

From a practical point of view, the expansion in (2.1) is more suitable than
(1.2), since the coefficients Ck are simply expressed in terms of g(k)(a). Both ex-
pansions have the same bounds for the remainders. As a minor improvement,
our expansion is also uniformly valid with respect to 2 on compact subintervals
of (0, 1].

3. The numerical analyst may wonder if the sequence {Fk} can be generated
in a stable way by using (2.5). The answer is affirmative, as one easily deduces from
the qualitative behavior of the linearly independent solutions of the second order
difference equation (2.5). With

F(2)F(k+ llM(2 k+2+ -az)(3.1) Gk e-Zt(t a)kt4-1 dt a4+k( 1)kF(k + 2 +
the functions F,, G, constitute a linearly independent pair of solutions of (2.5),
as follows from the asymptotic behavior

(3.2) F, n!z-"-4(1 + a/n)4+ In4- n - oe unit’ormly in a > 0

and from the inequality,

(3.3) [G,[ _< a"+4F(2)F(n + 1)/F(n + 2 + 1), n 0, 1,....

Formula (3.2) is easily derived with saddle point techniques from (2.7), and (3.3)
follows from (3.1) by majorizing the exponential function by 1.

The relations (3.2) and (3.3) show that, in the sense of [4], the solution G,
is a minimal solution of (2.5) and F, a dominant solution.

4. The relation between Erd61yi’s expansion (1.2) and our expansion (2.1)
can be illustrated by writing

Fk PkFo + Qka4z-, k=O, 1,....

Pk and Qk are polynomials in z- satisfying (2.5) with initial values Po 1, Qo 0,
P 2z- a, Q1 1. By using the recurrence relation it can be proved that

(4.1) Pk z-k (--az)k-J
j=0

F(2 + j)/F(2), k 0, 1,...
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Hence, in a formal way, our expansion (2.1) can be written as

(4.2) F(z, a) Fo CkPk + aZz -1 ckQk.

With the substitution of (4.1) and using the (formal) expansion

j k’..j (t_a)k_gtg)(t) c,k(k )

at 0, we obtain, by interchanging the order of summation,

F(z, a) Q Z z-*r(k + 2)g(k)(o)/k + aZz-’ Z CkQk"

The first series in this expression is exactly the first series of Erd61yi in (1.2). The
second series is much more complicated, but probably it can be identified with the
corresponding series of Erd61yi.

Acknowledgment. The author wishes to thank the referees for some valuable
suggestions and criticism of the first version of the paper.
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SOME CLASSES OF WATSON TRANSFORMS AND
RELATED INTEGRAL EQUATIONS FOR

GENERALIZED FUNCTIONS*

B. L. J. BRAAKSMAf AND A. SCHUITMAN:

Abstract. Spaces of testing functions which are isomorphically mapped onto one another by the
Mellin and the inverse Mellin transform are used to prove that certain spaces are also mapped iso-

morphically onto one another by the so-called Watson transform. Then Watson transforms for
generalized functions are defined. Applications on Hankel transforms, fractional integrals and integral
equations of Love involving hypergeometric functions and of Fox involving H-functions are given.
Furthermore, dual integral equations for generalized functions with Hankel transforms and H-functions
are treated.

Introduction. In this paper we define Watson transforms and other convolution
transforms for generalized functions. To this end we introduce spaces of testing
functions which are mapped isomorphically onto each other by means of the
Mellin transform ( 1). Using the connection of Watson transforms and Mellin
transforms (cf. Titchmarsh [13]) we show that Watson transforms map these
function spaces continuously into function spaces of the same type ( 2). Then
these transforms are generalized to generalized functions in the dual spaces. Also
the inverses of these transforms are considered. In 3 the same analysis is done
on certain subspaces of the spaces of testing functions of 1. Examples including
Hankel transforms are given in 4.

Another type of product convolutions is treated in 5. In particular, operators
of fractional integration are considered including the so-called cut fractional
integrals. Using these fractional integrals we extend the definition of the Hankel
transform in 6. Here also the cut Hankel transform appears which is useful for
the inversion of Hankel transforms. Furthermore relations between Hanket trans-
forms and fractional integrals of generalized functions are given. In 7 and 8 we
give applications to dual integral equations for generalized functions involving
Hankel transforms and, more generally, transforms with H-functions of Fox
which contain many special integral transforms (cf. Fox [6]). Here we use a
method of Erd61yi and Sneddon [5]. We give precise conditions for the existence
of solutions of the dual integral equations, which were obtained formally by Fox.
In 9 we consider a special case of product convolutions involving hypergeometric
functions and related integral equations, which have been studied among others
by Love [1 la] and [1 lb]. Some of the results of Love are also extended for ordinary
functions.

Other applications to differential equations may be given analogous to those
in Zemanian’s study of generalized integral transformations [14]. Our approach
to Mellin and Hankel transforms is different from Fung Kang’s [7] and from
Zemanian’s approach. Fractional integrals for distributions have been studied
recently by Erd61yi and McBride [4] and Erd61yi [3]. Our treatment is similar to
theirs, though we do not assume that the testing functions have compact support.
Watson transforms for generalized functions have been considered also by
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Hsing-Yuan Hsu [8], starting from testing function spaces closely related to those
of Zemanian.

1. The spaces T(2, #) and S(2, p). Throughout this paper denotes the set
of the real numbers and [* U {- , }. C is the set of complex numbers.
N {0,1,2,... }.

Let 2,/ *, 2 </t. Let (2,)=o and (/,)=o be sequences of real numbers
with 2, 2,/, T/ and 2, </, for all n N. T(2,/) is the space of all functions
b C (0, ) with the property

(1.1) r,(q) sup It +pqblp(t)l < oo for all n .
t>o

p= O,1,...,n
2n =< c-<t,,

T(2,/) is a locally convex vector space with the topology generated by the sequence
of norms 0",d. Related spaces have been considered by Zemanian [14, 4.2].

Let 2,/, 2, and/, be as above. S(2,/) is the space of all functions O, analytic
on 2 < Re s </, with the property

(1.2) r,((I)) sup Is(s)l < for all n .
.n < Re lt
p 0,1,...,n

With the topology generated by the sequence of norms (a,), S(2,/) is a locally
convex vector space.

The topologies of T(2,/) and S(2,/) are independent of the particular choice
of the sequences (2,) and (/.). Using standard arguments it may be shown that
both spaces are Fr6chet spaces. In the following, isomorphisms and automor-
phisms between spaces are interpreted as linear continuous mappings onto with
continuous inverses.

If b is some function, we denote its Mellin transform by

(1.3) (/{4))(s) dp(t) dt.

If is some function we denote its inverse Mellin transform by

c+i(-o)(t) O(s)t ds.

We prove the following theorem.
THEOREM 1. The Mellin transform l defines an isomorphism of T(2,/t) onto

S(2, ). The adjoint Mellin transform ////’ defines, an isomorphism of S’(2, ) onto

T’(2,
Proof If b 7"(2,/) and 2 < Re s </, p , then

(’4,)(s) O(s) t’- 4(t) dt
(--l)p t+-XcP)(t)dt
(s),

by virtue of (1.1). (Notation" (S)o 1, (s)p (s + p 1)(s)p_ 1, P >= 1). Note that

o t’+P-ckP)(t) dt has a zero in s -h, he if 2 < -h </. It follows that
e S(2, ).
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IfOS(2, p), 2 < c < p, > 0 and p , then

fc+io O(s)t ds,(- ’0)(0 dp(t) i. c-,o

1)P (c + io

l t-s- P(S)pO(S) ds,
2rci io

where the integrals are absolutely convergent. It follows that 4) T(2,/). From
the well-known inversion theorem for Mellin transforms it follows that //o //-
and //- /are the identity maps on S(2,/) and T(2,/t). It remains to prove the
continuity.

We may assume that the sequences (2,) and (/t,) are chosen in such a way
that 2,, t. - 0, 1, -2, .... Consider the strip 2, _<_ Re s _< ,. For each integer
h =< 0 with 2, < h < kt,, let Dh be the interior of a disc with center h and which
lies entirely in the strip. We omit all the sets Dh from the strip and denote the
remaining "reduced" strip by S. Let b T(2,/) and b. Then

a.(O) sup IsPO(s)I sup +p- a(p)(t) dt
O<_p<=n O<=p<=n

An -< Re <= t. sS

Now

and with

we have

.(0) =< Ko

Ko sup Is’/(s),l <
0<p<n

e- min {2. .+ 1’ /n+ /n), c= Res,

sup itc+ -dptp)(t)lt- +e dt
O<=p<=n
2._<c_<,u.

+ It+P+d((t)lt - cl < + (d).

This proves the continuity of
Let S(2, St) and let b /- 10. Then

r.(b)-- sup Itc+PbtP)(t)l
O<_p<_n
2. _-< _-< u.

sup
t,c,p

tc+P c+i (S)pO(S)t- p ds-- c-ic

fc-i fc+i)/ Is+ 20(s)
c-i c+i

O((s), s)t ds

=< Ka,+ 2(0),
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where K depends only on n. Thus .////- is continuous. The second assertion of the
theorem follows at once.

2. Watson transforms on T(2, ). in this section we will consider a Watson
transformation between two spaces of type T(2, #). Formally such a transforma-
tion is described by a pair of reciprocal formulas

@(x) k(xt)dp(t) dt, dp(x) h(xt)t(t) dt.

By applying the Mellin transform to these formulas we may formally show that
the Mellin transforms K(s) and H(s) of k(t) and h(t) satisfy K(s)H(1 -s)- 1,
(cf. Titchmarsh [13]). We prove two theorems on these transforms in spaces
T(2, #).

THEOREM 2. Let , la *, 2 < #. Let K(s) be an analytic function on 2 <
Re s < # such that K(c + it)6 L(-o, o) for some c with < c < #. Assume
moreover that for every pair (a, b) such that 2 < a <= b < la there exists a real
number such that

K(s) O(s) as s - o, uniformly on a <= Re s =< b.(2.1)

Let

fc+ic K(s)t ds, > O.(2.2) k(t)

Then the map A’T(1 p, 2) T(2, #), defined by

(2.3) (x) (A)(x) k(xt)dp(t) dt

is linear and continuous. The adjoint operator A’ is continuous from-T’(2, #) into

T’(1 p, 2).
Proof The integral in (2.2) is absolutely convergent, hence k(t) exists for > 0.

It follows from the definition that if t 6 T(1 #, 2), then t-c(t) L(O, ).
Then the reversion of the order of integration in the following computation is
allowed:

(2.4)
(x) (Adp)(x) dtdp(t) K(s)x-t ds,

c+i K(s)O(1 s)x ds,

where =/. Since eS(1-#,1-2), we have (1-s) eS(2, p). More-
over, from (2.1) we obtain

sqK(s)(1- s) O(sq + -p) assoo,ona=<Res=<bifp, q6N,

and we see that K(s)(1 s)e S(2, p). Define the map
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by

(w,)(s)- K(s),( s).

It is clear that ffd is linear and continuous. Now (2.4) reads as

(2.5)

and the desired properties of A follow from the corresponding ones of the factors.
If we impose further conditions on K(s) in Theorem 2, then the map A is

even an isomorphism. From Fig. it is seen that we have to choose K(s) in such
a way that X" is an isomorphism. The following theorem gives the precise condi-
tions.

r(L) r(1 , 2)
A

FIG. 1.

THEOREM 3. Let 2,/z and K(s) be as in Theorem 2 and let K(s) have no zeros in
2 < Re s < #. Define H(s)= K-1(1 s), 1 # < Re s < 1 2. Assume H(cl +
it)6 L(-, ) for some c with # < c < 2. Moreover, assume that to

every pair (a,b), -/ < ax =< bl < 2, there exists a constant 7 such that

(2.6) H(s) O(s1) as s , uniformly on ax <= Re s =< b x.

Then the map A in Theorem 2 is an isomorphism on T(1 #, 2) onto T(2,/)
and the inverse B of A is given by

(2.7) b(x) (B)(x) f:
where

(2.8)

h(xt)$(t) dt, 6 T(2,

[, c + ioo

I H(s)t ds.h(t)
J,c,-ioo

The adjoint operator A’ is an isomorphism from T’(2, #) onto T’(1 -/z, 2) with
(A’) -1 B’.

Proof Define the map " S(2, #) S(1 #, 2) by

(tq)(s) H(s)q(1 s),

It is easy to see that is the continuous inverse of . If B is defined by (2.7),
then

(2.9) B ///- )f ///.
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This may be proved in the same way as (2.5). Combining (2.5) and (2.9) we see
that A and B are inverses of one another.

Remark 1. The conditions K(c + it) L(- , ) and H(cl + it) L(- , )
in Theorems 2 and 3 may be omitted provided (2.2), (2.3), (2.7) and (2.8) are
modified as follows.

From the assumptions on K(s) we deduce that there are numbers d ,
e > 0 and a positive integer n such that

K(s)=O(s"--) assonRes=d, 2<d</2, d- 1,2,...

Then define

1 fa+ioo K(s)
k,(t)

.,a-,oo (1
t ds

and

(2.10)

Now

(Ack)(x) k,(xt)dp(t)t-" dr, ifOeT(1 -/2,1 -2).

d" f fa + ioo K(S)s).(xt)._ dsA4)x) d 4)- "--, 1

f, ds(1 f2d" d+ioo K(s) x"-
2rridx" d-ioo S). ck(t)t-Sdt

d" fd+ioo K(s)2rri dx"oa-ioo (1s)
(’q)(1 S)X ds

fd+ioo K(s)(//b)(1 s)x as.
2rci .,a-

Similarly, h(t) and B are defined. Fig. remains valid.

,t/.

3. Watson transforms on the subspaces T,, and S,,. In this section we shall
take 2 C and/2 [*, Re 2 </2. We want to define subspaces of T(Re 2,/2) and
S(Re 2,/2) which are mapped onto one another by the maps A and B of 2. The
motivation will become clear in the next section.

Let m be a positive number and Re 2 </2. Then Tm(2,/2) is the linear space of
functions T(Re 2,/2) such that

dp(t) t-z(tm), > 0, e C[0,

We choose a topology on Tm(2,/2) which is finer than the induced topology of
T(Re 2,/2). If/2, tends monotonically to/2 from below we define

?n(b) sup (1 "+" t(tl"-ReZ)/m)+P)l(P)(t)l
t>O

p= 0,1,...,n

and we take the topology generated by the norms, n e N on Tm(2,/0. Then Tm(2,
is a Fr6chet space.
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Furthermore Sm(2, #) is the linear space of elements S(Re 2,/) such that
(i) (s) is analytic if Re s < except for at most simple poles in the points
s= 2- mj, j e [.

(ii) O(s) O(s -p) as s uniformly on any strip a Re s b < for any
p.

We choose on S(2, ) the topology generated by the norms #,, n , where

O,() sup [O(s)l Is- 2 + mjl,
seG. 0

G, {seC’Re2 mn + m Res p}.

It is very easy to prove that S(, ) is a Fr6chet space.
TORM 4. The Mellin transform is an isomorphism from Tin(2, p) onto

Sm(2, P). Its adjoint ’ is an isomorphismpore S(2, ) onto T(2, ).
Proof If T(2, p), Re 2 < Re s < p and p e N, then

(-) f .-/+-().
The last integral is analytic in s if Re 2- mp< Re s < g. Hence e S(2, )
and it easily follows that is continuous.

If e S(2, ), 4 -, Re 2 < c < , then

Consequently,

,c+io t(S)t(-s)lm ds,(t) -i c-ioo

t>O.

<I>(s)(t’)(t) --/,, ioo rn

p! Res
A-mp

...(2-Sm

m
p+l ((A-s)lm)-p ds

@(s) + ni c,-i m

p + (tz-s)lm)-pds,

where Ress=,_mp denotes "residue at s 2- mp of"; if Re 2- m(p + 1) <
ca < Re 2- mp, t> O. Therefore Cp [0, ). Further it is easily seen that
b 7,(2,/) and that //-1 is continuous.

We now follow the method of 2 to derive some further theorems.
THEOREM 5. Let 2 e C, # E*, Re 2 </ and m be a positive number. Assume

that K(s) is analytic for Re s </ except for simple poles at s 2- jm, j .
Assume moreover that for each pair (a, b), a <= b < #, there exists a constant y such
that (2.1) holds. Let K(c + it) L(-, )for some c with Re 2 < c </. Then the
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map A of Theorem 2 maps T(1- #, oo) linearly and continuously into T,(2,
The adjoint map A’ is a continuous operator on T,(2,/) into T’(1 -/,

Proof. The map : used in the proof of Theorem 2 is a continuous map on
S(1 , oe) into S,(2, #).

In the same way we have the following.
TrmOREM 6. Let 2, In and m be as in Theorem 5. Assume H(s) is analytic for

Res > -/ and H(s) 0 if s 2 + jm, j O, 1,2,.... Assume that for
each pair (a, b) such that # < a <__ bl there exists a constant such that
(2.6) holds. Moreover let H(cx + it)e L(-oe, oo) for some c with p < c <

Re 2. Then the map B defined by (2.7) maps Tin(2,/) linearly and continuously
into T(1 p, c) and B’ is a continuous operator on T’(1 It, c) into T(2, p).

IfH(s)K(1 s) and Re s > #, then A is an isomorphism ofT(1 p, oe)
onto Tin(2, It) with inverse B.

Remark 2. Here also we may omit the conditions K(c + it) L(-oe, oe) and
H(c + it)e L(-oe, oe)as in Remark of 2.

4. Examples.
Example 1. Let m be a positive number, 2 e C, 20, # e JR, Re 2 _< 20 </ =<
Re 2 and let K x(s) be analytic on Re s </ and on Re s > -/, whereas

Kx(s) Ki-(1 s). Assume that (2.1) holds for K(s) on any set 2’ =< Re s _<

/’</andanyset 1-/< 1-/’_<Res=< 1-2’.Assume

(4.1) Kl(c + it) O(t -((2c-1)/m)-l-) as oo

for some c with 20 < c </t and for some c with -/t < c < 20, and some
e > 0. Define

F((s 2)/m)
K(s) K(s).F((1 2- s)/m)

Then K(s) K- (1 s) and Theorems 2 and 6 imply that A is a homeomorphism
from T(1 -/, 20)onto T(2o, g)and from T(1 -/, oe)onto T,(2, g), whereas
A A-1. Condition (4.1) may be omitted if A is interpreted as in Remark 1.

Example 2. A special case of Example 2 is the following. Let Kx(s) 2s-(/2)

and

F((v + 1/2 + )/2)2s_(1/2)K(s)
r((v + s)/2)

Now K(s)= K-(1- s), K(s)= O(1), K(s)= O(srt-(/z)) as s---, oe on any
strip a =< Res =< b, m 2, c < 1/2 and

k(t)

(cf. [13, p. 214]). Suppose Re v > and choose 2 and t such that -Re v 1/2 =<
2 </ __< Re v + -32 If Re v > 0, 2 < -1/2, -32 < # we may choose c and Cl such that
-Rev-1/2<c < -1/2, c</, -t<cx < -1/2, c < -2. Then K(c+it),
K(cl +it)L(-,). Hence, if Rev>0, -Rev-1/2=<2< -1/2, 23-</t<-
Re v + 23-, the Hankel transform Hv defined by

(4.2) (H/p)(x) (xt)/2j(xt)ck(t) dt
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is a homeomorphism of T(1 #, 1 2) onto T(2, #) and of T(1 #, oe) onto
T2(- v 1/2,/). Furthermore H, H;- 1.

We may weaken these conditions by extending the definition of the Hankel
transform as in Remark (see for a modification of this extension 6). Then we
see that the extended Hankel transform is a continuous operator from T(1 #,

2) into T(2,/0, if Re v 1/2 =< 2 </. However, if

(4.3) -Rev-1/2=<2< 1, 2<,

then the extended transform and the transform given by (4.2) coincide, since the
differentiations in (2.10) may be performed under the integral sign. This follows
from the asymptotic behavior of the Bessel function near the origin and oe. It is
now easy to prove the following result for T(1 -/, 1- 2) and some of its
subspaces.

THEOREM 7. The Hankel transformH defined by (4.2) is a continuous operator of
(i) T(1 t, 2)into T(2,/) if(4.3) holds;
(ii) T(1 -/, )into T2(-v 1/2, )if- Re v 1/2 < t;

(iii) Tz(-V-1/2-2h, la) into T(1-/,)if-Rev-1/2-2h<#<Rev+

(iv) Tz( v 1/2 2h, oc into itself ifRe v > h 1, h e N.
In the cases (iii) and (iv) with h 0 it is an involutory isomorphism. It is also an
involutory isomorphism of T(1 #, 2) if

-Rev-1/2=<2</=< Rev+-}, 2<1, />0.

In all these cases,

(4.4) //Hdp(s)
r(1/2v + 1/4 + 1/2s)
F(1/2v + 1/4- 1/2s) /2)(///b)(1 s).

Remark 3. Let K(s) be as in Example with Kl(s an entire function, Kl(s)
Ki-1(1 s), Kl(s) O(s), s ---, c on any set a =< Re s =< b, where 7 depends on
a and b. Assume (4.1) holds for some c with Re 2 < c and for some c with c <

Re 2, (Re 2 < -}). Then A A- is an automorphism on T,,(2, oe).
Example 3. Let m,n,p,qN, n <= p, m <= q. Let a, otCp, b, licq; a > O,

j 1,..., p; bj > O,j 1,..., q. Suppose

(4.5)
Re aj Re flh< c < j= 1,...,n; h= 1,...,m.

aj b

Suppose

q p

(4.6) aj- 2 bj> Z aj-Z bj
j=l j=m+l j=n+l j=l

or the following two conditions are satisfied"

p

(4.7) aj- bj= aj-2 b
j=l j=m+l j=n+l j=l
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and

(4.8) c a- b < -1 +
q- p+ReeJ-2Re.

j= j= 2

Then we define according to Fox [6]"

a, ot f,c+i I-IF(1-j+ajs)I-mF(flj-bjs)x
(4.9) H,m,’ x

b, c-, fl F(- as)
if x > 0. This integral is easily seen to be absolutely convergent.

Suppose

(4.10) Re- 2<#Reflh j= n"
a bh

Then the map A defined by

(4.11) (A)(x) Hp xt (t) dt

is a continuous linear map of T(1 , 2) into T(2, ).
A is an isomorphism of T(1 , 2) into T(2, ) with

where

ds

h= 1,.-.,m.

a an+l, ap, al, a
(4.13)

fi (bm/l, bq, bl, bm),

(1 + an+ n+,’’’, + a, %,, + a ,..., 1 + a ),
(4.14)

(1 + bin+ tim+,,’", + b- fl, + b, fl, ..., +bm- tim)

if the following conditions are satisfied"
(i) (4.7), (4.8) and (4.10);

Re(a/a), j n + 1,..., p,
(4.15) (ii)

Re((fl- 1)/b)2, j=m+ 1,...,q;

(iii) there exists a real number cl such that -/ < cx < 1 2 and

2

Proceeding as in Remark 1, ff 2, we may extend the definition of A and A- in
cases where (4.8) and (4.16) are not satisfied (cf. also 8).

Since the G-function and many other special functions are special cases of
the H-function, many integral transforms are contained in this example. Especially
the Hankel transform of Example 2 may be considered as a special case of Example
3.
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5. Other product convolutions; fractional integrals. The Watson transforms
of 2 and 3 have the so-called "product-kernel" k(xt). Another integral transform
arises if we replace k(xt) by k(x/t)and (t) by (1/t)(1/t). Both integral transforms
are called product convolutions. Since

t’

the new integral transform is a Watson transform applied to(1/04)(1/t). If 4) T(2, #),
then (1/t)(1/t) T(1 -/z, 2)and conversely. Hence we have the following.

THEOREM 8. If k(x) satisfies the assumptions of Theorem 2, then the map A
of T(2, p) defined by

(5.1) axc(x) k (t) T(2,#),

is linear and continuous into T(2, #).
Moreover, if K(s) does not have zeros in 2 < Re s < # and H(s)= K-l(s)

satisfies (2.6) uniformly on any strip 2 < al <- Re s _< b </ with some constant
depending on al and bl and if H(cl + it)e L(-co, co)for some cl with 2 < cx <
then A is an isomorphism of T(2, #) onto T(2, #) and

(5.2) (A - I(D)(X h (t

where h is defined by (2.8).
Remark 4. The maps A1 and A-I are given in Fig. 2;

Af

FIG. 2.

where (o,f tI))(s) K(s)O(s), (’O)(s) H(s)(s). The conditions on K(s) and H(s)
may be weakened as in Remark 1. If we define k. and hm as in Remark 1, then

k
x

(A - 4)(x) d- hm 4(t)t"- dt,

where 4 e T(2, #). It is easy to formulate and to prove the analogues of Theorems
5 and 6 for the transform A 1.



782 B. L. J. BRAAKSMA AND A. SCHUITMAN

As an application of this type ofproduct convolution we consider the operators
of fractional integration, studied among others by Kober [9] and Erd61yi [3].

Let a, r/e C, Re a > 0, 2, #, m E, rn > 0, 2 </ and m(Re r/ + 1) > 2. Then

rn -m(= + .) fl t=. lc(t) dt]m’a(X) -X (X tm)=-I +m

F()
ok(t)

if we choose q5 e T(2, #), x > 0. So we have the special case of Theorem 8 with

and

m
)a m(a +k(t) (-(t 1 t- if t> 1, k(t)=O if0<t< 1,

(5.4)

Here K(s) O(s -) as s uniformly on any strip a =< Re s _< b. Hence, I’ is
an automorphism of T(2, #) if Re a > and

2<#=<m(1 +Rer/).

In order to relax the conditions on r/ we use the extension of fractional
integrals considered by Erd61yi [1]. If Re > 1, b T(2, #), h N and

(5.5) m(Rer/+ h)__<2<#__<m(1 + Rer/+ h), h 0,

we define

rn m(a + rl) tm}I m’,h C/)(X ---X Xm- .,
j=O

(__ x-mlm)Jxm(a- 1) }
tm(l+.)-Idp(t)d f; hi

j=O

(__X-mtm)Jxm(-1)/m1 +.)-O(t)dt].
It is easy to show that this so-called cut fractional integral operator is a product
convolution and that the Mellin transform ofthe kernel is given by (5.4). Moreover,
the operator I’. is continuous on T(2, #), h N, h 0. For convenience we shall
use the notation Ira, o for I"m’" and (5.5), (5.3) for (5.5), (5.3).

In order to avoid the condition on we may use Remark 4. However, an
adaption of the method in that remark is more useful. The starting point for this
extension is the relation

*m,h Im,h

which is valid on T(2, #) if Re > 1, n N and (5.5) is satisfied. For, if we apply
the left-hand side of (5.6) to b T(2, #), then we obtain

_,.(+., dl"(c+ F(l+rl-(s/m))
2zri

x q(s)(x,)+.+. (/m) ds,
c-ioo F(1 + o + rl + n- (s/m))
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where 2 < c < #, #b, and this expression is easily seen to be equal to Im,h(/).
However, the left-hand side of (5.6) defines a continuous operator on T(2, #) if
Re (a + n) > and (5.5)h holds. Therefore we use (5.6) as the definition of I’, on
T(2, ) if Re (a + n) > and (5.5) holds. If Re a > 0 and (5.5) holds, then (5.3)h
remains valid.

The operator I’, is continuous on T(2, ) and

(5.7) (I’O)(s) F 1 + q F 1 + + q ()(s),
m

if (5.5) is satisfied and T(2, ). From this it easily follows that

am,hi am,h

on T(2, ) if (5.5) holds and

2<m(1 +Req+Re) ifh =0,
.9)

m(Req +Re+hx)2<m(1 +Req+Re+h) ifh 0.
Then in particular,

"m,h In, identity operator,

and 1’, is a topological automorphism of T(2, ).
According to (5.6),

(5.11) Xmq, n .
We may use this last relation as the definition for arbitrary values of q. Indeed, it
is easily verified that the right-hand side of (5.11) represents a continuous operator
of T(2, ) into itself even if (5.5) is not satisfied.

Combining (5.8) and (5.11) we obtain an analogue of (5.6),

l,+nv-m(+) )nxm(++n)(5.6)’ ’, -m,,

From (5.7) we readily deduce that if n , then

and consequently, I2, is a continuous operator independent of h on T(2, ) if
hn,

(5.12)’ m(n + Re

Finally (5.7) implies

(5.13) ,h ,h

on T(2, ) if the operators I exist. The above results are collected in the following
theorem.
To 9. Let h, n e N, m > 0, , e e C, 2 < . Let the operator I2," be

d@ned by (5.11) on T(2, ). It is independent ofh. Let the operator I2. be defined by
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(5.3)h if Re > 0 and (5.5)h holds. Here I’,o I’ and (5.3), (5.5) denote (5.3),
(5.5). If n, h >= n, then condition (5.5)h may be replaced by (5.12)’ and then I’,h
is independent of h. If- n < Re _< 0, - N and (5.5) holds, then I’, is defined
by (5.6) on T(2, ). This definition does not depend on the choice of n.

In all these cases t operator I. is a continuous operator from 7"(2, p) into

itsel It satisfies (5.6), (5.6)’, (5.7), (5.8) and (5.13) on 7"(2, p) provided the operators
I involved exist. In particular, Ih is an automorphism on 7"(2, p) satisfying (5.10)

(5.5) and (5.9) hold.
A second operator of fractional integration studied a.o. by Kober [9] and

Erd61yi is given by

m
xm)- tin(1x" (t" " (t) dtK’(x)

r()
(5.14)

m { ()m}- ). dt(t)
F(a)

Here we choose T(2, ), Re a > 0, m Re + > 0. This is the special case of
Theorem 8 with

and

k(t) ()(1 t") t’" if0<t< 1, k(t)=O if t> 1,

+ +.

Now K(s) O(s-) as s uniformly on any strip a =< Re s =< b. Hence,
is an automorphism of T(2, #) if Re e > and

K",(x) x" (t (-

($.14)"

S0 ]-’-"- 4(t) dt (- t-’x’)t-"- 4(t) dt
j=0 j

where e T(2, ), Re e > 0, h e N and

(5.15) -m(Req + h) N 2 < N -m(Req + h 1), h 0.

Then K;I is a continuous operator on T(2, ). We use for convenience the
notation K,o for K’" and (5.14), (5.15) for (5.14), (5.15). In all cases we have

r(n + (slm))
(s)(5.16)

F( + q + (sire))
(4)

The analogue of (5.6) is

(517) gm(a+"+")( X-re(a+ q)q,a+n

(5.15) -m Rer/_<_ 2 </.

The extension to other values of r/is given by
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This relation will be used as the definition of Km’,’ if -n < Re =< 0. Then this
operator does not depend on n, it is continuous on T(2,/) and (5.16) remains true
if (5.15)h holds.

Using (5.14)h, (5.16) and (5.17) it is easily seen that K’, also defines a con-
tinuous operator from Tm(-m(cz + r/+ hi),/) into Tm(-m(r/+ h),#)if hl,h N
and

-mRer/<g in caseh=0,

(5.18) -m(Rer/+ h) </ =< -m(Rer/+ h 1) in case h > 0,

-m Re(0 + r/+ h)< #.

Analogous to (5.8) we have

(5.19) m,h m,h

(5.19)’ axl,h

on T(2,/) if (5.15)h holds and

-mRe(cz+r/)=<2</t in caseht =0,
(5.20)

-mRe(+r/+h)=<2<#_<_-mRe(+r/+h-l) in caseh>0,

whereas (5.19) holds on Tin(-m( +/ + r/+ h2) ,/t) if (5.18) holds and

/ =< -m Re( + r/+ h 1) if h > 0 and -m Re(0 -4- fl + r/+ h2) </.

(5.21)

The operator K’, is an automorphism on T(2, V) in the first case and it is an
isomorphism between T,,(-m( + r/+ ha), #)and T,,(-m(q + h), t)in the second
case (with h2 h).

The analogue of (5.11) is

xm("- " n h N

This relation may be used as the definition of K on T(2,/0 if(5.15) is not satisfied.
The analogue of (5.12) shows that K"..’," is a continuous operator on T(2, t) inde-
pendent of h if h __> n and

(5.23)

Then

(5.24) Km’,, 1)"I

In the same way we obtain

(5.25) I’,’ (- 1)"K,"-

on T(2, ) if (5.12)’ is satisfied and h _> n.
We deduce from (5.16),

(5.26) K""x

if the operators K exist.

2 </ =< -m(Re r/+ n- 1).
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Combining (5.19) and (5.22) we get the analogue of (5.i7)"

(5.17)’ Km’,h aXm, X -m(t+ rl).

Combining the results above we obtain the following theorem.
THEOREM 10. Let n, h N, m > O, , r C, 2 < #. Let the operator Km’,-" be

defined independently of h by (5.22) on T(2, #). Let K’,h be defined on T(2, #) by
(5.14) and (5.17) respectively if (5.15)h holds and moreover Re > 0 and -n <

n, Knm, and (5.15) denotes (5.15) If n, h > nRe < 0 respectively. Here Km,o
the condition (5.15) may be replaced by (5.23).

In these cases Knm’,h is a continuous operator on T(2, #). It is also a continuous
operator from Tm(-m( + r + h), #)into Tm(-m(r/ + h),p)defined by (5.14) and
(5.17), ifh and (5.18) holds.

This operator satisfies (5.16), (5.17), (5.17)’, (5.19) and (5.26) in all cases where
the expressions involved make sense according to the definitions above. In particular,
(5.19)holds on T(2,#)if(5.15)hand(5.20)are satisfied, and on Tm(-m( + fl + r + h2),#)
if(5.18) and (5.21) are satisfied. In thefirst case Knm’,h iS an automorphism on T(2, #),
in the second case(with h2 h) it is an isomorphism between Tm(-m( + r + h), #)
and Tin(-re(r + h), p).

We now define subspaces of T(2, #) which have useful properties for operators
of fractional integration.

DEFINITION. Let a be a positive number. Then T([0, a], 2) is the subspace of
T(2, c) of functions with support contained in [0, a]. In the same way Tm([0, a], 2)
is the subspace of T,,(2, c) consisting of functions with support contained in [0, a].
Finally, T([a, ), p) is the subspace of T(-, p) consisting of functions with
support contained in [a, ). It is clear that in this way really closed subspaces are
defined.

From the definitions of I and K it follows that
(i) I"m’ is a continuous operator from T([a, ), #) into itself if

(5.27) # =< m(1 + Re q)

and it is an automorphism if moreover

(5.28) pm(1 +Rez+Rer/);

(ii) K"m’ is a continuous operator from T([0, a], 2) into itself if

(5.29) 2 >= m Re r/

and it is an automorphism if moreover

(5.30) 2 __> m Re ( + r/);

(iii) K’ is an isomorphism from Tm([0, a], -m0 mr/) onto Tm([0, a], -mr/).
The translation of the results above to the dual operators is easy. A simplification
of the notation may be obtained as follows. Suppose T(2o, Po) c T’(1 #, 2).
This is the case iff 2o < p, 2 < #o. Supposef T(2o,/o), b 6 T(1 t, 2) and
(5.5) is satisfied, and (5.5) also holds with 2 and # replaced by 2o and to Then

(5.31) c(x)I’,f(x) dx f(x)K"m,’(x) dx, r/o r + m
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Hence(K,),) I,h on any space T(2o, #o) c T’(1 #, 1 2) and therefore we
use this relation as a notation on T’(1 #, 1 2) if (5.5) is satisfied. In the same
way (5.31) motivates the notation ,-m,httn"’! Km,hrt,a on T’(1 #, 1- 2) if ql

r/ + (l/m) and (5.15)h is satisfied.
THEOREM 11. Let n, h, h , m, a R +, 2 < #, , r C, r r + (l/m).

Then the adjoint operator of I""’m,h, tO be denoted by K’Th, is a continuous operator
on T’(1 #, 1 2) in the following cases"

(i) a -n; (ii) n, h >= n and (5.23) holds; (iii) (5.15)h holds. The operator Knm’
is a continuous operator on T’([a, co), 1 2) if(5.29) holds.

Furthermore, the relations (5.17), (5.17)’, (5.19), (5.19)’, (5.22), (5.24)-(5.26) hold
in all cases where the operators involved make sense according to the definitions
above. In particular, (5.19) and (5.19)’ hold onT’(1 #, 2)/f(5.15)h and (5.20)
are satisfied. In this case Kin.h is an automorphism. Finally, K, is an automorphism
on T’([a, co), 1 2) if (5.29) and (5.30) are satisfied.

THEOREM 12. Let n, h, h , m, a +, 2 < #, , r C, r/x r + (l/m).
Then the adjoint operator ofK’ to be denoted by I’,h iS continuous on T’(1 #,’J m,h

2) in the following cases"

(i) -n; (ii) n, h >= n and (5.13) holds; (iii) (5.5) holds. It is a continuous
operator from T,(1 m(r/+ h + 1),#)into T,(1 m( + r/+ h + 1),#)if(5.18)
with r replaced by r/ holds.

Furthermore, I’ is continuous from T’([0, a], 1 #) into itself if (5.27) holds
and an automorphism if moreover (5.28) holds. It is an isomorphism from T,([0, a],
1 mr m) onto T,([0, a], m mr/ m).

The operator I’,h satisfies (5.6), (5.6)’, (5.8), (5.10), (5.11) and (5.13) in all cases
where the operators involved exist according to the definitions above. In particular,
(5.8) holds on T’(1 #, 2) /f (5.5)h and (5.9) are satisfied. In this case, I,h is
an automorphism on T’(1- #,1- 2), whereas it is an isomorphism from
T,(1 re(r/+ h + 1),#) into T,(1 m( + r/+ h + 1),#) if (5.18) and (5.21)
with r replaced by r/ are satisfied.

6. Extension of the Hankel transform. The extension of the Hankel transform
H to arbitrary values of v has been treated in [10] and [14] by means of aiaxiliary
operators N and M. (For the definitions cf. 14, pp. 135 and 163]). Our approach
includes these methods as is easily seen from the behavior of the differential
operators N and M with respect to the Mellin transform.

For the extension of the definition of the Hankel transform we use the relation

(6.1) Id(1/2)v+(1/,)+(1/2)ot,-otX-oH 2"x "Hv + 2,h

This formula is valid on T(1 #, 2) if the following conditions are satisfied"
(4.3),

(6.2) -Rev-1/2=<2< + Re,

(6.3)
2<#_<-+Re(v+2) in caseh=0,

Re(v+2)+2h-1/2_<2<#=<Re(v+2)+2h+ in casehN,h0.

The proof is straightforward using Mellin transforms and Theorems 7 and 10.
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In particular, if n N we obtain with (5.22),

(6.4) .x/"//:(d-)"H (- 2)"x-"H + x -v-(1/2)

The right-hand side exists and is a continuous operator on
(i) T(1-#,l-2) if-Rev-1/2=<2<n+ 1;
(ii) T2(-v-1/2,#)if-Rev-2n-1/2</t=<Rev+;

(iii) T2(-v-1/2,)ifRev> -n- 1.
Therefore we define in these cases Hv by (4.2) and (6.4). By choosing n suitably we
thus obtain a continuous operator Hv"

(i) fromT(1-#,l-2) to T(2, #) if 2 >_ -Rev-1/2;
(ii) from T2(- v 1/2,/) to T(1 #, ) if # _< Re v + -;

(iii) from T2(- v 1/2, ) into itself for arbitrary values of v.
Then (6.1) holds"

(I) on T(1 #, 2) if 2 >= -Re v 1/2 and (6.3) is satisfied; if N, we
may omit (6.3) and then (6.1) reduces to (6.4) with n; if - N,
0 < - =< h, we may replace (6.3) by 2 >= Re v 1/2 and use (5.24);

(II) on T2(- v 1/2 2g,/) if g N,

(6.5) -Re v 2g 1/2 < # =< Re v + ,
-Re(v+2)-1/2<# if h=0,

-Re(v+2)-2h-1/2</t=< -Re(v+2)-2h+- ifh,h4:0;

if e [ we may omit (6.6), and now (6.1) reduces to (6.4) with n; if- 1, h >_ - > 0, then we may replace (6.6) by # =< - Re v, and
use (5.24).

(III) on T2(-v 1/2, )for arbitrary v and h 0.
Next we consider the cut Hankel transform (cf. [1]). Suppose p , p 4: 0,

;< -1/2,

(6.7)p -Rev-1/2-2p<_2<#=< -Rev+--2p.

If qb T(1 #, 2), we define

(6.8)

Now

H,p(x) (xt) 1/2 J(xt)-
j!F(v + j +

dp(t)dt.

fc+ioo F(1/2v + 1/4 + 1/2S)2s_(1/2)O(1H,.6(x) _._, r(v + - s) s)x-’ a,

if b,x > 0,2 < c < -1/2, c < #. So again,

I(1/2V + 1/4 + 1/2S)zs-(,/2)O(1(6.9) (/H,,pck)(s) F(1/2v + 1/4- 1/2s) s).

Analogous to (6.1) we have

(6.10) k"(1/2)v + (1/4) + (1/2)at, -atXHv,p 2atx-atHv+at,p, z,h
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if 2 < Re cz 1/2 and (6.7)" and (6.3) are satisfied. In particular,

xV+n+(1/2)(d)n(6.11) Hv,p (-2)"x-"Hv+,,p x --tl/2),

if 2 < n 1/2 and (6.7)v holds. By means of (6.11) with a suitable value of n e N we
may extend the definition of H,p on T(1 -/, 1 2) if (6.7)p holds. Then (6.10) is
valid if (6.3) and (6.7)v are satisfied, and also if - e N, h >= -z, 2 >= Re v 1/2.

Since H,o H we conclude that Hv, is a continuous operator from
T(1 p, 2) into T(2, p) if p e N and (6.7)p holds where (6.7) is given by

(6.7) -Re v 1/2 =< 2 < p.

It follows that H,q, q e N, is a continuous operator from T(2, p) into
T(1 -/, 1 2)if

2<#_<Rev+ in caseq=0,
(6.12)q Rev+2q-1/2=<2<p=<Rev+2q+- in caseq>0.

Using Mellin transforms, (6.9) and the Theorems 9 and 10 we may prove an
extension of Theorem 7.

THEOREM 7a. The Hankel transform H,p defined by (6.8) and (6.11) is a con-
tinuous operator from T(1 #, 2) into T(2, ) ifp N and (6.7)p holds. It is an
isomorphism between these spaces if moreover (6.12)q is satisfied for some q N.
Then

(6.13) (H,,)- H,q.
Furthermore, Hv is an involutory automorphism on T2(-v 1/2, c) for arbitrary v.

The following relations hold whenever the operators involved make sense"

(6.1), (6.10), (6.4), (6.11),

{6.14) H p 2=x-at(1/2)v-(1/4)+tl/2)=’-Hv+=,px*2,h

(6.15) H p
2-==tl/E)v+tl/4) (1/2

*2,p )=’=Hv+=,hX
(6.16) H v 2-=x’H t(1/E)v-(1/4)-(1/E)=’=X=+,h*2,p

In particular, (6.1) holds in the cases (I), (II), (III) mentioned above. Moreover,
(6.14) with p 0 holds in case (I). Formulas (6.10) and (6.14) hold on T(1 ,
1 2) (6.3) and (6.7)v are satisfied; , we may omit (6.3) (then we may use
(5.22) and (5.11)), and- , 0 < - h we may replace (6.3) by 2 Re v .
In the last case we may transform (6.10) and (6.14) by means of(5.24) and (5.25).

The relations (6.15) and (6.16) hold on T(1 , 1 2) if(6.7)v and

(6.17)
-Re(v+2cz)-1/2=<2</t in case h=O,

-Re(v+2)-2h-1/2_<2</_< -Re(v-2)-2h+
in case h , h v O.

Furthermore (6.15) with p h 0 is also valid on T2(-v 1/2,/) if
(6.18) -Rev 1/2 < # =< Rev + - + min(0, 2 Re ),

whereas it holds on T2(-v 1/2, c) for arbitrary v.
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Now we consider the adjoint operator (Hv,p)’. We may simplify the notation
in view of the Parseval relation

(6.19) (Hv,l,dP)(X)(x dx dp(x)(H,,)(x) dx,

which holds for example if b, T(1 -/, 2) and (6.7)p is satisfied (this may
be proved using Mellin transforms). Therefore we may denote (H,p)’ on T’(2, #)
by H,p.

From Theorems 7 and 7 we now deduce the following.
TI-mOREM 13. The Hankel transform H., is a continuous operatorfrom T’(2, #)

into T’(1 #, 2) if(6.7)p holds. The operator Hv is continuousfrom T’(1 #, c
into T’2(- v 1/2 2h, p) if
(6.20) -Re v 1/2- 2h </ _<_ Re v + , h N.

This operator is an involutory isomorphismfrom T’(1 #, c) onto T’2(- v 1/2, #)
if(6.18) holds, and an involutory automorphism on T’2(-v 1/2, ) for arbitrary v.
The operator H,p is an isomorphism from T’(2, #) onto T’(1 #, 1 2) satisfying
(6.13) if(6.7)p and (6.12)q are satisfied.

The relation (6.14) with p 0 holds in the following cases"

(i) on T’(2, #) if (6.7) and (6.3) are satisfied. If we may omit (6.3) and
use (5.11). If - , 0 < - <__ h, we may replace (6.3) by 2 _>_ Re v 1/2
and use (5.25).

(ii) on T’(1 #, c) if (6.5) with some g and (6.6) are satisfied. If
we may omit (6.6) and use (5.11). If - , 0 < - <= h, we may replace
(6.6) by # <= Re v and use (5.25).

(iii) on T’2(- v 1/2, )for arbitrary v and h O.
Furthermore, (6.1) is valid on T’(2, #) if 2 >__ -Re v- 1/2 and (6.3) holds. If

o we may omit (6.3) and then (6.1) reduces to (6.4). If - , 0 < - <_ h, we
may replace (6.3) by 2 >= Re v 1/2 and use (5.24). The relations (6.10) and (6.14) hold
on T’(2, #), if (6.3) and (6.7) are satisfied; if t , we may omit (6.3) (then we may
use(5.22)and(5.11));if- ,0 < - <_ h, wemayreplace(6.3)by2 >= Re v 2x-.
In the last case we may use (5.24) and (5.25). The relations (6.15) and (6.16) hold on
T’(2, #) if (6.7)’ and (6.17)h are satisfied. Finally, (6.16) with p h 0 is valid on
T’(1 p, )/f(6.20) holds, whereas it holds on T’z(-V 1/2, ) for arbitrary v.

7. A dual integral equation involving Hankel functions. Let
a > 0, 2 < #, p [ and

(7.1) gx T’([0, a], # Re cx), g2 T’([a, m), 2 Re c2).

Consider the following dual integral equation"

(7.2) H,xC’f g,, H,,xC2f g2,

where the left-hand sides have to be interpreted as elements of T’([0, a], 1 # Re
cl) and T’([a, ), 2 Re c2) respectively. This is a distributional analogue
of a dual integral equation considered by Titchmarsh [13], Erd61yi and Sneddon
[5] and others. Erd61yi and Sneddon use fractional integrals in the solution of
their equation. We extend their method to the solution of (7.2). Thus we obtain



WATSON TRANSFORMS 791

all solutions f T’(2, #) of (7.2) if the following conditions are satisfied" h N,

(7.3) -Re(v + ca)- 1/2 -<_ 2 < # =< Re(v ca) + -,
p -< Re (v c2) -- , if h 0,

(7"4)h Re(V-CE)+2h-1/2=<2</_<_Re(V-CE)+2h+- if h>0,

(7.5)p -Re(v+c2)-1/2_<2 if p=0,
-Re(v+c2)-2p-1/2=<2<#=< -Re(v+c2)-2p+- if p>0.

First we assume that a solution f of (7.2) exists. Let c ca c2). We apply
Theorem 13, formula (6.14) with v and replaced by v + and -c, h p 0.
Then we get

(7.6) 2-CxClt2a/2)v-a/4),CHvXClf Hv+cXa/2)tcl
The conditions (6.7) and (6.3) for formula (6.14) are satisfied because of (7.3).

Next we apply Theorem 13, formula (6.15) with v, , h and p replaced by v + c,
-c, p and 0. Then we obtain

(7.7) 2Cx-CKt2a/2),+ta/,,,)+c,-CHv,pxC2f Hv+cxtl/2)tc +c2f.
The conditions (6.7) and (6.17)p for formula (6.15) are satisfied because of (7.3)
and (7.5)p.

Now let

(7.8) F Hv+cxtl/2)tc+c2)f.
Then (7.2), (7.6) and (7.7) imply

(7.9)
F 2-CxClt2a/2)v-ta/4)’Cg in T’([0, a] / 1/2 Re (Cl + c2))

F 2x-Ktza/Z)v+a/4)+’-g2 in T’([a, c), 2 1/2 Re (ca + c2)),

where the right-hand sides exist as elements of these spaces because of Theorems
11 and 12. Hence we know F completely if we can determine F on @(1/2a, -a).
However, by (7.9) we know the restriction of F on @(1/2a, a) and on (a, -a). There-
fore we may write F as the generalized derivative of some order q of regular
distributions on these spaces. Consequently F may be extended to a continuous
linear functional Fo on the completions Ca of (1/2a, a) and C2 of (a, a) in
C[1/2a, -a]

Let tk (1/2a,-a) and (1/4a, 2a), Z(x)= 1 if 1/2a -< x =< -a. Then we may
write

+/-
(7.10) qb(x) ) dpJ)(a)(x a)Jjt(x) + dpa(x) + bz(X),

j=o

where qba 6 Ca, qb2 6 C2. Now (Fo, qba) and (Fo, 2) may be calculated using (7.9).
If 6 (a, a), then we define

(7.11) (Fo, ) (Fo, ) + (Fo, 2).

Now (F, ) (Fo, ) if (a, a) and vanishes in a neighborhood of a. So
F Fo 6 ’(a, a) is concentrated in a. Therefore F Fo is a linear combination
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of the delta-functional and a finite number of its derivatives concentrated in a.
Apart from these terms now F is uniquely determined on (1/2a, a), and conse-
quently as an element of T’(1 -/ 1/2 Re(c + c2), 2 1/2 Re(c + c2)) by
means of g and g2.

From Theorem 13 and (7.8) we now deduce

(7.12) f X -(1/2)(c’ +c’)H,+e,hF T’(2, #).

So if a solution of (7.2) exists in T’(2, #) it is given by (7.12). Conversely, it is easy
to check that the distributions f constructed above from gl and g2 by means of
(7.9) and (7.12) are solutions of (7.2). Extensions to other dual integral equations
as in [2] may be given in an analogous way.

8. Dual integral equations involving H-functions. Before considering such
integral equations we first extend the definition of the operator A of 4, Example 3.
In what follows we use the notation of that example and

(8.1) I(r/, , m) I’’, K(r/, , m) K’’.

Suppose (4.7) and (4.10) are satisfied. If n < j __< p,

(8.2) ,u <= Re
and (4.8), and (4.8) with ej replaced by are satisfied, then

(8.3) A .Y.K(j aj, o , af x) on r(1 -/t, 2),

where is defined by (4.11) with e replaced by . This may be shown using
Mellin transforms, (5.16) and (4.9).

If j ej s N, we may omit (8.2) and use (5.22). Choosing j sufficiently large,
the right-hand side of (8.3) exists on T(1 -/, 2) even if (4.8) does not hold.
Hence we may use (8.3) to define A in case only (4.7) and (4.10) are satisfied. It is
a continuous operator of T(1 #, 2) into T(2, #) satisfying (8.3) if (4.7) and
(4.10) are fulfilled.

In the same way we have

(8.4) A A*I(bh fl’, fl’ fib, b-1) on T(1 -/, 2),

if m < h _<_ q, A* denotes the operator A with flh replaced by fl’, (4.7), (4.10), (4.8)
and (4.8) with flh replaced by/3’ are satisfied and

(8.5) (Re fl’ 1)/b <= 2.

If flh fl’ e N we may omit (8.5) and use (5.11). If n p and (4.7) holds, then
m < q. If in this case (4.10) is fulfilled but (4.8) is not satisfied, we may use (8.4)
with a suitably chosen fl’ as definition of A. Hence A is defined as a continuous
operator of T(1 p, 2) into T(2, p) if (4.10) and either (4.6) or (4.7) hold. The
relations (8.3) and (8.4) are valid on r(1 #, 2) if (4.10) and either (4.6) or
(4.7) are satisfied and in case of (8.3) also (8.2), in case of (8.4) also (8.5).

In case (4.7), (4.10) and (4.15) are fulfilled, the inverse ofA exists as a continuous
operator from T(2, #) into T(1 #, 2) and it is given by (4.12) with (4.13) and
(4.14).
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Now we consider the adjoint A’ of A. It is a continuous operator from T’(2, #)
into T’(1- #, 1- 2) if (4.10) and either (4.6) or (4.7) hold. Using Parseval’s
formula we may show that

(8.6) (A4,

Therefore we denote A’ by A on T’(2,/). The dual relations of (8.3) and (8.4) are

(8.7) A I(j 1,

and

(8.8) A K(1 fl’, fl’ flh, b;1)A*
which hold on T’(2, #) and on T(1 #, 2) if either (4.6) or (4.7) holds, (4.10)
is satisfied, whereas in case of (8.7) we assume n < j =< p and (8.2) and in case of
(8.8) we assume m < h __< q and (8.5). Also (8.3) and (8.4) are valid on T’(2,/) with
corresponding conditions.

Let B be the operator which arises from A by replacing aj and flu by yj and
6h forj 1,..., p and h 1,..., q, where

(8.9) Re 7 _< 2 </ =< Re 6h
aj

, j= 1,...,n; h= 1,...,m.

Now we consider the dual integral equation,

(8.10) Af=gl inT’([0, a],l-/), Bf=g2 inT’([a,),l-2),

where a > 0 and g and g2 are given elements in these spaces and (4.7) holds.
Integral equations of this type for ordinary functions have been treated by Fox [6]
and Saxena [12]. We use here a construction of solutions which is analogous to
their formal solution.

Let C be the operator A with ej replaced by yj(j n + 1,..., p) and h
replaced by 6h (h 1,..., m). Define

P1 I(e 1, e, a 1) 1-[ I(6h 1, Bh h, b- )
j=n+l h=l

(8.)

j=l h=m+l

For the existence of these operators on T’(1- #, 1- 2) we assume (cf.
Theorems 11 and 12) besides (4.10) and (8.9) also

(8.12) Re 6h_<2<#__<Re--, h=m+ 1,...,q; j=n+ 1,...,p.
b aj

Then

(8.13) P1Af Cf PEBf.
From this, (8.10) and Theorems 11 and 12 it follows that

(8.14) Cf- Pig1 in T’([0, a], #), Cf- PEg2 in T’([a, c), ).
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As in 7 we may now determine F Cfin T’(1 #, ) from (8.14) apart from
a linear combination of the delta-functional with center a and a finite number of
its derivatives. From F we now obtain the solution fof (8.10) by means of

f= CoF,

where Co is the adjoint of the operator defined by

q, -, H,’-" xt , , (t) at

with and g given by (4.13) and

* (1 + an+ Yn+t, + ap yp, + a: ,..., + a,

* (1 + b+t +, ..., 1 + b ,1 + b: 6, ..., 1 + b
This solution exists if (4.7), (4.10), (8.9), (8.12) and

Reh.-l2<#Re--, h m + 1,..., q j n + 1,... p
b aj

are satisfied.

9. A eovoluon map involng a hyrgeometrie feon. Finally we consider
another special case of the product convolution (5.1), viz. a hypergeometric
integral transform considered among others by Love [11a] and [11b]. Let Re c > 1,

(9.1) -Rea2, -Reb2<.
Then if T(2, ), we define

F a,b’c;1 4(t)--.(9.2) (A)(x)
x

Now we have the special case of Theorem 8 where

k(x)=(1-x)-F a,b;c;1 if0<xN 1,

k(x)=O if x> 1.
The Mellin transform K(s) of k(x) is given by

F(a + s)F(b + s)
(9.4) K(s)

F(c + s)F(a + b + s)"
This may be shown using Euler’s integral for the hypergeometric function or
Barnes’ integral representation for this function and Barnes’ lemma.

The condition Re c > may be removed as in Remark 4. However, we may
also use a modification of the method in Remark 4. If Re c + n > 0, we define

F(c + n) dxx- F a, b’c + n’l 4(t)
dt

This is consistent with the first definition in (9.2) since (9.5) implies (A4)(s)
K(s)(4)(s). Hence A defines a continuous mapping of r(2, ) into itself if (9.1)
holds.
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(9.6)

From Theorem 10, formula (5.16), and (9.4) we deduce

A Kafc-aK’a on T(2, #).

This relation may also be proved directly using the definition (9.2) and Euler’s
integral for the hypergeometric function.

Now we consider the inverse of A, if it exists. First we assume

(9.7) -Rec=<2, Re (a + b) =< 2.

Then it follows from (9.6) and Theorem 10 that A is an automorphism on T(2,/)
with

(9.8) A- Kal+b,-aKcl,a-c.
From (9.4) and Theorem 8 we may also deduce that A is an automorphism, and
if moreover Re c < 1,

(9.9) A- qS(x) h b(t)

where

(9.10) h(x) ={/g_F(c + s)F(a + b + s)}F(a + s)F(b + s)
(x).

Using residue calculus we obtain

(9.11)
h(x)=O if x> 1,

h(x)--xC(1-x)--aF(-a,-b;-c;1-x) if0<x< 1.
r(-c)

Hence if (9.7) holds and Re c < 0, then the inverse B of A on T(2,/) is given by

x (t x)-C-aF -a(9.12) Bdp(x)
F(-c) -b;-c;1-)dp(t)dt.

If Re c < m, m N, we easily see using (9.10) that

(9.13) A -1 (-- 1] cdmxm-cBm on T(2 #),
dx

where B,, is defined by (9.12) with c replaced by c m and B by Bm.
Now we consider cases where (9.7) need not be fulfilled. Then we suppose

that 2 and # satisfy the following condition with p and q N"

-p Rec _< 2 </_<_ p Rec,
(9.14)

-q-Re(a+b)_<2</<_ 1-q-Re(a+b).

If p 0 or q 0 we may omit the expression "N 1-p-Rec" or

"<= 1 q Re (a + b)" respectively in this condition. Now (9.6) and Theorem
10 imply that A is an automorphism on T(2, #) with

(9.15) A- k"a + b, k"c,a-c
1,q 1,p
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If Re c < -1 and (9.14) holds, we deduce (9.9) with (9.10) from Theorem 8 and
(9.4). Using residue calculus we get

h(x)= -P(x) if x> 1,
(9.16)

h(x) xC(1 x)-C- F( a, b c x) P(x)r(-c)

ifO<x< 1, where

F(a+b-c) (1 +c-a)(1 +c-b)x+e(x)=F(a_c)F(b_c) o j!(1 +c-a-b)
(9.17)

F(c-a-b)q (1 +a)(1 +b) xa+b+J.+
F(-b)F(-a)_oj!(1 +a+b-c)

Hence if (9.14) is fulfilled and Re c < 0, the inverse B of A on T(2,/) is given by

F -a, -b" -c; P (t)Be(x)
F(-c) x

(9.18)

If Re c < m, m IN, we have (9.13) where B,. is defined by (9.18) and (9.17) with
B, c and p replaced by B,,, c rn and p + m.

Finally, we consider the adjoint A’ .of A on T’(2,/). Assuming (9.1),

b e T(2, #), fe T(2’, p’) T’(2, #) (hence 2 + 2’ < 1 </ + p’),

we have according to Parseval’s formula,

fo K(s)O(s)F(1 s)dsf(x)A(x) dx

( s)e(s}(1 s) ds (f)(x}(x) dx,
2i

__
where 2< v<p,l-#’< v< 1-2’,F==,

F(a+ 1-s)F(b+ l-s)(f)
r(c + s)ra + b + -s)F(s)"

Hence A’ on r(2’, #’) where (cf. (9.3) and (9.4))

(9.19) f(x)
xF(c)

F a, b; c; f(t) dt,

iffe r(2’, p’), 2’ < 1 + min (Rea, Reb), Rec > 0,

fo (+- a b;c+n f(t)dt(9.20) f(x)=
r(c + n)dxnx

iffe T(2’, p’), 2’ < + min (Re a, Re b), Re c + n > 0, n e N. If (9.1) holds, is a
continuous operator of T(1 #, 1 2) into itself.
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Now A’ is a continuous mapping of T’(2, #) into itself if (9.1) is satisfied, and
according to Theorem 12 and (9.8):

(9.21) A’ tb,ata,-a
1 1

If moreover (9.14) holds, then A’ is an automorphism on T’(2,/) with

(9.22) (A’)- "llc’a-cla+b’-a,p"1 ,q

Analogous to X we define an operator B which plays the same role with
respect to (A’)- as X plays with respect to A’.

Suppose 2’ < if, p, q 6 ,
2’< +min{p+Rec, q+Re(a+b)},

p+Rec<g’ ifp0, q+Re(a+b)<g’ if q#0.

Let P be defined by (9.17) and g T(2’, if). If Re c < 0, then

Bg(x)
F(-c)

F -a, -b;-c;1 P g(t)

(9.23)
P g(t) dr.

x

If Re c < m, m e , we define

(9.24) x- dx
where is defined by (9.23) and (9.17) with , c and p replaced by , c m and
p + m. Then the operator (A’)- on T’(2, g) coincides with on T(2’, if) if
2 + 2’ < < + if, (9.1) and (9.14) are satisfied. Furthermore, is a continuous
operator on T(1 , 2) and it is the inverse of if(9.1) and (9.14) are satisfied.

It is obvious that instead of starting with the transformation A we could also
start with B, or and apply an analogous reasoning as above. We obtain
similar results by extending the definition of A and in the same way as the
definition of B is extended from (9.12) and (9.18).
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ERROR BOUNDS FOR ASYMPTOTIC EXPANSIONS
OF HANKEL TRANSFORMS*

R. WONG"

Abstract. An explicit expression is derived for the error term associated with the asymptotic
expansions of the Hankel transform

l(x) Jv(xt)q(t) dt,

where Jv(t) is the Bessel function of the first kind and x is a large positive parameter. From the explicit
expression, realistic error bounds are also obtained.

1. Introduction. Consider the Hankel transform of order v defined by

(1.1) I(x) J(xt)q(t) at,

where Jr(t) is the Bessel function of the first kind and v is a fixed complex number.
The function q(t) may be real or complex, and x is a positive parameter. Asymptotic
expansions of I(x) as x ---, have been obtained recently by several authors, using
different methods and assumptions;see Slonovskii [5], Handelsman and Lew [2],
and Mackinnon [3].

The main purpose of the present paper is to supply an explicit expression
for the error term associated with the expansion of I(x) from which an error bound
can readily be obtained. The conditions which we shall impose on q(t) are weaker
than those given in [2], [3] and [5], and the method employed here also differs
considerably from the methods used in the papers mentioned above. Our approach
is motivated by a recent article of Olver [4] on stationary phase approximations.

2. Preliminaries. Throughout the paper, we assume that the integral I(x) in
(1.1) exists uniformly for all large values of x and that q(t) has the following
properties"

(Q1) qtm)(t) is continuous on (0, )., where m is a nonnegative integer.
(Q2) As - 0+,

(2.1) q(t) qt+z-,
s--O

where qo : 0, Re (v + 2) > 0 and m -> Re 2. Moreover, the expansion in (2.1) is
m-times differentiable.

* Received by the editors November 1, 1974, and in revised form August 15, 1975.

" Department of Mathematics and Astronomy, University of Manitoba, Winnipeg, Manitoba,
Canada R7A 6A9. This research was supported in part by the National Research Council of Canada
under Contract A7359.
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(2.2)

(Q3) t-1/2q(J)(t) 0 as oe, j 0, 1, m 1; and

converges at oe uniformly for all sufficiently large values of x.
These conditions are similar to those adopted by Olver for stationary phase

approximations in [4], and the following lemmas are analogues of Lemmas 1 and 2
in Olver’s paper.

LEMMA 1. For x > O, rl real and Re (p + ) > O,

F(1/2p + x)2u-1
(2.3) ,-.olim e-""-J,(xt)t"- dt

F(1/2a 1/2/ + 1)x""

Proof The integral in (2.3) can be evaluated by means of the confluent
hypergeometric function [1, p. 50] to be

e-"-"-J,(xt)t"- dt
xF(1/2p + 1/2) e-/(")
2"+ lrff+UF(e + 1)

In view of the asymptotic formula

xF(a" c" z)
F(c) eZz,_F-

F(- 1/2p + 1; a + 1; xZ/(4r12)).

as z --
we immediately obtain (2.3).

LEMMA 2. If (p(t) is piecewise continuous on (0, c) and q)(t) dt converges, then
e-"2"-(p(t) dt converges for every real number rl and tends to (p(t) dt as rl O.
Proof This follows from Lemma 2 in [4] by a simple substitution 2 "C.

3. Main theorem. For each n > 0, set
n-1

(3.1) q(t) qsts+-x + q)n(t),
s=0

Then for j 0, 1, ..., m, we have

" F(s + 2)q)nJ)(t) q(J)(t)
F(s + 2 j)

qst+- -j,
s=0

(3.2)

and by condition (Q2),

(3.3) rp(.j)(t r(n + )
F(n+ 2 j)

q"t" + j+ as t-O+.

Now define inductively qgo,,(t q,(t), and

(3.4) goj+ x,.(t) qj,.(t) (v + j + 1)qj,.(t)t- j 0 1 m 1

THEOREM 1. Assume that conditions (Q1), (Q2) and (Q3) hold, and let n be a
positive integer satisfying

(3.5) m-Re2<n<m+-Re2.
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Then

(3.6)

where " F(s + 2 + v)2
I(x)

s=O
qsF- .S -- i-xq +

(3.7) a,,,.(x)

(3.8)

-)m fo Jv+m(xt)qg,.,.(t) dt.

Proof. Let t/:/= 0 be an arbitrary real number. Then we have, from (3.1),

fo fo?/2t2e- Jv(xt)q(t) dt qs e-"’-t2J(xt)t+- dt + E,(rl, x),
s=O

where

(3.9) 2t2E,(rl, x) e J,(xt)tp(t) dt.

Applying Lemmas 1 and 2, we obtain, by passing to the limit as r/ 0,

(3.10)

where

s+;t-F(s + 2 + v)2
I(x)= q,,-VfT.. --x----x 7,4 + E.(x)

=o F(v-s-2+ 1)x

(3.11) E.(x) lim E.(r/, x).
r/-O

The convergence of the above integrals is assured by Lemma 2 and the convergence
ofo J,(xt)q(t) dt.

From the well-known identity

d
(3.12) d-EV + ’J+ ,(t)] v+ L(t),

it follows by integration by parts that

_,2,: 1
,(xt)qg.(t) e-"’e J(xt)qg.(t)dt -J+

(3.13)
1 f _rl2t2je _+ (xt)gox,,(t) dt
X

+
2q2

f 2t2e-7 j + x(xt)rp.(t)t dt.
X

By (3.3) and the asymptotic formula

(3.14) J=(t) as --+ 0+,
2"r(a + 1)
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--t/2twe have Jr+ x(xt)cpn(t)e 0 as 0 for any real q and any nonnegative x.
Furthermore, since t-/2q(t) 0 as and

(3.15) J,(t) tcos (t 1/2 1/4) + O(t-3/2) as ,
we also have J+ x(xt)q,(t)e-"e 0 as for any nonnegative x and real
q # 0. Thus it follows from (3.13) that

E(, x) e- _+ (xt)o,(t) dt

(3.t
22

+ - J (xt).(t)t dr.Jo e +
X

Note that J+ x(xt)q(t) 0 as , and hence

lim 2 e- _+(xt)q(t)t dt 0
0

By Lemma 1, the second term on the right of (3.16) also tends to zero as 0.
We thus obtain

(3.17) lim E,(, x) lim e + (xt)o,,(t) dt

This procedure can be repeated m times and finally leads to

(3.18) lim E(, x) lim e _,+(xt)o,(t) dt

Returning to (3.4), it is easy to see that there are constants c, ..., c such
that

(3.19) O,(t) O(t) + co(-(t)t-.
j=l

Hence, from (3.3),

(3.0t e,,(0 o(e+-- as 0,

and the integral J,+(xt)o,(t)dt converges at 0. From (3.2), we also have
constants do, "", d_ such that

n-1

(3.21) O,,(t) q(t) + cjq-(t)t- + dt+--.j=l s=O

Since q(-(t)t-= o(t-+/) as t m, the integrals &+(xt)q-(t)t-dt,
j 1, ..., m, all converge at m uniformly for all suciently large values of x.
Furthermore, since the powers of in the last sum in (3.21) are all less than -on account of (3.5), condition (Qa) implies that J+(xt)o,,(t)dt converges also
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at o uniformly for all sufficiently large values of x. By Lemma 2, we have

(3.22) En(x lim En(r/, x) Jv+m(Xt)tp.,.(t) dr.
rl O

This completes the proof.

4. Asymptotic nature of the expansion. For t => 0 and Re => 0, the function
J(t) is bounded. Hence there is a finite number A such that

(4.1) A sup IJ(t)l.
O<t<o

If is real and greater than or equal to zero, then A __< 1 and A+ __< 1/x/
(see [6, p. 406]).

In 3 we have shown that the integral

converges uniformly for all sufficiently large values of x. Hence for any e > 0,
there exists a constant c independent of x such that

J, +m(xt)rpm,n(t)dt

Furthermore, since Jv+m(Xt)-- 0 as x for every fixed >_ 0, we also have,
by (4.1) and the Lebesgue dominated convergence theorem,

J +m(Xt)gOm,n(t) dt

for sufficiently large x, Therefore

and

lim J + m(xt)q)m,n(t) dt 0

(4.2) (m,n(X) o(x -m) as x .
The following result is an analogue ofWatson’s lemma for Laplace transforms.
THEOREM 2. Assume that (i) q(t) is infinitely differentiable on (0, o); (ii) as

(4.3) q(t) E qt+- 1,
s=O

where Re (v + 2) > 0 and the expansion can be differentiated any number of times;
(iii) t-1/2q(i)(t) 0 as for j 0, 1, 2,.... Then as x , the asymptotic
expansion of I(x) is obtained by substituting (4.3) in (1.1) and integrating formally
term by term in the generalized sense of (2.3).
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Proof. The conditions t-X/2qtJ)(t) -, 0 as - for j 0, 1, 2,... imply that
the integrals

Jr +m(Xt)qtm)(t) dr, m =0,1,2,...

all converge uniformly for sufficiently large values of x. Thus the result follows
immediately from Theorem 1 and (4.2).

Remarks. (i) From our analysis, it is easily seen that the asymptotic expansion
(2.1) can be replaced by its more general form

(4.4) q(t) qt-1 astO+,
s=O

where Re (2o+V)>0, Re2s+ >Re2s for s=0,1,2,..., and Re2 as
S --- 3.(ii) It is well known that the Hankel transform (1.1) is a generalization of
the Fourier transform

I(x) eiXq(t) dt.

For this particular case, Condition (iv) in [4] is equivalent to our condition (Q3)
of2.

Example 1. As an illustration of Theorem 2, we consider the Hankel transform
of sin x/:
(4.5) I(x) J(xt) sin x/ dr, > -.
The function q(t) sin x/ has the convergent expansion

(_1) ts+ 1/2sinv/== (2s+ 1)!

for all values of t, and the conditions of Theorem 2 are clearly satisfied. Therefore

(4.6)
(-1) F(1/2s+1/4+1/2v) 2s+x/2

I(x) Z (2s + 1) F(1/2v 1/2s + 1/4) x+7s--0

as x . This result does not seem to follow from the theorems given in references
[2], [3] and [5].

5. Bounds for 3 ,.(x). In order to bound the error term 6m,,(x), we recall the
quantity A, as given in (4.1), and define

(5.1) B, sup Ita/zJ,(t)l.
O_<t<
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Numerical computations yield

Ao 1.00000, Bo 0.79788,

A1 0.58187, B1 0.82503,
(5.2)

A2 0.48650, B2 0.86842,

A3 0.43439, B3 0.90238.

Since J(t) is continuous on [0, o) for Re 0 >__ 0, relations (3.14) and (3.15) show
that A and B are finite. For the sake of simplicity, we shall restrict ourselves to
real parameters.

THEOREM 3. Assume that conditions (Q1) and (Q2) hold, and replace condition
(Q3) by

(Q) for each j O, 1,..., m, qtJ)(t) O(t-- 1) as - .Let n be a positive integer satisfying m 2 < n <= m 2 + 1. Then

(5.3) I,,.(x)l < xB++/ /lo,.(t)l at

if n m 2 + l, or

(5.4) I,(x)l x
Iqg,(t)l dt

ifm-2<n<m-2+ 1.
Proof. If n m + 1, then (3.20) gives tp,,n(t O(1) as 0+. Thus

the integral t-1/21q,,,n(t)l dt is convergent at t 0. Furthermore, from (3.21),
we have

(5.5)
n--1

Iqg,,(t)l Iqt’)(t)l + Icl Iqt-(t)lt- + Id,lt+x--’
j=l s=0

where the exponents in the last sum are all less than or equal to -1. Therefore,
by condition (Q), the integral t-/21o,(t)l dt also converges at o. That is,

t- 1/2[qgm,,(t)[ dt < o

The error bound (5.3) now follows from (3.7) and (5.1).
The proof of (5.4) is similar. From (3.20), qg,,,.(t) O("+x- 1-,,) as 0+,

and hence the integral I0,(t)l dt is convergent at 0. Since the exponents in
the last sum of (5.5) are all less than 1 in this case, the integral [qg,,n(t)[ dt also
converges at o. Therefore (5.4) holds in view of (3.7) and (4.1).

Example 2. Consider the integral

(5.6) I(x) fo Jo(Xt)l + dt.
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In the notation of 2 and 3, we have

q(t)
l+t

l--t+t2

Thus 2 1,

o,tt)- 1 + p,(t)
(1 + t)"

Therefore

(5.7) Iq,(t)l dt , t-/lqg,(t)l dt

From (3.6) it follows that

(5.8) (x) + 6,(x)__
x

where

( 1’ I(X) X
J(xt)cp,(t) dt.

The bound (5.3) yields

(5.9) Iia,l(x)l -< Blx-3/2

Note that the complete asymptotic expansion in this example is

F(1/2 + s)22
(5.10) I(x) Z’o r(1/2 s)x+ ’’
Thus the actual error in the expansion I(x) x- is O(x-s), and the estimate (5.9)
seems crude. One way to arrive at a bound involving the correct power of the
asymptotic variable is to continue the expansion to one more term, and then
use this term plus the bound for the new remainder term (which is of a lower
asymptotic order of magnitude).

Simple calculations give

(5.11) tP3,3(t

and

3t3 + 12t2 + 3t
(1 + 04

(5.12) fo t- /21qgs,3(t)l dt

From (3.6) it follows that

1 1
(5.13) I(x)- X3 F 63,3(X),

X
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where

13,3(X)

Thus we derive, from (5.3),

J3(xt)rP3,3(t) dt

(5.14) 1(53,3(x)1 . !B3x- 7/2.

This estimate allows us to rewrite (5.13) as

5.15) I(x)
1
+ I’, (x),

x

where

(5.16) 16’,1(x)1 x-3[1 -+- -B3x-1/2].

Example 3. Finally, we consider the function

Here we have

ff Jo(xt)
I(x)

x/(1 + t)
dt.

Thus 2 1/2,

1
q(t)

x/(1 + t)
1/2 1/2 -I- 3/2

x/ and go1 l(t)
3t + 1

gOo, (t)
1 / 2x/(1 / t)z"

Therefore, in contrast with (5.7),

(5.18) Igo:,x(t)l dt , rpx,(t)[ dt c

From (3.6) and (5.4) it follows that

(5.19) I(x)

where

Igix (x)l </11 ;o Icp x(t)l dt
X

The complete asymptotic expansion in this example is

F(1/4 + s/2)2_ 1/2x_ /2-I(x)
-o

(- 1)r(1/4 s/2)
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Thus the actual error in the expansion (5.19) is 0(X-3/2), and the estimate (5.20)
again falls short of the actual result. To improve the estimate in (5.20), we calculate
rP2,2(t) and evaluate .f Igo2,2(t)l dr. The results are

5t2 6t- 3
rP2,2(t) 4V/(1 + t)3

and

;o Igo2,2(t)l dt 2.05833.

The last numerical value is accurate to five decimal places. From (3.6) and (5.4),
we have

rz(1/4) 2rr
(5.22) I(x)

rcc-xx r2(1/4)x3/2 + giz,2(x),

where

(5.23) 162,2(x)1 = - Igo2,2(t)l dt 1.00138x 2

Thus (5.22) may be rewritten as

r(1/4)
(5.24) i(x) zrx + gi,,x(x),

where

(5.25) ic51,,1(x) < x_3/2
27[

[,2(1/4) +
1.00138X 1/2
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A CLASS OF CARDINAL TRIGONOMETRIC SPLINES*

A. SHARMA AND J. TZIMBALARIOf

Abstract. About a decade ago Schoenberg introduced trigonometric splines which are related to

the differential operator Am D(D d- 12) (D d- m2). Here we introduce the cardinal trigonometric
splines and show that cardinal trigonometric interpolation at the nodes to data of power growth is

not unique. We also study trigonometric Euler splines and an extremal property for its restriction to

[0, q]. We prove a similar result for cardinal L-splines of Micchelli.

1. Introduction. The subject of trigonometric spline interpolation was first
discussed in a very elegant paper by Schoenberg [4] with respect to the operators
A and A2m Since then, many generalizations of the same have appeared in the
literature. Now that the fever and excitment of these generalizations has abated,
it is time to return to the original memoir of Schoenberg. This has been done to
some extent by Micchelli [1] when he introduced the cardinal Z,’-splines, and also
by Schoenberg [3] who develops a new approach to the results of Micchelli.
However, Schoenberg refers to the trigonometric splines of degree 1 related to the
operator D(D2 + 1) only as an example, with the remark that "this example
suggests that Micchelli’s theory will extend to operators with pairs of imaginary
conjugates 7v". The object ofthis study is to begin such an extension for the operator
A defined in 2. However we shall be more interested in finding some extremal
properties of the trigonometric polynomials associated with cardinal trigonometric
splines. We also extend our study to Micchelli’s cardinal c,qa-splines.

In 2 we give the preliminaries and the definition of the trigonometric
B-splines due to Schoenberg [4]. Section 3 deals with the trigonometric Euler
splines which are analogous to the exponential Euler splines of Schoenberg [5].
We prove incidentally that cardinal trigonometric interpolation at the nodes to
data of power growth is not unique. This has been shown by Schoenberg [3] for
trigonometric splines of degree 1. In 4, we study the restriction Am(x;t) of
the trigonometric Euler spline to the interval [0, r/] and study its extremal
property. Lastly, 5 is devoted to the corresponding result for cardinal -splines
of Micchelli.

2. The class 5’(A,, q). Let r/be a positive constant < 2n/(2m + 1), and let

A D(D2 + 12).. (O2 + m2),
d

for some integer m. We define the class oO(Am, r/) of functions S(x) satisfying the
following conditions:

(i) AmS(x 0 in (wl, vq + q) for every integer v,
(ii) S(x) C2m- ().

The functions S(x) will be called cardinal trigonometric splines.

* Received by the editors February 3, 1975, and in final revised form July 16, 1975.

f Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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Set

2 1____.___X2m --q(x) (2m).i(1 cos x)
(2m)!

and let b+(x)= q(x) for x > 0 and 0 for x __< 0. Then every a(x)
can be written uniquely in the following form"

+ Z c 4.+(x v,) + av4 + (- x
v=l v=l

where z(x) is a trigonometric polynomial of degree m. We formulate the problem
of eardinal trigonometric spline interpolation as follows.

Problem. Given a sequence {y}, find S(x)e 5(A,,, q) such that

S(vt) y, v 0, +__1, +_2,.....

It is easy to see that this problem has infinitely many solutions forming a linear
manifold in (A,,, tl) of dimension 2m 1.

We follow Schoenberg [4] and define the generalized differences D{f(x);
j= 1, 2m + 2} by

D{f(xj);j 1,..., 2m + 2}
1 cos x sin x cos rex1 sin mx f(x

cos x2+2 sin XZm +2 COS mX2m+2 sin mX2m +2 f(X2m+2)

Set xj fit (J 0, 4-1, +_ 2,... and

_rc(m!)zD{Ck+(x xj);j v, ..., v + 2m + 1}
M(x) D{x; j= v,..., v + 2m + 1}

M(x) Mo(x).

Since (2m + 1)q < 2re, it follows from Lemma 6 of Schoenberg [4] that the
denominator on the right side is not equal to zero. Schoenberg has shown that
m(x) 0 for x (x, x+ 2m+ ) and that

M(x) dx 1,

D{f(xj) j v, v + 2m + 1} 1
M,,(x) A,,,f(x)dx

D{xj;j= v,...,v + 2m + 1} n(m!)2

[5].

It is clear that Mv(x M(x vq).
The following theorem can be proved on the same lines as that of Schoenberg

THEOREM 1. If S(x) oq(Am, tl), then S(x) admits a unique representation

S(x) cvM(x- vrl),
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where cv’s are appropriate constants. Conversely every such expansion represents an
element of(Am, /).

The proof depends upon a lemma of Schoenberg.4, p. 804, Lemma 7] which
says that the functions M(x /), ..., M(x 2m + lr/) are linearly independent
for (2m + 1)/__< x __< (2m + 2)q. One has only to repeat then the reasoning of
Schoenberg [5, p. 13-15].

3. Trigonometric Euler splines. We see from Theorem that the spline M(x)
plays the role of a B-spline. We shall now construct some special splines which will
be useful later.

Let be a constant, 4: 0, :/: 1. We want to find a spline S(x) 6e(Am, q) such
that
(3.1) S(x + rl)= tS(x).

It is clear that the most general nontrivial element S(x) satisfying (3.1) is given by

(3.2) S(x) Co tVM(x wl), Co q: O.

Let Am(x;t) denote the restriction of S(x) to [0, r/I, and let

m+v

By (3.1), Am(x;t) must satisfy the conditions

(a,cos vx + b sin vx).

(3.4) A(tl; t) tA(0; t), v =0,1,...,2m- 1,

where the differentiations are with respect to the variable x. Applying the operators
A/D(D2 + j2) and A/(D2 + j2), j 1, ..., m, in succession to A(x;t), we see
easily that a, b are given by

a(cos j/- t) + b sin jr/= (- 1)- (t 1)ao,

aj sin jq bj(cos jq t) O.

Hence,

(3.5)

(- 1)J- x(t 1)(cos jtl t)ao
a 1 2t cos jtl + 2

(- 1)J- l(t 1) sin jtl" ao
1 2t cos Jtl + t2

For the sake of convenience, we shall choose ao 1, so that

m + v (--1)-l(t-- 1){cosv(x- r/)- tcosvx}(3.6) Am(x t) 1 + 2 ,,= 22 1-2tcosvrl+tz
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We have thus shown that there is a unique trigonometric polynomial Am(x;t) of
degree rn with constant term 1 which satisfies (3.4).

The expression (3.6) recalls the de la Vallee Poussin means of a function f(x).
It is known 2] that if the Fourier series off(x) is given by

f(x) 2--ao + (a cos vx + fl sin vx),

then the de la Vallee Poussin means are given by

(3.7a)

Thus if

1 +2Re ;’ (1-t) eitx + "f(x)

then

(3.7) Am(x, t) Vm(f x).

We shall prove a simple lemma.
LEMMA 1. If > 0, Am(x > O for all real x.

Proof For 1, Am(x; 1) 1. From (3.6), it follows that

(3.8) Am(x t) Am(t X; t- ’).

It is therefore enough to prove the result for 0 < < 1. It follows easily from (3.6)
that

m q- V eiv(x- )
Am(x;t)=l+Re

v=l (2)
(- 1)v(1 -t)l [’:"i

cosv(x + zt- rl(k + 1)
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From a well-known identity [2], it follows that

1-t (tk 2 sin
(k + 1)r/- x) 2m

k=O 2(3.9)
Am(x t) 2m

m

which proves the lemma. This leads us to formulate Theorem 2.
THEOREM 2. If > O, # 1, then the unique trigonometric Euler spline Sm(X t)

which interpolates the data {tv"} at the nodes {vii} is uniquely determined by

Am(x
Sm(x;

Am(O t.),
0 < x < tl,

Sm(x + q)= t"Sm(x; t).

Remark. It follows from (3.6) that

(3.10) (D2 + m2)Am(x; t) mZAm l(x; t).

In Theorem 2, the data is of exponential growth and we require the interpo-
latory spline to satisfy a certain difference equation. It is interesting to inquire
whether interpolation by trigonometric splines is unique when the data is of power
growth and the interpolatory spline is also of power growth. The analogous
problem for polynomials and &a-splines has been solved by Schoenberg [3], [5].
For trigonometric splines of order 1, Schoenberg has shown the nonuniqueness
of the trigonometric spline which interpolates the data at the nodes. More generally
we can prove the next theorem.

THEOREM 3. If the data {Yv} is of power growth, then the interpolation problem
offinding S(x) e oq(Am, 1’1) such that

(i) S(wl) yv for all v, and
(ii) S(x) is ofpower growth,

does not admit a unique solution.
Proof There exists a nonzero trigonometric spline (x) which is bounded

with VS(wl) 0 for all r/. The restriction of this spline to [0, q] is given by the trigono-
metric polynomial Am(x; -1), where

m+ v
)

cosvx+cosv(x-- rl)
Am(x;-1)=l+2= 22)

(-1"
l+cosvr/

For x [0, q), (x + l)= -(x). It is easy to verify that ,(x) 6e(Am, q)and
(vr/) 0 for all v since Am(O 1) O.

4. An extremum property of A,(x; t). The trigonometric polynomials
Am(x; t) are analogues of the algebraic exponential polynomials which were
introduced by Schoenberg [5]. We have retained the same notation as his, and a
natural question arises whether there is an analogue of the extremum property in
the present trigonometric case. In order to formulate our answer to this question,
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we introduce the class o(A) of functions f(x) which satisfy the following condi-
tions"

(4.1)

(i) f(x) . C2m- 110, tl] f(2m)(x) integrable in [0, r/I,

(ii) Ig f(x) dx >__ I g Am(x; t) dx,

(iii) f2v)(r/) tf2v)(O), v O, 1,..., m 1,

(iv) ft2+l)(q) >__ tf2+1)(0), v 0, 1,..., m 1,

where is a positive constant. We can now prove Theorem 4.
THEOREM 4. The trigonometric polynomial Am(x is the unique element of the

class (Am) that minimizes the norm

(4.2) IIA*mf[Ioo sup IA*mfl, fe ’(Am),
O <_x<_ rl

where Am* (D2 + 12)"" (D2 + m2). The least value of IIAm*fllo is

(4.3) IlAam(x; t)ll (m[)2.

Remark 1. In the definition of the class (Am) in (4.1), it would be interesting
to replace the sign of equality in (iii) in (4.1) by the sign of inequality. However it
would be necessary, for this to be possible, to prove that DAm(X t) <-_ 0 for 0 __< x -< r/
and > 0. This is true for m 0 and m 1.

In order to prove Theorem 4, we shall need two simple lemmas.
LEMMA 2. Suppose F(x), G(x)e C1[0, tl] and F"(x), G"(x) are integrable on

[0, tl]. Then

G(x)(D2 + k2)F(x) dx [G(x)F’(x)- G’(x)F(x)] + F(x)(D2 + k2)G(x) dx.

(4.4)
We omit the quite elementary proof. Set Ak,m D(D2+ k2) (D2+ m2),
A, (D2 d- k2) (D2 d- m2). In particular, we have A1, A and A, A*.
We shall use the convention that Am + 1,m Am* + 1,m 1. By repeated use of Lemma
2, we get Lemma 3.

LEMMA 3. Ill(x), Km(x C2m- 110, r/I, and/fft2m)(x) and Km)(x) are integrable
on [0, tl], then

Km(x)(A*mf dx y’ [(Am* + l_v,mKm)(Am 1-vf) (Am+ 1-v,mKm)(A*m
v=o

(4.5) + (Am*Kin)f dx.

Proof of Theorem 4. Choose K Zm(x;t-1) in (4.5) and observe that by
(3.4), we have

(4.6)

A*m +1 v,mKm(tl) t-’ A* +, v,mKm(O),

Am + v,mKm(tl) t- Am + v,mKm(O),

v=0,1,...,m- 1,

v=0,1,...,m- 1,

A*mKm(x (m!)2
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Hence by Lemma 3, we have

K.(x)(A*mI) dx t-’ A+ -,,mKm(0){Am-,-,f(r/) Am- _,f(0)}

m--1

(4.7) t-’ Am+,-,mKm(0){A*-l-f(r/) A,,*_,_,f(0)}
v=0

+ (m!) f(x) clx.

If we choose f(x) Am(x;t) in (4.5), then from (3.4) we have

A__,f(t X_
_

,f(0t
(4.8) v 0, 1, ..., m 1.

A*.__,f(. *_
_

f(0t

Hence,

(4.9) Km(x A*mAm(x t) dx (m !)2 Am(x t) dx.

Suppose there exists g(x) (Am) different from Am(x; t) with

(4.10)

Then from (ii)in (4.1), we have

IImglloo (m!)2.

(4.11) (m !)2 A(x t) dx <= (m !)2 g(x) dx.

Now using (3.10), Lemma 1 and properties (iii) and (iv) in (4.1), we have

(m !)2 Am(x t) dx

=< (m!)2 g(x)dx + t-’ A*+ _,,mKm(0){Am_x_,g(r/)- tAm_l_vg(0)}
v=0

m--1

t-’ Z As+,-v,mKm(O) {am*-1-g(r/) Am*-,-,g(O)}
v--O

gm(x) Am*g(x) dx

<= Kin(x) A*mAm(x t) dx (m !)2 Am(x t) dx.

We have used (4.3), (4.9) and (4.10) also in obtaining the above inequalities.
Hence the inequalities are in fact equalities, so that

(4.12) Am- x-vg(q) tam- x-vg(0), v 0, 1, "", m 1,
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and

(4.13) Km(x)[A*Am(x; t) A*mg(X)] dx O.

Since Km(x)= Am(x; -) > 0 in [O, tt], and by our assumption, the second
expression in the above integral is also nonnegative, it follows that

(4.14) A*g(x) A*mAm(x t)

almost everywhere. Hence g(x) is a trigonometric polynomial of degree __< rn with
constant term 1. From (4.12) and from (iii) in (4.1), we have

(4.15) gtV)(q) tgtv)(O), v =0,1,...,2m- 1.

Since Am(x t) is the unique trigonometric polynomial with constant term 1
satisfying (4.15), it follows that g(x)= Am(x; t). This completes the proof of
Theorem 4.

5. Cardinal Se-splines. We shall devote this section to obtaining an extremum
property related to the exponential &a-splines. We use the notation of Micchelli
[1] and Schoenberg [3] and set

k k

(5.1) Zt’k O 1-I (o y), &t,, I-I (o y), k O, 1, ..., n,

where Y1,’", Y. are real nonzero distinct constants. Let 6e(&a,, rl) denote the
class of cardinal -splines S(x) such that

(i) .S(x) 0 in (wl, wl + rl) for every integer,
(ii) S(x) C"- ().

For a given real number t, denote by (x; t) the -spline satisfying the functional
equation

O(x + t) tO(x; t).

Using the method of 3 with minor modifications, we can show that the restriction
of O(x; t) to [0, rl] is given explicitly by

(5.2) .(x;t) 1 +(1 t) erX 1
er" o,.

where we set

(5.3)
k=l

,(x; t) is the unique generalized exponential polynomial having constant term 1
and satisfying the conditions

)(r/; t) tt,v)(O; t),(5.4) v 0, 1,..., n 1,
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where the derivatives are with respect to x. We can rewrite (5.2) easily and show
that for0<t< 1,

Since

.(x;t) (1 t) 1
k=O (-Dv,n

is the divided difference of the function ev{-"- " at the n + 1 values of y, namely,
O, y, ..., y,, it follows that

(x; t)= (1 t) 2 te-"-(x- k- )(_1) 7
k=O n

where k lies between the maximum and minimum of the numbers 0, V, ..., V.
Hence for0<t< land0

sgn ;0 sgn(5.5 

Similarly we can also verify that for > 1, we have

(5.5a) sgn .(x t) (-1)" sgn fi yv)
We can now introduce the class (,,) of functions f(x) satisfying the conditions"

(a) f C"-[0, q] and f")is integrable in [0, r/],
(b) f(q) => tf(O), k 0, 1,..., n 1,
(c) j’) f(x) dx >_ n

o A.(x t) dx.
We shall now formulate Theorem 5,
THEOREM 5. The generalized exponential polynomial .(x; t) is the unique

element of the class (,.) that minimizes the norm

(5.6) IIUII sup IUI, f6ff(A.).
O<_x<_q

The least value of lfll is

(5.7)

The proof follows the same idea as that of Theorem 4 and requires the use of the
following identities"

(5.8)

(5.9)

G(x) (D yk)F(x) dx G(q)F(rl) G(O)F(O)- F(x)(D + yk)G(x) dx,

(D y.)&(x; t) n-l(X ;t).
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Using (5.8) we can easily get an analogue of (4.5), and the proof can be completed
on using (5.5) and (5.9). We omit the details.

Remark 2. An interesting special case arises when n D(DE- 12)
(D2 n2). In this case, the results of 3 and 4 are easily modified by changing
trigonometric functions into hyperbolic functions.

Remark 3. It follows from (3.6) that A(x;t), for a fixed x, has at most 2m
zeros in the variable if 0 < x < r/and has at most 2m 1 zeros if x 0. We
have shown that these zeros are not positive. An analogue of the result of Shoenberg
[5] on the nature of the zeros of the Euler-Frobenius polynomials would suggest
that for a fixed x, 0 __< x < r/, the zeros of An(x; t) will be real, simple and negative.

6. Conclusion. The results of Theorems 4 and 5 can be generalized in the
light of our paper [6]. More precisely, we consider a given trigonometric poly-
nomial Am(x) of degree m with constant term 1 and introduce the class (Am) of
functions f(x) which satisfy the following conditions:

(i) f C2m- 110, r/], ft2m)(x) is integrable on [0, t/I,
(ii) f(x) dx >- Am(x dx,
(iii) ft2v)(r/)- tft2v)(0)- A*)(r/)- tA*)(0), v 0, 1,’.., m- 1,
(iv) ft2,+ 1)(r/) tft2,+ 1)(0 > ltEv+ 1)(tl) tA,- 1)(0 v 0 1 m 1

Then we have Theorem 6.
THEOREM 6. The trigonometric polynomial Am(x ofdegree m and constant term

one is the unique element in if(Am) that minimizes the norm

IlAm*flloo sup lAin*fI, f (A,).
0_<x< /

The least values of lA*mf is (m !)2.
Similarly using the notation of 5, let An(x) be a generalized exponential

polynomial with constant term 1, and let (,) be the class of functions satisfying
the following three conditions"

(i) f C"- 110, tl] and ft.) integrable on [0, 1],
(ii) ’f(h) t’f(O) >= 2’,(rl) tq,(O), k O, 1,..., n 1,

(iii) g f(x) dx >= ,.(x) dx.
Then we can prove Theorem 7.

THEOREM 7. The generalized trigonometric polynomial n(x) with constant
term 1 is the unique element in the class (,) which minimizes the norm

II=*fllo sup I*fl, f -(,),
O_<x<tt

and with minimum value equal to 1-] I1.
The details of the proofs are omitted for obvious reasons. We may remark

that if all ?’s are negative, then the conditions (ii) can be replaced by
(ii’) ftk(rl) tftk(o) >= Xt.k(l) t,t,k(o), k O, 1,..., n 1.
We may remark that the case when some of y’s are coincident or become

zero requires minor suitable modification of the above results.

Acknowledgment. We would like to acknowledge with thanks that we owe
the above formulations of Theorems 6 and 7 to some remarks and suggestions
of Professor Greville in connection with our paper [6].
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Note added in proof We would like to thank Professor B. Kuttner for kindly
sending us a simple proof of the inequality DA,(x;t) <= 0 for 0 _< x _< r/< trim.
This implies that in (4.1) (iii) and in condition (iii) 6 preceding Theorem 6, the
sign of equality can be replaced by >_.
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A NOTE ON CARLITZ’S FORMULA*

B. L. SHARMA

Abstract. In this paper we show the importance of Carlitz’s formula [5] in obtaining new trans-
formation formulas for hypergeometric series of two variables. The results (3), (6), (9) and (11) are
believed to be new.

(1)

1. Introduction. Professor Carlitz [5] has proved the formula

Ifl
m’ fl n’ fl2 ;1F

+ 2; + 2 m; + fix n;

In (1), we have used the following notation due to Chaundy [4] to represent the
hypergeometric series of higher order and of two variables"

(2) F [(aP);L(ds); (en); (fk);(bq);(c,); x, y] mE=o nO= [(ds)]m[(ap)]m+n[(bq)]m[(Cr)]nxmyn+.[(eh)]m[(fk)].rn!n!

where (ap) and [(ap)]m+n will mean a, ap and (al)m+n, (ap)m+ n.

The object of this paper is to obtain transformation formulas for hyper-
geometric series oftwo variables with the help of(l). On specializing the parameters,
we obtain two new summation formulas for hypergeometric series. It should be
remarked here that whenever the hypergeometric functions reduce to gamma
products, the results are important from the point of view of applications. Sum-
mation formulas have been used to solve optimization problems in management
science [6], in the expansion ofhypergeometric functions [3] and in the summation
of finite and infinite series involving special functions [8]. The summation formulas
(6) and (9) of this paper are likely to prove quite useful in solving problems of
optimization in management science, in the expansion of functions and in sum-
mation of series.

2. In this section we discuss the transformation formulas for hypergeometric
series of two variables. First of all we prove the formula

+ +

(3)
F(/x 21)F(p2 22)F(p fix + )F(#2 fiE+

F[ ;flE, 2X;flx,22;1 1, ],
* Rec6ived by the editors November 29, 1974, and in revised form July 24, 1975.
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valid for R(p 2 fl + ) > 0, R(p2 22 -//2 + ) > 0.
Proof. To prove (3), we start with the left side of (3)"

FIB + B B’ mz fl* 2*
+fl.;2;

E 0
(ill + fl2 OOm+n(flm)m(/2)m(fll)n(’l)n

,,,=o (fl + 3)m+,,(P2)m(P)nm!n!

n s!s!
(by (1))

(a)

We use Gauss’s theorem [10, p. 243. (111.3)]"

(4) 2F1(z, fl; ; 1)
r()r( 3)
r( )r( fl)’

valid for R( a fl) > 0 and we have

F(p)F(pm)F(p2 22 32 + a)F(pl 2 fl + )
(a) F(pl RI)F(p2 2)F(pl fll + a)F(p2 fl2 + )

(X;fl2,,,l;fll,,2;
F

by interpreting the double series with the help of(2). This completes the proof of(3).
We shall mention some interesting particular cases of (3). If fll 0 in (3), it

reduces to a well-known formula due to Hardy [2, p. 98, Q.7]. If fll pl, fl2 =/2
and we use the formula due to Appell and Kamp6 de F6riet [1, p. 22. (4)],

r()r(-,- fl- )(5) Fl[a; fl, /; (5 1, 13
r(6 )r(6 fl )’

valid for R(6 a fl ) > 0. In (3), it gives a new summation formula

F

(6)
r()r(, 21)F(p2 22)F(pl / pm)F(- ’1 ’2)
r(l)r(.)r( l)r(- )r(, + : 1 )
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valid for R( 21) > 0, R ( 22) > 0 and R( 21 ,,2) > 0.
In case 21 --n and 22 -m in (6), it reduces to the following form’

(7)
-n, Pz; -m, Pl; 1] (Pl),(PZ)m()m+,

+ J L m+.
Further, we put -n, Pl + 21, f12 -4- 22 in (3) and using the formula
due to author [9]

(8)
F[ -n; l’ fll E’ fl2; l’

O "Jr" (2 + fll o2 lrl + 2 tl n;

(01 -- 02 1 2)n(Ol)n(O2)n

in (3), it yields another new summation formula

F[fll+ f12 + r/; f12’ 22;31,21,1,1]fll + fiE; + /],2; + /]’1;

(9) F(1 -[- ,1)1-’(1 -[-- ,2)1-’(1 ill)F(1 fl2)(fll -[-- f12 ,1 ’’2)n
F(1 + 2z fl2)F(1 + 21 fll)(fll "[- fl2)n

valid for R(1 fll n) > 0, R(1 2 /’/) > 0 and n 0, 1, ..-. In case 21 0
or 22 0 in (9), it reduces to a known result due to Kala and Saxena [7, p. 234, (10)].

In place of Gauss’s theorem (4), if we use Saalschutz’s theorem [10, p. 49,
(2.3.1.4)]

(10) 3F2I -n,o,fl;1 I =(y-),(7-fl)"
7, + + fl y- n; (y).(y fl),’

and proceed on the same lines, we get the following new transformation for a
double series"

31 + //2 0; -n, al, ill; --m, a2, 32; 1,
F

//1 + f12; cl, + ax +//1 o cl n; c2, + a2 + f12
(C1 al)n(2 a2)m(Cl 1 -- )n(C2 2 -- 00m(11)
(C1)n(C2)m(C a fl + ),(c2 a2- 2 +

OC2

0 n a fl2 m a2 fl 1,1
.F - 2;C1 1 + 0, cl + al n;

2 2 "ll- 0, 2 -" a2 m;
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If we put m 0 in (11), we get

4Fa Ifl
fl a fl + fl2 n J+ fl2, c, +a+flx--c-n;

(12)
(c a),,(c fix + ),,
(c),,(c a fix +

"4F31 -n, a, o, f12;

fix +fl2, c-flx +,l-c+a-n;
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ORTHOGONAL POLYNOMIAL EXPANSIONS
WITH NONNEGATIVE COEFFICIENTS*

WILLIAM F. TRENCH

Abstract. This paper presents general theorems implying that the coefficients in the expansions
of one set of orthogonal polynomials in terms of another are positive or nonnegative. These theorems
imply several results, previously obtained by special arguments, for the classical orthogonal poly-
nomials. A special case of one of the theorems settles affirmatively a conjecture of Askey.

1. Introduction. The question of when the coefficients in the expansions

(1) q,(x) Z ar,pr(x)
r=0

of one set of orthogonal polynomials in terms of another are nonnegative has
been studied in several recent papers (for examples and applications, see the
references); in addition, there are several older results on this question for the
classical orthogonal polynomials. Most of these results have been obtained by
special arguments, often involving explicit computation of the coefficients.
Askey [3] and Askey and Gasper [5] observed as recently as 1971 that there were
only two general theorems [4], [11] implying nonnegativity of the coefficients
in (1), and that many of the classical results had not been shown to follow from
them. Since then, the author [8] has considered the case where {p,(x)} and {q,(x)}
are orthogonal with respect to distributions du(x) and dr(x)= w(x)du(x), and
has given conditions on w(x) which imply that the coefficients in (1) are nonnegative
for all n, while those in the "inverse" expansions

p,(x)
r=0

alternate in sign;i.e., (-1)"-’b,, >__ 0.

2. Main results. Here we present general theorems which imply several
known results on the classical polynomials. Our starting point is the following
lemma.

LF,MMa 1. For s 0, 1, ..., n, let p(x) be a polyhomial ofdegree s with s roots
in an interval (a, b). Suppose Xo (a, b), p(xo) > 0 (0 <= s <__ n), and Q(x) is a
polynomial of degree n. Then

(2) Q(x) cps(x), cs >__ o, O <= s <= n,
s=0

if there is a distribution function F(x) with at least n + 1 points of increase in (a, b)
such that Ib, xk dF(x) exists for 0 <__ k <__ 2n,

f)(3) (-1) Ix xolp(x) dF(x) <- O, 0 <__ j < s <= n,

Received by the editors March 25, 1975, and in revised form July 18, 1975.
]" Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104.
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and

(4)

Moreover, cs
Proof Descartes’ rule of signs implies that

p,(x) pj,lx- xolJ,
j=O

with

(5) (- 1)Jpj, > 0;

therefore (3) and symmetry imply that

(6) p,(x)ps(x dF(x) <_ O,

and (4) implies that

(-1) Ix xolJQ(x) dF(x) >= O, 0 <__ j <= n.

> 0 (0 <- s < n) ifat least one ofthe inequalities in (3) is strictfor each s.

a<x<b,

O<r,s<n r#s

(7) p,(x)Q(x) dF(x) >__ O, 0 <= r <= n.

From (2), Co,..., c, satisfy the system

p,(x)Q(x) dF(x) cs p,(x)p(x) dF(x), 0 <_ r <= n,
s=O

which, since F(x) has at least n + 1 points of increase, has a positive definite Gram
matrix G with nonpositive off-diagonal elements (cf. (6)). Stieltjes [7] (see also
[10, 3.5]) showed that the inverse of such a matrix is nonnegative. This and
(7) imply that c _>_ 0, 0 =< s =< n. If at least one of the inequalities in (3) is strict for
each s, then all of those in (6) are strict because of (5), and so the off-diagonal
elements of G are negative; in this case, Stieltjes’ result implies that G-1 > 0.
Since at least one of the inequalities in (7) must be strict, it then follows that
c>O,O<_s<_n.

The idea of applying Stieltjes’ theorem here came from a paper by M. W.
Wilson [11].

Except where stated otherwise, we assume throughout the rest of the paper
that {p,(x)} and {q,(x)} are orthogonal over a finite or semi-infinite interval (a, b)
with respect to distributions du(x) and dv(x), respectively, and normalized so as
to be positive at some point xo (a, b). It is to be understood that the distributions
have enough moments and points of increase so that the polynomials are defined
and unique up to normalization.

For convenience below, we state the following obvious "principle of com-
position"" Ifpk(X), qk(X) and rk(X are polynomials ofexact degree k 0, 1, 2, such
that

k

qk(X) aikPi(X)
i=0
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and

with

(8)

then

with

k

rk(X ba,q(x),
i--O

(a) a., => O, (b) ba, _-> O,

k

rk(X)
i=0

O<_i<=k<-n,

(9) % >- O, 0 <- <- k <= n;

moreover, ifthe inequalities in either (8a) or (8b) are all strict, then so are those in (9).

THEOREM 1. If

(10) (-1) Ix XoiJP(X) dr(x) <__ O, 0 <-_ j < s <= n,

then a,, >_ 0 in (1); moreover, a,. > 0 if at least one of the inequalities in (10) is

strict for each s.

Proof The polynomials {p(x)} satisfy the conditions of Lemma 1, with
F(x) v(x). Since

ff (jnn (qn(x))2 dr(x), 0 <= j <-- n,

inequality (4) also holds with F(x) v(x) and Q(x) q.(x); to see this, observe
that since q,(x) has n roots in (a, b), Descartes’ rule of signs implies that q)(Xo) > 0
if Xo >- b and 1)’qt,)(Xo) > 0 if Xo =< a. Now the conclusion follows from Lemma
1.

Because of the difficulty of verifying (10), Theorem 1 may be too general to
yield specific results; however, the following special case is applicable, as we will
see below from examples.

THEOREM 2. Suppose

(11) dr(x) a(x) du(x)

where a(x) is nonnegative (70) and n times differentiable on (a, b). If Xo <- a, then
a,, >- 0 in (1) if

(12) 1)-[(x ()Xo) a(x)] -<0, a<x<b, 0<j<s<n,

moreover, at, > 0 if at least one of the inequalities in (12) is strict for each s. The
same conclusions hold if Xo >-_ b, and (12) is replaced by

(13) [(X-Xo)Ja(x)])__<0, a<x<b, 0__<j<s__<n.
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Proof Let h(x) be the projection of Ix xolSa(x) on the space of polynomials
of degree _< s (=< n) with respect to the inner product

(f, g) f(x)g(x) du(x);

thus,

where

h(x) boPo(X + + bps(x),

(14) bs iipll 2 Ix xolSr(x)p(x)du(x).

Since Xo (a, b), Ix XolSa(x) has n derivatives on (a, b). Moreover, the function

Ix XolJO’(X)- h(x)

is orthogonal to every polynomial of degree _< s, and therefore has at least s + 1
zeros in (a, b); hence, its sth derivative has at least one, and so

([Ix xolJa(x)] bp)(Xo))lx=x, 0

for some xl in (a, b), which implies that the sign of b is the same as that of

p)(Xo)([lx- xolSr(x)]t))lx=x,.

If Xo-< a, then (-1)Sp)(Xo)> 0, and (10) follows from (11), (12) and (14); if

Xo >- b, then p)(Xo) > 0, and (10) follows from (11), (13) and (14). Theorem 1,
therefore, implies that a,. -> 0 in (1) in either case. It is straightforward to verify
that the statements concerning strict positivity of a,, also follow from Theorem 1.

The following corollary settles affirmatively a conjecture of Askey [1], [3];
its proof has also been given separately elsewhere [9].

COROLLARY 1. If C > 0 and

ely(x) Ix Xol clu(x),

then a,, > 0 in (1)for all n.

Proof With tr(x)= Ix- Xol and 0 < c < 1, the inequalities in (12) hold
strictly for all n if Xo =< a, and those in (13) hold strictly for all n if xo >= b. This
gives the result for 0 < c < 1, and it follows from this for all positive c, by the
principle of composition.

Example 1. Corollary 1 implies known results for the Laguerre polynomials
{L,(x)} and the Jacobi polynomials {P’)(x)} (for definitions, see [6]); namely,
that

L, +"(x) a,,,L’(x),
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with at. > 0 if p > 0 and a > 1, and that

P" + "’a)(x) br.P"a)(x)

if > 0 and ,fl > -1.
Askey [1] cited these results as evidence supporting his conjecture of

Corollary 1.
COROLLARY 2. Suppose xa,x2,..., x are in an interval I which does not

intersect (a, b), {p,(x)} and {q,(x)} are normalized so as to be positive on I, and

where

dr(x) (x) du(x),

(15)

with

(16) (a) bk > 0,

Then a,. > 0 in (1)for all n.

Proof If a > - and xk =< a, then

1)- J[(x a)J(x x,)Ck])

(17)

or(x)- b,lx- x,l
*=1

(b) 0 < c, < 1, k 1,..., m.

Because of (16b),

ck + i) <0,
S

i--O,...,s- 1,

(18) (-1)’pr(yo)> 0, (-1)*q,(yo) > 0, r 0, 1, ....
Let m be a positive integer, and suppose the distribution

dv(x)
du(x)

Ix- Yol

and, therefore, the last member of (17) is negative if 0 =< j < s and x _>_ a. Now
(16a) implies that a(x) satisfies (12) (with strict inequality) for all n if I (- , a],
and so the conclusion follows from Theorem 2. The proof for the case where
I [b, ) is similar.

Corollary 1 and the following lemma enable us to improve on a result ob-
tained in [8].

LEMMA 2. Suppose Yo (a, b) and
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has moments of all orders on (a, b). Then at, >= 0 in (1)for all n.

Proof. For m 1, it is known [6, Thm. 3.1.4, 3.1] that

q,- x(Yo)q,,(x) A,,p,,(x) B,,
q,,(Yo) P"- l(x)’ (A,,, B,, > 0),

and the conclusion follows from (18); it follows for all positive integrals m from
this and the principle of composition.

Lemma 2 is not valid for arbitrary positive m. For a counter-example, see [8].
The following theorem improves on Theorem 1 of [8].
THEOREM 3. Suppose (a, b) is finite. Let I be one of the intervals (-, a] or

[b, ), and let J be the other. Suppose pr(x) > 0 and q,(x) > 0 (r 0, 1, )for x
in I. Let xx,..., x, be in I and zl, z be in J, and define

dr(x) zl,,,du(x), a < x < b,

where m1,..., m are nonnegative integers and cl,..., c are arbitrary non-
negative numbers. Suppose du(x) and dr(x) have moments of all orders on (a, b).
Then a, >_ 0 in (1)for all n; moreover, a,, > 0 ifat least one ofc ..., c is positive.

The proof consists of a straightforward application of Corollary 1, Lemma 2,
and the principle of composition. (Notice that the assumptions imply that (- 1)r
p,(x) > 0 and (- 1)" q(x) > 0 on J, so that Lemma 2 is applicable.)

and

Example 2. With

du(x) (1 x)’(1 + x)t dx

dr(x) (1 x)’(1 + x)- k du(x)

Theorem 3 implies a known result for the Jacobi polynomials; namely, that

p + u,t-k,(x a,,,p(,.,,t)(x),
r=O

with a,, > 0 if/ > 0, k is a nonnegative integer, > 1 and fl > k 1.
Example 3. We introduce a class of orthogonal polynomials which includes

Jacobi’s and Heine’s polynomials [6]. Suppose k _> 2 and al < a2 < < ak.
Let v be a fixed integer in {1,..., k 1} and let A (1,"’, k) be a k-tuple of
real numbers restricted only by the requirement that v > -1 and v+ > -1.
Let {PA)(x)} be a sequence of polynomials orthogonal over [a,, a+ a] with respect
to

k

du(x) I-I Ix a.il dx,
j=l

and normalized so that PA)(o) . Then Theorem 1 implies that

P(,,B)(x) a,,,PA)(x),
=0
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with a,n >_- 0 for all n if

B=(l-kl,...,v-kv,/l +P/l,’’’,k+Pk),

provided kl, ..., kv are nonnegative integers, k < 1 + , and v/ 1, "’", ]Ak are
arbitrary nonnegative numbers; moreover, a,n > 0 if at least one of the latter is
positive.

3. Special results concerning even distributions. The case where du(x) and
dr(x) are even distributions deserves special attention. If

(19) (a, b) (- R, R), u(- x) u(x), v(- x) v(x),
then

p( x) 1)p(x), q( x) (- 1)nq(x),

and it is appropriate to consider separately the expansions

(20) q2.(x)-- br,p2r(x
r=0

and

(21) q2+ 1(X) crnP2r+ I(X)
r=0

In this case, the sequences {Pn(y)} and {Q,(y)}, defined by

P(y) p2(y/2), Q(y) q2n(yl/2),
are orthogonal over (0, R2) with respect to du(y/2) and dv(yl/2), and the sequences
{P(y)} and {((y)}, defined by

Pn(Y) y- 1/2p2 /2),+ I(Y n(Y) Y- X/2q2n+ I(Y1/2)

are orthogonal over (0, R2) with respect to y du(y/2) and y dr(y1 Our earlier
results, applied separately to these two pairs of sequences, yield conclusions not
directly obtainable by considering {p(x)} and {q(x)}.

The next two theorems follow from Theorem 1.
THEOREM 4. Suppose (19) holds and

(22) p,(R) > O, q,(R) > O, r O, 1,....

Then" (i) b.. >__ 0 in (20)/f

2 x)JP2r(X) dr(x) <- O, O<__j<r<=n,

for some x >__ R, and b, > 0 if at least one of these inequalities is strict for each r;
(ii) c, >_ 0 in (21)/f

f (X2 x)JxP2j+ I(X)dr(x) __< O, O<-_j<r<=n,
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for some x2 R, and cr, > 0 if at least one of these inequalities is strict for each r.
THEOREM 5. Suppose (19) holds and

(23)
pzr(0) > 0, q2,(0) > 0,

r=0,1,...
p ,(0) > 0 q+ + 1(0) > 0

Then" (i) b,, >= 0 in (20)/f

(- (x + xIp(xt clv(xt <= o, O<j<rn,

for some number xl, and b,. > 0 if at least one of these inequalities is strict for each
r; (ii) c.. >__ 0 in (21) if

(-1) (x2 + x.)xp2+ l(X)ely(x) <__ O, 0 <= j < r <__ n,

for some x2, and cr, > 0 if at least one of these inequalities is strict for each r.
The next theorem follows from Theorem 2.
THEOREM 6. Suppose (19) holds and

dr(x) p(x2) du(x),

where p(y) has n derivatives on (0, R2). Then" (i) b,, >= 0 and c,, >= 0 in (20) and (21)
if(23) holds and

(24) Y- JE(y + y2)jp(y)]) __< 0, 0<y<R2 O<j<s<n

for some number 7 moreover, br, > 0 and cr, > 0 if at least one of the inequalities
in (24) is strict for each s. (ii) The same conclusions hold if (22) holds and (24) is
replaced by

E(y y2)jp(y)](s) =< 0, 0<y<R2, O<=j<s<=n,

for some >= R.
Corollaries and 2 and Theorem 3 can also be adapted to the special case (19).

We present only the following adaptation of Corollary 1.
COROLLARY 3. Suppose (19) holds. Then a,, > 0 and b,, > 0 for all n in (20)

and (21)/f: (i)(22) holds and

do(x) (X X2) du(x)

with c > 0 and Xo >= R; or, (ii) (23) holds and

do(x)-- (x -- x2) du(x)

where c > 0 and Xo is any real number.
Example 4. By taking

du(x) (1 x2) dx

and

dr(x) (1 x2)u du(x),
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we obtain from (i) of Corollary 3 the following known result for Jacobi polynomials,
due to Gegenbauer"

P2""+ ")(x) b,.,,P;)(x)
r=O

and

+ +

r=O

whereb,>0andc,,>0forallnifa > -land>0.
Example 5. As applications of Corollary 3 (ii), we show that

(25) ( ) :P,’ (2x l) (-1) ",P;)(x)
=0

with,,>0forallnffa > -landfl> -1/2, and

(26) (,a)2x: )-’,. ,)..P, 1) (- 1 ... :+ (x)
t=O

with if,, > 0 for all n if a < 1 and fl > 1/2.
By substituting y 2x 1 in the orthogonality relation

pi’)(y)pi’)(y)( y)( + y) y o, r s,
-1

and using the evenness of the resulting integrand, we find that

(a #)(2x2(27) P.)(2x: ,Pi’ )( x:)(x:)+/ dx O,
-1

rs.

This can be interpreted to mean that {P’#)(2x2- 1)} is the "even-degree"
subsequence of a sequence of polynomials orthogonal over (-1, 1) with respect
to

dr(x) (1 xZ)a(x2)fl + 1/2 dx.

Since {P’")(x)} is orthogonal over (- 1, 1) with respect to

du(x) (1 x2)" dx,

we infer the stated conclusion concerning (25) by applying (ii) of Corollary 3, with
Xo 0 and c fl + 1/2, to the sequences {p2.(x)} and {q2.(x)} defined by

and

P2,,(x) (- 1)"P,;’)(x)

qz.(X) (- 1)"P(,")(2xz 1).

(The factor (-1)" adjusts the normalizations of {p2,(x)} and {qz.(X)} so that they
satisfy (23), as required in (ii).)



NONNEGATIVE EXPANSIONS 833

To prove the assertion concerning (26), we interpret (27) to mean that
{xPt.’a)(2x2 1)} is the "odd-degree" subsequence of a sequence of polynomials
orthogonal over (- 1, 1) with respect to

dr(x) (1 x2)(x2)a- a/z dx,

and apply (ii) of Corollary 3, with Xo 0 and c =/- 1/2, to the sequences
{/2.+ a(x)} and {2.+ (x)} defined by

2n +1(X) 1)"P,;,(x)

and

2,,+ x(x) (- 1)"xP."a)(2x2 1).

The results in this example can also be deduced from earlier known properties
of the Jacobi polynomials.
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NOTE ON RECIPROCITY RELATIONS ASSOCIATED WITH A
LINEAR HYPERBOLIC, PARTIAL DIFFERENTIAL EQUATION*

LL. G. CHAMBERS"

Many problems of mathematical physics are special cases of the problem
defined as follows. b is a function of position _x and time which satisfies the
differential equation

(1)
i:1 x/

p -b fl y-ff f, xsD, > 0,

subject to the initial conditions

(2) [],:o fl, xD,

xeD,

and the boundary conditions

(4) 4)=gl, xFx, t>0,

c3__ kq5 g2, xF2, > 0,(5) cr

P, a, fl, 7,f ,f2 are all functions of position only andf, g, g2 are functions of position
and time. is the closure of D and its boundary OD which comprises the disjoint
union of two portions F and FE--either of which may comprise the whole of the
boundary.

The conditions for the uniqueness of the solution to this problem have been
discussed by Chambers (1970), Murray (1972) and Murray (1974) for the case
p unity. (The same conditions are clearly valid if p is real and positive everywhere
except over a set of measure zero and differentiable everywhere.) a, 7, k must be
real and nonnegative, fl may be complex, but its real part must be nonnegative.
The uniqueness of the solution is equivalent to saying that if all off, f1 ,rE, gx, g2

are zero then b is zero. Thus each of f, fl, f2, g l, g2 may be regarded in a
generalized sense as a source. (f, fl, fz, g, g2) may be referred to as a source
system. The question of reciprocity relationships in such time-dependent prob-
lems have been considered in a few special cases by Mnola (1967) and Murray
(1972) but no systematic listing of reciprocity relationships appears to have been
given.

* Received by the editors November 12, 1974, and in revised form April 29, 1975.

-School of Mathematics and Computer Science, University College of North Wales, Bangor,

Wales.
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If the convolution of two functions is defined in the usual way by

(6) b* b(t- z)(z)dz qt*b

and, if superfixes A and B refer to two different source systems and the associated
excitations, by applications of Green’s Theorem it can be shown that

fr 4)" 1 da + fr (gff a g n)p dag * gf * v p * *

+ f " +1 -f! + dr.

By putting all except one of the different source functions f, fl, f2, gl, g2 zero in
turn, five different reciprocity relations follow. It will be noted that if y is zero
everywhere, there is not any reciprocity relationship involving source functions
of type f2. This would be expected for if y vanishes, equation (1) would only need
one initial condition for its solution. The relations are

(8a)

(8c) fo f" dv fo fA dr,

,8d) fr g*Pda fr g*Pda,

(8b)

(8e)

By applications of Green’s theorem it may also be shown that, if G(_x, _x’, t)
is the Greens function defined by

(9) -(O-xG) /7
gG

p -G- ti=1

2G
_-=-= (_x ’),5(t), x, x’ D, > 0,

the initial conditions

(10) G 0, x D,

(11) c3t
0, x e D,
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and the boundary conditions

(12) G 0, x F x, > 0,

(13)

then

(14)

-+- kG O, x F2, > 0,

b f(x) + tfz(x + Jo G * [f(x’, t) f(x’) tfz(x’)] dr’- * [g (x’ t) f (x’) f2(x’)]p da’

+ G * gz(x’, t)
c3fx(x’) - kfa(x’ -t

r v’ c3v’

Note. The full analysis can be obtained from the author.

+ kf2(x’)}lp da’.
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DISTRIBUTION THEORY AS THE BASIS OF A
POSTULATIONAL FOUNDATION OF LINEAR OPTICAL SYSTEMS*

REUVEN MEIDAN"

Abstract. Linear operator theory in the framework of Schwartz’s distribution theory is.applied in
order to model the physical behavior of the optical linear system. A distinction is made between co-
herently and incoherently illuminated systems. The incoherent system admits a unique set of postulates
which leads to new concepts of positivity and an Ll-type of passivity. On the other hand, the coherent
system exhibits a characterization essentially similar to the scattering formalism of the electrical
network.

1. Introduction. When linear operators are applied to model the behavior of
a physical system, the common example treated is the electrical network. Youla,
Castriota and Carlin [7], Zemanian [8], Wohlers and Beltrami [6] propose sets
of postulates motivated by the physical nature of the electrical network. These
postulates are imposed on the operator, and their effect on the characterization
of the operator is then analyzed.

In this work, the optical system is investigated. It may serve as an additional
physical example for the application of linear operator theory. The optical system
constributes two types of linear systems depending on the type of illumination,
whether it is coherent or incoherent. As will be shown, the coherently illuminated
optical system provides a set of postulates which resembles the scatter-passive
formalism of the electrical network. However, the physical behavior of the in-
coherently illuminated system is described in terms of a unique set of postulates
leading to new concepts of positivity and passivity.

The physics of the optical system under consideration is outlined in 2.
In 3 the coherent system is briefly treated comparing it to the familiar electrical
network. Section 4 constitutes the main part ofthe work. It is devoted to the unique
postulates connected with the incoherent system and to the characterizations of
the operator which follow. The framework ofthe analysis is Schwartz’s distribution
theory. This is compatible with the abovementioned works on electrical systems.

2. The physics of the optical system. The optical system under consideration
consists of optical materials which perform a linear operation on the electromag-
netic field. These are composed of lenses, glass surfaces, pupils, partially absorbing
materials, prisms, etc. Nonlinear devices like photomultipliers are excluded. Two
physical planes are used to display the input and output functions, respectively.
The input function is introduced in the object plane whose two spatial coordinates
(x, y) constitute the two-dimensional argument of the input function. The output
function is obtained on the image plane and is again a function of the two spatial
coordinates (, /) of the plane. In the medium between these two planes, various
optical materials are introduced. The system is illuminated by an external light

* Received by the editors September 16, 1974, and in final revised form July 22, 1975.
f School of Engineering, Tel-Aviv University, Tel-Aviv, Israel.
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source which illuminates the object plane and generates an electromagnetic
wave in the visible range. A transparency which is introduced in the object plane
serves to locally modulate the amplitude and phase of the electromagnetic il-
lumination. The result of this configuration is an electromagnetic field Vo(x, y, t)
at each point (x, y) of the object plane. This field is transformed by the optical
system to an electromagnetic field V(, r/, t) in the image plane.

One distinguishes between a coherent illumination, like the light of the laser,
and an incoherent illumination, like the light of the sun. The interested reader is
referred to Beran and Parrent [1] for these considerations. The facts which are
relevant to our work here are as follows:

(I) The coherently illuminated optical system determines a linear operation
between the complex amplitudes of the electromagnetic fields in the object and
image planes, respectively. Hence the system defines a linear operator which maps
a complex-valued function on R2 into another such function.

(II) In contrast, the incoherently illuminated system defines a linear trans-
formation between the intensity distributions of the two planes. Since the intensity
at a spatial point is the square of the modulus of the complex amplitude, the input
and output functions have real nonnegative values.

The last physical consideration is the concept of passivity. Let lo(x, y) denote
the light intensity at the object plane. Its integral over the object plane determines
the total power entering the system. Similarly, Ii(x, y) denotes the intensity at
the image plane, and its integral over the image plane expresses the total power
leaving the system. Since there are no internal power sources, we obtain the follow-
ing passivity condition:

(1) Io(x, y) dx dy Ii(, r/) d dr/.

3. The coherent system. Zemanian [8] pursues the "postulational foundations
of linear systems", based on the electrical network. It is instructive to compare the
properties of the optical operator to the postulates of the electrical one. First, the
optical system operates on functions of two-dimensional variables. Second,
since the argument consists of the spatial coordinates of a physical plane, the pos-
tulate of causality is not applicable here. The concept of passivity holds in a weak
rather than in a strong sense. By weak passivity we mean that the upper limits of
the integration in the passivity constraint of (1) are at infinity; this is in contrast
to the use of finite upper limits to express the so-called strong sense of passivity
used in reference to the electrical system.

The above considerations are common to both types of illumination. Specific
to the coherent system are the following"

(i) The coherent operator exhibits a linear transformation between complex
amplitudes, which are complex-valued functions of the spatial coordinates of the
planes. Hence unlike the electrical operator, it need not be real; namely, it does
not necessarily map real functions into real functions.

(ii) The passivity constraint of (1) involves intensities. Hence the coherent
passivity is the usual LZ-type of passivity familiar from the scattering formalism
of the electrical system.
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4. The incoherent system. In the preceding section, we saw that the coherent
system is controlled by postulates which are quite similar to the scattering for-
malism of the linear passive electrical network. The incoherent system, however,
provides a unique set of postulates which leads to several new concepts. We start
by introducing the concept of positivity.

Following Zemanian [8], we will start by considering a restrictive domain set
and a broad range set for the operator. This initially allows a large class ofoperators
for the analysis. Let @ denote the space of infinitely differentiable testing functions
on R2 with compact support and @’ its dual. 9 is equipped with the usual testing
function topology, and 9’ is equipped with its weak dual topology. Let denote
the positive cone in , namely, the set of nonnegative testing functions. Let
denote the positive cone in 9’ of positive distributions, namely, elements of 9’
which assume nonnegative values on the cone of positive testing functions. It
is well known (Gel’fand and Vilenkin [2]) that ( consists of the positive Radon
measures on R2. Let L be an operator which maps into (. L is said to be sublinear
if it is linear on the cone ; namely, letf, f2 e and 2,/2 be nonnegative scalars.
L is sublinear if L(2afa + ,2f2) 2Lf nt- 22Lf2. The cone is generating in
i.e., every testing function in 9 can be expressed as the difference of two positive
functions of @. It follows that every sublinear operator L from into ( can be
uniquely extended as a linear and positive operator from 9 into 9’. We say that
an operator from into 5’ is positive if it maps into (.

We show now that the positivity of a linear operator implies its continuity.
Actually, this is a special case of a more general theorem regarding positive oper-
ators in ordered topological vector spaces (e.g., Peressini [5]). However the positive
operators here exhibit an extendibility property in the sense that they can be
uniquely extended as continuous operators from cg into c,. cg denotes the space
of continuous functions with compact support and ’ its dual. cg is equipped by
the usual inductive limit topology and ’ by the weak topology generated by

THEOREM 1. Let L be a positive linear operator from into 5’. Then it is
continuous. Moreover, it is uniquely and continuously ext.endible from c into

Proof Let {f,} be a sequence converging to zero in @. We prove that {Lf,}
converges to zero in 9’. Indeed,

-M. =< f.(x, y) =<
where M. maxx,r f,,(x, y).

Let 2(x, y) be a positive testing function which is equal to unity over the
compact set which contains all supports of { f.}. Then

-M,,2(x, y) <= f,(x, y) <= M,,2(x, y).

We apply the operator L on the terms of the inequality. Since L is positive
it is order preserving,

-M.L2 <= Lf, <= M,L2,
where the inequality is interpreted in the sense of the order induced in ’ by the
cone (g of positive distributions. Hence if g is a positive testing function, then

M,,(L2, g) _< (Lf,,, g) _< M,,(L2, g).
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Since {f,} converges to zero by hypothesis, M, converges to zero. (L2, g) is
a positive constant. It follows that {(Lf,, g)} converges to zero with respect to
positive testing functions g. But since every testing function in @ can be represented
as the difference between two positive testing functions, we have that {Lf} con-
verges weakly to zero in @’. This establishes the continuity of L as an operator
from into @’.

From the above, it follows that {Lf} converges to zero ir {max f,} converges
to zero and if there exists a compact set which contains all supports of {f}.
But this is equivalent to saying that L is continuous on for the relative topology
induced by cg

c. Since 9 is dense in cgc, it follows that it is uniquely extendible onto
cg, where the extended operator is continuous from cg into 9’. It can easily be
verified that the extended operator is positive as well. Hence we have that L(Cg)
cg’

c. By an application of the closed graph theorem, we have that L is in fact a
continuous operator from cg into

At this point the assumption of regularity is introduced. Let L be an operator
from into 9’. It is said to be regular if its range is contained in cg, the space of
continuous functions, considered here as a subspace of @’. This assumption is
justified from a physical viewpoint in view of the consideration that the output
of a physical system should at least be a continuous function when the input is
an infinitely differentiable testing function (e.g., Newcomb [4]). For regular
operators, we have a representation in terms of a scalar product (Meidan [3]).
Combined with the positivity we can state Theorem 2.

THEOREM 2. Thefollowing statements are equivalent:
(i) L is a linear positive and regular operatorfrom into ’.

(ii) L is extendible as a linear continuous and positive operator from cg into
c, where the latter is equipped by the countable norm topology generated by the
uniform compact seminorms.

(iii) There exists a mapping (, r/) K,n(x, y)from R2 into which is weakly
continuous and such that the operator L is representable by

(2) (Lf)(, rl) (Kn(x, y), f(x, y)), f

(iv) L is the transpose ofL. It is a linear, positive and weakly continuous operator
from ’ into cg, such that

(3) K,

where 6 are the shifted impulsefunctionals in q’,

(4)

Proof The main part of the theorem is proved in [3]. It remains only to
consider the connection with the assumption of positivity. It can easily be verified
that the operator L is positive ifand only ifU is positive and ifand only if the family
K,(x, y) is a family of positive distributions in 9’. By the positivity ofU it is meant,
of course, that it maps the positive cone of’ into the positive cone of ’.
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We consider now the concept of passivity connected with the incoherent
operator. Let f(x, y) be an input function. Then by the passivity constraint of (1)
and the fact that f(x, y) represents an intensity function, we obtain the following
inequality:

ILfl d drt Ifl dx dy.

DEFINITION. Let L be a linear operator from into @’. L is said to be in-
coherently passive if Lf is an integrable function and inequality (5) holds for all
fs.

Youla et al. [7], in their work on linear, time-invariant, passive electrical
networks, were mainly concerned with the usual L2 scattering type of passivity.
However they also mentioned an Ll-type of passivity, leaving the question of
physical significance of such passivity unsettled. Hence the incoherently illumin-
ated optical system provides the requested physical example for it.

Next, the investigation of the operator under the assumption of incoherent
passivity is pursued. First, the passivity enables one to extend the domain of
definition onto L1, as is expressed in the next theorem for which the proof is
obvious.

THEOREM 3. There is a linear isomorphism between the class oflinear incoherently
passive operators and contractions in L1. The isomorphism is obtained by continuously
extending the domain ofdefinitionfrom onto L 1.

Incoherent passivity combined with regularity allows the definition of an
integral of the operator in the following sense.

THEOREM 4. Let L be a linear regular and incoherently passive operator from
@ into ’. Let K,,(x, y) denote thefamily ofdistributions connected to L by Theorem
2. Then the integral

(6) f_ofo <K.,(x. y). f(x. y)> d dr/

existsfor each f and defines a distribution I in ’. Symbolically we write

(7) I K,7(x, y).d dr

where <I, f> is expressed by (6)for each f @.
Proof Since L is incoherently passive,

<Ke,,(x, y), f(x, y)>

is an integrable function for each f e @. It follows that the integral in (6) exists.
The linearity of L is obvious. It remains to verify its continuity. Indeed, I can be
considered as a composite operation I J L, where J denotes the functional on
L obtained by taking the integral of the absolute value of the elements of L1.
Since L is continuous from @ into L and J is a continuous functional on L1,
it follows that I is a continuous functional on @.
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THEOREM 5. Let L be a linear, regular and continuous operatorfrom into ’.
L is positive and incoherently passive if and only if 0 <= I <= 1.

Proof. The direct statements are fairly obvious; hence only the converse
needs proof. Following the hypotheses with respect to L, I has a meaning. For
I >__ 0, it is necessary that K,n(x, y) be positive distributions for each (, r/). This
follows from the continuity of the mapping (, r/)- K,n(x, y) from RE into ’,
which is a consequence of the regularity of L (Theorem 2). But if K,,(x, y) are
positive, L is positive, again by Theorem 2.

Since I _<_ 1,

(Lf) d d <_ f dx dy

for each fe in @. Assume any fe @, and decompose it into its positive and
negative parts,

f=L-f .
Then, due to the linearity and positivity of L, fp and f, as continuous functions are
in the domain of the extended operator and

Lf <__ Lfp + Lf
But

]Lf] d dr <= (Lfp + Lf.) d dq <= (fp + f.) dx dy

If[ dx dy,

which establishes the requested passivity of L.
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AN ASYMPTOTIC FLOQUET THEOREM FOR
LINEAR ALMOST PERIODIC SYSTEMS*

DENNIS D. BERKEY"

Abstract. We consider the differential system x’= [A + B(t)]x with B(t) continuous and almost
periodic. Conditions are given under which there exist n independent solutions of the form
q(t) exp.[’ u(s) ds with q and u almost periodic. The analogy with Floquet’s theorem for periodic systems
is indicated.

1. Introduction. We consider the differential equation

(1) x’(t) [.4 + B(t)]x(t), (-o, o),

where x(t)= col(x(t),-.., x(t)) is a complex n-vector and A and B(t) are
complex n n matrices with A constant and the entries of B(t) continuous.
Floquet’s theorem of 1883 [7, Chap. III] states that if B(t) is periodic of period T
then every fundamental matrix solution of (1) has the form

(2) X(t) n(t)ect

where P(t) is periodic of period T and C is constant. However Floquet’s theorem
does not in general hold if B(t) is assumed only to be almost periodic (a.p.) (see,
for example, [2] or [5]). Partial analogues have been given, prominent among
which is Coppel’s [3] which states, in part, that the a.p. system (1) has a fundamental
matrix of the form (2) with P(t) a.p. if the distance of the set of differences {a
of the eigenvalues of A from the extended spectrum of B(t) is positive.

The problem described here is to be distinguished from the almost constant
coefficient case although similar results have been obtained in this area. Bellman
has shown that if A has simple eigenvalues and [[B(t)ll- 0 as - + o, then
corresponding to each eigenvalue 2, there is a solution xz of(l)satisfying

lim t-x log Ilx(t)l[ Re 2.
t--

Hartman and Wintner [8] and later Sibuya [9] have established similar results
for systems containing a parameter u and have relaxed the condition liB(t, u)ll --, 0
to liB(t, u)ll =< f(t), where

sup (1 / p t)- f(s) ds - 0 as + o.
p>=t

In this article, we show how the implicit function theorem can be used to
characterize solutions of system (1) when B(t) is (Bohr) almost periodic. Our
approach is elementary in that only the most immediate properties of almost
periodic functions are used. Our result is to be distinguished from those for the
almost constant coefficient case described above since we require only that
be small.

* Received by the editors July 3, 1975, and in revised form September 1, 1975.
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2. The theorem. Specifically we prove the following theorem.
THEOREM. Let B(t) in (1) be a.p. Let ,4 diag (21, "’", 2n) with Re (2 2i) : 0

for v j. Then for ]IBII sufficiently small, the equation (1) possesses n independent
solutions xk of the form

(3) x(t) (p(t) + e) exp 2t + v(s) ds

where e col (i1, , ..., n), v(s) is an a.p. scalar function, and

(4) p(t) col (p(t), ..., p,_ (t), O, p.+ (t), ..., p(t)),

where pkj(t) and p’kj(t) are a.p., <= j <_ n.
Before turning to the proof, we point out the analogy with Floquet’s theorem.

We first recall that if v(t) is an almost periodic scalar function, then the mean
value M of v(t) defined by

M lim v(t) dt

exists independent of a [4]. Denote by M the mean value of v(t) and let q(t)
p(t) + e. From our theorem, the solutions x approach the form

(5) x(t) q(t) e +

as -- oe with q a.p. and . + M constant. For the case B(t) periodic, we would
have, from Floquet’s theorem, equality in (5) with q(t) periodic and 2 + M a
characteristic exponent of the system (1).

Note also the distinction between our result and those above for the almost
constant case. We have that

lim - log [[Xk(t)[[ Re 2k + Mk.

Obviously, imposing liB(011 0 would force MR O, k 1, ..-, n.

Proof of the theorem. Let k e { l, ..., n}. Denote by Pk(t) any complex n-vector
function of the form (4), where Pkj and p,j are a.p. functions of t. Denote by Vk(t
any a.p. scalar function of t. Since an almost periodic function is necessarily
bounded, we may define

f sup f(t)[[

for f(t) an a.p. scalar or vector function of t. We can now define the Banach spaces
Bk for k l, ..., n by

with norm defined by

Bk {(Pk, Vk))

II(Pk, Vk)ll- IlPkll + IIp,ll + Ilvkll.
The completeness of B follows from the properties that (a) the uniform limit of
a sequence of a.p. functions is again a.p., and (b) if Pk is a.p., then p, is a.p. if and
only if p, is uniformly continuous (see [5, Chap. 1]).
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Let B2 denote the Banach space of all almost periodic n x n matrix functions
with norm consistent, with the norm chosen on complex n-space, and let C denote
the Banach space defined by

by

C {col (yx(t),’", y,(t))ly(t) is a.p., _< j =< n}.

We now consider the mapping Fk’B] B2 C for each k n defined

Fk((pk, Vk), B)= P’k [Ak + B](Pk + ek) (Pk + ek)Vk,

where ek (61k, 62k,’’’, tnk) and

Ak A 2kI, 1 identity.

Observe that Fk(O)= O. Since Fk is linear in its second component, it has a
continuous partial derivative with respect to its second component in a neighbor-
hood of zero. We next observe that

Fk((pk, VR), O) FR((O, 0), O) Fk((pk, Vk), O)
p, [Ak + 0](Pk + ek) Vkek VkPk.

We therefore define the linear map LR’Bk -* C by

Lk(pk, Vk)= P’k- AR(PR + ek)- Vkek

and note that

IIVkPklIc
(Pk Vk)

Vk I1" IlPk< < IIPII 0
IIPII / IIP,II / IIvll

as II(Pk, Vk)IIB7 O. Thus VkPk Fk((pk, Vk), O) Lk(pk, Vk) is o(ll(Pk, Vk)ll) from
which it follows that Fk has a partial derivative in a neighborhood of zero with
respect to its first component. We next show that Lk is a bijection. Let f
col (fl, ..., f,) be arbitrary in C. The equation

Lk(pk, Vk) f
is equivalent to the system

l)k fk,

P’k + YlPkl f,

Pk,k-1 + "k- lPk,k-1 fk-1,

Pk,k+l t_ k+lPk,k+l fk+l,

Pk,n d- TnPkn fn,

where 2 2k, j 1, ..., n.
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We thus let ok --fk and recall (see [5, Thm. 5.9]) that the differential equation

(6) P’kj(t) + YjPkj(t) fj(t), <= j <= n, j 4: k,

has the unique solution

(7) p(t) e-’ e’ f(s) ds + e’ f(s) ds

Letting p col(p, ..., p,_,O,p,+, ..., p.), we now have that
(p, v) is the unique element in B so that L(p, v) f. Since f was arbitrary
in C, L is a bijection. Since L is clearly continuous by our preceding observations
and the implicit function theorem for Banach spaces (see [6]), there exists a bounded
open neighborhood S of the origin in B such that to each B e B with
suciently small and positive corresponds a unique nonzero element (p, v) in S,
so that F((p, v), B) , i.e., so that

(8) p(t) [Ak + B(t)](Pk(t + ek) (Pk(t) + ek)Vk(t).

Now via the substitution x(t)= y(t)e, the equation (1) transforms into
the equation

(9) y’(t) [Ak + B(t)]y(t),

and via the second substitution, y(t) (Pk(t) + ek)exp Vk(S)ds, the equation (9)
transforms into (8). Since (Pk, Vk) is the unique solution of (8) in B] for k 1, ..., n,
we have that

x(t) (p(t) + e) exp 2t + v(s) ds

satisfies (1) for k l, ..., n.
Finally we indicate the independence of x,..., x,. Let c, .., c be

constants for which the equation

(10) cx(t) + + cx(t) 0

holds for all t..If c 0 for some j e { 1,..., n}, we have from (3) and (10) that

(11) p(t) + e c2 c(p(t) + e)exp (2 2)t + (v(s)- v(s)) ds

Now let B(t) (b(t)), and note from (8) that

(12) b(t)p(t) + b(t) v(t) 0

holds for all and each k 1, ..., n. Since Pk remains in a bounded neighborhood
ofthe origin as BII 0, it follows from (12) that vk -- 0as lib --* 0,k 1,..., n.
This implies the existence of an e > 0 so that

lim for(13) Mkj f Too
(Ok(S) Vj(S)) ds
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holds for all k 1, ..., n, k # j, whenever Ilnll < e. Using the equality in (13),
we have from (11) that

(14) p(t) + e C[lCk(Pk(t) + ek)e

as . Since pk(t) is bounded and Re (2k 2j) # 0, it follows from inequality (13)
that for [Inll < , the right side of(14)must either approach zero or become infinite
as contradicting the almost periodicity of pj. The contradiction implies the
stated independence. Q.E.D.

An immediate extension of the preceding theorem is the following corollary.
COROLLARY. Let 2, 2, denote the eigenvalues of A. (f Re (2i 2i) -: 0

for all # j, then for liB sufficiently small, the equation (1) possesses n independent
solutions of the form Xk(t qk(t) exp (2At + Vk(S ds) with qk and vk almost periodic.

Indication of proof. Since the eigenvalues of A are distinct, we can find a
matrix S so that S-AS D, where D is diagonal with eigenvalues 21, .-’, 2,.
Now C(t) S-B(t)S is again almost periodic, so by our theorem the equation

(15) y’(t) [D + C(t)]y(t)

has n independent solutions of the form (3) for IICII sufficiently small. But BII 0
as C --’ 0 and y is a solution of (15) iff x S- y is a solution of (1). Since y has
the form (3), x has the stated form. Q.E.D.

REFERENCES

[1] R. BELLMAN, Stability Theory of Differential Equations, McGraw-Hill, New York, 1953.
[2] C. CONLEY AND R. MILLER, Asymptotic stability without uniform stability, J. Differential Equations,

(1965), pp. 333-336.
[3] W. A. COPPEL, Almost periodic properties ofordinary differential equations, Ann. Mat. Pura Appl.,

(1967), pp. 27-49.
[4] C. CORDUNEANU, Almost Periodic Functions, Interscience, New York, 1968.
[5] A. M. FINK, Almost Periodic Differential Equations, Springer-Verlag, New York, 1974.
[6] L. M. GRAVES, Implicit functions and differential equations in general analysis, Trans. Amer. Math.

Soc., 29 (1927), pp. 514-552.
[7] J. K. HALE, Ordinary Differential Equations, Wiley-Interscience, New York, 1969.
[8] P. HARTMAN AND A. WINTNER, Asymptotic integrations of linear differential equations, Amer. J.

Math., 77 (1955), pp. 45-86.
[9] Y. SIBUYA, A block-diagonalization theoremfor systems oflinear ordinary differential equations and

its applications, SIAM J. Appl. Math., 14 (1966), pp. 468-475.



SIAM J. MATH. ANAL.
Vol. 7, No. 6, November 1976

OSCILLATION OF SOLUTIONS OF THE DIFFERENTIAL
EQUATION y "d- p(x)y f(x)*

THOMAS WALLGREN"

Abstract. In this paper we study the behavior of solutions of the differential equation

(NH) y" + p(x)y f(x),

where p(x) and f(x) are continuous and p(x) is positive. In particular, the role of the concavity quotient
A(x) f(x)/p(x) is delineated.

The first part of the paper relates boundedness of A(x) to boundedness of solutions of (NH).
One result is that all solutions of (NH) are unbounded when A(x) is unbounded, IA’(x)l < B, and
p(x) > > O.

In the second part of the paper, general sufficient conditions for oscillation are examined, for the
two cases f(x) positive and f(x) oscillatory. Some results extend oscillation theorems in a recent paper
of Leighton and Skidmore, while others are unrelated to that paper. The following is proved: If deriva-
tives of solutions of

(H) z" + p(x)z 0

are bounded and A(x) 0 +, or if solutions of (H) are bounded and j’ If(x)l dx < , then oscillation
of (H) is a necessary and sufficient condition for oscillation of all solutions of (NH) except possibly one.

1. Introduction. In this paper we study the behavior of solutions of the
differential equation

(NH) y" + p(x)y f(x),

where p(x) andf(x) are continuous on the real line, and p(x) is a positive function.
With this equation we associate the corresponding homogeneous equation

(H) z" + p(x)z O.

Several papers have appeared recently dealing with equation (NH), notably
those by Keener [5], and by Leighton and Skidmore [8].

In the present paper we discuss boundedness of solutions of (NH) and extend
some earlier oscillation theorems. In this connection, the role played by the
concavity quotient f(x)/p(x) in determining the behavior of solutions of (NH) is
delineated.

In our analysis we shall frequently employ the following basic formula, which
may be verified by differentiation:

(1.1) ’f(x)z(x) dx [y’(x)z(x) y(x)z’(x)].

Recall that if z(x) is a nonnull solution of (H) such that z(a) 0 and the first
zero of z(x) following a occurs at x ca, ca is the (first) conjugate point ofa.

If u(x) is a nonnull solution of (NH) or of (H), we say u(x) is oscillatory if u(x)
has arbitrarily large zeros on (a, ); and we say u(x) is nonoscillatory if there is a

* Received by the editors March 29, 1974, and in final revised form June 16, 1975.
Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65201.
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number b such that u(x) :/: 0 on (b, oe). We say (H) or (NH) is oscillatory (or
nonoscillatory) if all solutions are oscillatory (nonoscillatory). The differential
equation y" + y 1 that has, for example, solutions and 1 + 2 sin x shows that
(NH) may be neither oscillatory nor nonoscillatory.

The following basic result is known, and follows easily from (1.1).
LEMMA 1.1. Iff(x) > 0 on (a, o) and (H) is oscillatory, then
(i) any solution of (NH) which is positive at a point b must be positive over

some interval of theform Ix, cx] containing b; and,
(ii) no solution of(NH) can be negative over any interval (x, cx).
We note that any statement corresponding tof(x) >_ 0 has a dual correspond-

ing to f(x) <= O, since w(x)= -y(x) satisfies w" + p(x)w -f(x) whenever y(x)
satisfies (NH).

2. Boundedness of solutions and the function f(x)/p(x). If we define A(x)
f(x)/p(x), we can rewrite (NH) as

(2.1) y"(x) p(x) [A(x) y(x)].

It follows that any solution of (NH) is concave down or up at x according as it is
above or below A(x); all solutions "bend toward" A(x). Consequently, bounded-
ness of solutions of(NH) is closely related to the behavior of the concavity quotient
A(x)

The following result is fundamental and is an immediate consequence of (2.1).
LEMMA 2.1. If y(X) is any solution of (NH), then at least one of the following

OCCtIFS

(i) y() A(x) oscillates;
(ii) y() L as c, L finite;

(iii)
(iv) y(x)
Keener [5] noted that yff(x)dx oe implies that any nonoscillatory

solution of(NH) is eventually positive; hence, when f(x) is a positive function,
condition (ii) with L < 0, or condition (iii) can occur only if j’ f(x)dx < oe and
(H) is nonoscillatory.

We come to the following group of theorems related to Lemma 2.1.
THEOREM 2.2. If A(X) > bx + c on (a, oo)for some constants b and c, and if

f p(x) dx , no solution of(NH) stays above A(x) + , for any > O.
Assume the contrary, that there is a solution y(x) of (NH) and a number e, > 0

such that y(x) > A(x) + e on (b, oo) for some b > a. We have

y"(x) f(x)- p(x)y(x) < f(x)- p(x)[A(x) + e] -p(x)e.

Then y’(x) < y’(a) p(x) dx -o as x . Eventually, y(x) must fall
below any straight line--hence, below A(x). From this contradiction, we infer the
truth of the theorem.

Example. No solution of y" + eXy xe stays below (x e) on (b, o) for any
e > 0 and any b. Note that all solutions of z" + eXz 0 are bounded, and indeed,
approach zero as x m (Cesari [3, p. 85] .)

If A(x) is bounded and o p(x)dx o, it follows from Lemma 2.1 and
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Theorem 2.2 that for any solution y(x) of(NH), [y(x) A(x)] oscillates or y(x) L
as x , where lim infx. A(x)<= L <= lim SUpx-o A(x). That both types of
behavior can occur may be seen from the equation y" + y L + 2e -x, which has
the general solution y(x) L + e + ca cos x + ca sin x.

A well-known result of Leighton [6, p. 230] states that if p(x) dx m, then
(H) is oscillatory. Theorems 2.2 and 2.3 can be considered extensions of this
theorem to (NH).

THEOREM 2.3. If p(x) dx-- v, and f(x)l dx < , then no solution of
(NH) is bounded away from zero.

To prove the theorem, assume there is a solution y(x) such that [y(x)l > e > 0
on (a, ). Since y(x) 4 0 on (a, ), it satisfies the homogeneous equation

(2.2) y" + P(x)y O,

where P(x)= p(x)- (f(x)/y(x)). Now,

P(x) dx > p(x)
If(x)l

dx oe

It follows that (2.2) must be oscillatory, and hence that y(x) must oscillate. This
contradicts the original assumption.

We note that if the finiteness conditions on f(x) and p(x) are interchanged in
Theorem 2.3 (i.e., if I2 p(x)dx < and f2f(x)dx ) an analogous proof
shows that no solution of (NH) is bounded above.

In the next group of theorems we prove several sufficient conditions for
boundedness of solutions of (NH).

THEOREM 2.4. If A(x) is of bounded variation on [a, ) and all solutions of(H)
and their derivatives are bounded, then all solutions of(NH) are bounded.

The proof follows from applying an integration by parts to the variation of
constants formula.

A sufficient condition for all solutions of (H) and their derivatives to be
bounded is p(x) q(x) + r(x), where q(x) L > 0 as x , q(x) is of bounded
variation, and Ir(x)l dx < (Cesari [3, p. 81]).

We apply the theorem to the equation

x + sin x
y" +y=

X X2

Since A(x) sin x/(x(x + 1)), all solutions are bounded for x > e > 0.
A sufficient condition that all solutions of (H) be bounded is that p(x)=

q(x) + r(x), where q(x) is a monotone function, q(x) > > O, and Ir(x)l dx <
(Beltman 1, pp. 112, 113]).

Hammett [4] proved that ifsolutions of(H)are bounded and j’ff If(x)[ dx < ,
there is a solution y(x) of (NH) such that y(x) 0 as x ; hence, that all
solutions of (NH) are bounded. We note that if y(x) solves (NH), then w(x)=
[y(x) A(x)] solves w" + p(x)w -A"(x). If we apply Hammett’s result to this
equation, we can conclude that if A(x) is C" on [a, ), j’ Ih"(x)] dx < , and
solutions of (H) are bounded, then [y(x) A(x)] is bounded for all solutions y(x)
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of (NH). In particular, if A(x) is increasing and concave down (or decreasing and
concave up), boundedness of (NH) is equivalent to boundedness of A(x).

It follows, for example, that all solutions of the equation y" + xy In x are
bounded for all e > 0, while all solutions of the limiting equation y" + y In x
are unbounded.

We note that if there is an unbounded solution u(x) of (H), then there is ar.
unbounded solution of (NH). For, if y(x) is any solution of (NH), it follows that
y(x) or [y(x) + u(x)] must be unbounded. The following lemma gives sufficient
conditions that there be an unbounded solution of (H).

LEMMA 2.5. Iff, p(x) dx < oo, or ifp(x) --, 0 as x 0, there is an unbounded
solution of (H).

The proof is quite direct, using the well-known result that if u(x) and v(x) are
any linearly independent solutions of (H), W =__ u’(x)v(x) v’(x)u(x), and y(x)=
x//u2(x) + v2(x), then y(x) satisfies the differential equation y" + p(x)y W2/y3.

Lemma 2.5 can be used to obtain sufficient conditions that there be an un-
bounded solution of (NH).

THEOREM 2.6. If A(x) as x , there is an unbounded solution of(NH).
If, in addition, f(x) dx , all solutions of(NH) are unbounded above.

We prove the second statement first. Let us assume there exists a solution
y(x) of (NH) that is < B on (a, ). Since A(x) , there is a number b > a such
that A(x) > 2B on (b, ). On this interval, we have f(x)/2 > Bp(x) and y"(x) >
f(x)/2. Then y’(x) - as x - , a contradiction. Hence, all solutions of (NH)
are unbounded above.

Now, suppose j’ f(x)dx < . Since A(x) > on some interval [c, ), it
follows thatf(x) > p(x) on this interval. Consequently, fff p(x) dx < . By Lemma
2.5, there is an unbounded solution of (H). Hence, there is an unbounded solution
of (NH). The theorem is proved.

We note that, if A(x) - and (NH) is oscillatory, then all solutions of(NH)
are unbounded (since oscillation of y(x) implies oscillation of y"(x).)

Along these lines, it can be proved in a straightforward manner that all
solutions of (NH) are unbounded whenever A(x) is unbounded, IA’(x)l < B, and
p(x) > > O.

3. Oscillation of solutions and the concavity quotient. In the remainder of
this paper we examine the effects of the function A(x) on oscillatory behavior of
solutions of (NH).

If an integration by parts is performed on the left-hand member of (1.1), we
obtain

(3.1) A’(t)z’(t) dt [y’(t)z(t)- {y(t)- A(t)}z’(t)],

where z(x) is any solution of (H) and y(x) is any solution of (NH).
One application of this identity is the following.
THEOREM 3.1. Suppose (H) is oscillatory and A(x) is C’.
(i) If A(x) is decreasing and bounded below, then no solution stays above A(x)

on [a, ).
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(ii) If A(x) is increasing and bounded above, then no solution stays above A(x)
on [a, c).

We prove only (i); the proof of (ii) is strictly analogous. Let z(x) be a solution
of (H) with z(a) > O, z’(a) O. Then there is a point d > a such that z’(d) 0 and
z’(x) < 0 on (a, d). If y(x) is a solution of (NH) with y(a) > A(a), then either
y’(a) <= 0 or, by (3.1) with x d, y’(d)< 0. In either case, since y"(x)< 0 for
y(x) > A(x), it follows that y(x) must cut A(x). The proof is complete.

Next, we extend an idea used by Burton [2], Hammett [4], and Tefteller [9].
It iswell-known that if u{x) and v(x) are any functions of class C’ and

w[u, v](x) u’(x)v(x) u(x)v’(x) 0

on (a, ), then the zeros of u(x) and v(x) separate each other on (a, ). If yo(X) is
the solution of(NH) with a double zero at a, we have from (1.1) that

W[Yo, z] (x) f(t)z(t) dt for any solution z(x) of (H).

Consequently, yo(x) is oscillatory if and only if (H) is oscillatory, whenever there
is a solution z(x) of (H) for which fz dt is eventually of one sign.

Suppose there is such a solution z(x), and let u(x) be any solution of (H) such
that W[z, u] 1. If y(x) is any solution of (NH), y(x)= yo(x) + Cz(x) + Du(x)
for some constants C and D, and

(3.2) W[y, z] W[y0, z] D fzdt D.

It follows that oscillation of (H) is equivalent to oscillation of y(x) for all
solutions y(x) of (NH) for which the right-hand member of (3.2) is eventually of one
sign, that is, whenever D < L, or D > L*, where

L, lixm-,ooinf fz dt and L* lim sup fz dt.

Hence, unless L, - and L* + for all solutions z(x) of (H), oscillation
of (H) is a necessary and sufficient condition for oscillation of infinitely many
solutions of (NH).

A consequence of these remarks is that whenever limx-oo ]Xfz dt L (L
finite), oscillation of (H) is equivalent to oscillation of all solutions of (NH) except
possibly those for which D L. And if.f,.x fz dt converges to L from one side (say,
from above) we can let D L as well, and oscillation of (H) is equivalent to
oscillation of (NH).

In the same way, we observe that oscillation of (H) and (NH) are equivalent
when fz dt _+ . (Tefteller [9].)

That there may exist a unique nonoscillatory solution of (NH) can be seen
from the example y" + y 2 e -’, for which the only nonoscillatory solution is
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y e -x. We note that if a 0 and z(x) sin x,

fz dx 2 e sin x dx 1.

This computation illustrates the following result.
THEORU 3.2. If solutions of (H) are bounded and ’[f(x)[ dx < , then all

solutions of(NH) are oscillatory except possibly one.
The proof is an application of the preceding observations. If all solutions of

(H) are bounded, then .f p(x)dx , by Lemma 2.5; consequently, (H) is
oscillatory. Now,

0 < fzl at < B fl dt < .
Hence, limx_ a fz dt exists and is finite, for all solutions z(x) of (H) with z(a) O.

If we now define the solutions z(x) and u(x) of (H) by z(a)= O, z’(a)= 1,
u(a) 1, u’(a)= 0, it follows that all solutions of (NH) are oscillatory except
possibly those solutions y(x) for which y(a) O fz dx.

If c is the first conjugate point of a, and if is any value in (a, c), we define the
solution (x) of (H) by ()= 0, ’(t)= 1. By the same argument as before,

limx :f(t)(t)dt exists and is finite;and, for any nonoscillatory solution y(x)
of (NH), we have y(fi)= ’ f(t)(t)dr. But there is only one solution of (NH)
through the points (a, fz dr) and (fi, o 32 dt). We conclude that there is at most
one nonoscillatory solution of (NH).

For the remainder of the paper, let us assume that f(x) is a positive function.
Under this restriction, some of the foregoing observations can be sharpened.

If (H) is oscillatory and z(x) is the solution of (H) with z(a) O, z’(a) 1, let
ca, c2, e3, denote the successive zeros of z(x) following a; that is, let c. be the
nth conjugate point of a.

For n 1, 2, 3,..., define the solution y,(x) of (NH) by the conditions
y.(c,) y’.(c,) 0. We note that y,(x) > 0 for x near c.(x. # c,), since y,(x) has
the same sign asf(x) near c.. It follows from Lemma 1.1 that y,(x) > 0 on It,_ 1, ,)
and (c., c,+ 1].

LEMMA 3.3. Suppose (H) is oscillatory, y(x) is a solution of(NH), and Y, y,(a).
Then

(i) if y(a) >__ Yzm+ 1, y(x) has one zero on (Czm, C2m+ 1];
(ii) if y(a) <= Yzm, y(x) has one zero on (ezra-a, Czm] and,

(iii) Yzm < Yzm+l and Yzm < Yzm- l"

TO prove (i), we define u(x) y(x) Y2m+ l(x). We note that u(x) is a solution
of (H) with u(a) >= O. Then, by the Sturm separation theorem, tt(CZm >- 0 and
u(ezm+l) <-- O. But YZm+ l(Cm) > 0; hence, Y(Czm) > 0 and Y(Czm+ 1) =< 0. Conse-
quently, y(x) has a zero on (ezra, Czm+ 1]" That y(x) has only one zero on the interval
follows from Lemma 1.1.

The proofs of (ii) and (iii) are similar. Part (iii) also follows if we note that
Y. y.(a) c. fz dt, from (1 1)" hence, Y. + Y. fc.+, fz dt.

dCn
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A consequence of the lemma is that if (H) is oscillatory and the sequence { Y}
has a (finite) cluster point P, then there are infinitely many oscillatory solutions
of (NH). For at least one of the sequences { Y2,,}, {Y2m+l} must cluster at P, say,
{ Y2,,+ 1}. It follows that for every solution y(x) of (NH) with y(a) > P, we have
y(a) > Y2m+ for infinitely many integers m. Hence, (i) implies that y(x) is oscillatory.

It also follows from the lemma that if Y, or Y -, then (NH) is
oscillatory; and, if Y. L (L finite), then all solutions of (NH) are oscillatory
except possibly those solutions y(x) for which y(a) L. More generally, we observe
that (NH) has infinitely many oscillatory solutions unless both Y2,,/ + and
Y2m ct3" in other words, unless lim._. [fc. +, fz dt[ .

For example, y" + y f(x) must have oscillatory solutions whenever f(x)
is bounded. Another application of these ideas is the following.

THEOREM 3.4. Suppose (H) is oscillatory and derivatives of solutions of (H) are
bounded.

(i) If A(x) is bounded, then there are oscillatory solutions of(NH).
(ii) If A(x) 0 as x , then all solutions of (NH) are oscillatory except

possibly one.
To prove the theorem, let A, max {A(x); x in [c,, c,+ 1]}. We have

fz dt Az" dt < A,lz’(c.+ 1) z’(c,)[.

Conclusion (i) follows immediately from this expression. To prove (ii), we need
only observe that the left-hand member tends to zero, and apply an argument
like the one used to establish Theorem 3.2.

The same argument can be used to sharpen Theorem 3.2 when f(x) > 0: it
can be shown that if solutions of (H) are bounded and j’."+’f(x)dx O, then
all solutions of (NH) are oscillatory except possibly one. Consequently, all solu-
tions except possibly one are oscillatory for the equation y" + y f(x) whenever
f(x) 0 as x ---, .

Sufficient conditions that [z’[ + [z[ be bounded for all solutions z(x) of (H)
have been mentioned (Cesari [3, p. 81]). Another condition that [z’[ be bounded
for all solutions z(x) of (H) is that p(x) be positive and decreasing. This is known,
and follows from the identity p’z dt [z’ + pz].

To derive further oscillation properties, we require two identities. Suppose
g(x) is C’ and z(x) is any solution of the self-adjoint homogeneous differential
equation [r(x)z’]’ + p(x)z 0. It is readily verified by differentiation that

(3.3) (rz’) + (gp)’z2 dx [g{rz’2 + pz2}

This identity is due to Leighton. If we extend this result to equation (NH), we have

(3.4)

and

(3.5)

[g,y,2 + (gp),y2 + 2gfy’] dx [g{y,2 + py}],

[g,y,2 + (gp),y2 2(gf)’y] dx [g{y,2 + py2 2fy}].
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For the remainder of the paper, let us assume that p(x) and f(x) are continu-
ously differentiable (and positive).

Setting g(x) l/f(x) in (3.5), we get

(3.6) y,2 + y2 dx + (y 2A)

It follows immediately that iff(x) and A(x) are both increasing or both de-
creasing, then no solution of (NH) has two double zeros.

The general solution of the differential equation y" + y is y(x)= +
ca sin x + c2 cos x. The nonoscillatory solutions are and those which have rela-
tive extrema in the region 0 < y < 2. This example is a limiting case of Theorems
3.5 and 3.6, which follow. We note that Theorem 3.5 extends a result of Keener
[5, p. 63].

THEOREM 3.5. Iff(x) and A(x) are increasing and ify(x) is any solution of(NH)
such that y’(a) 0 and 0 <= y(a) <= 2A(a), then 0 < y(x) < 2A(x) on (a, ).

To prove the theorem, we suppose that at some point m > a, we have either
y(m) 0 or y(m) 2A(m). We apply (3.6) to the interval [a, m] and have

0 > y,Z + yZ dx [Y’(m)]Z
f(m)

y(a)
--ilyta)- 2A(a)] > 0,

since 0 _< y(a) <= 2A(a) and y’(a) 0. From this contradiction we infer the truth
of the theorem.

To illustrate the theorem, we note that if y(x) is any solution of y" + XY
(x 1/x)withy’(a) 0and0 <_ y(a) <__ 211 (1/a2)],then0 < y(x) < 2on(a, ).
On the other hand, we note that any solution of the equation y" + y 2 e
that has a horizontal tangent at any point must be oscillatory.

We observe that w(x)= y(-x) is a solution of the equation w"(x)+
p(-x)w(x) f(- x) whenever y(x) is a solution of (NH). Thus, for any statement
involving f’(x) or if(x) having one sign on (a, ), there is a dual statement in-
volvingf’(x) or if(x) having the opposite sign on , a). For example, if we make
A(x) decreasing instead of increasing in the hypothesis of Theorem 3.5, the con-
clusion is that 0 < y(x) < 2A(x) on (- , a). We use this observation in the next
theorem.

THEOREM 3.6. Suppose that A(x) and f(x) are decreasing and that (H) is oscil-
latory. Let y(x) be a solution of(NH) such that y(a) is outside the y-interval (0, 2A(a)).
Then y(x) oscillates, and each relative extremum of y(x) is outside the region
0 __< y __< 2A(x).

The proof is an application of Lemma 3.3. By the dual to Theorem 3.5, we
have 0 < Y, < 2A(a) for all n. From the lemma, it follows that for any solution
y(x) of (NH) with y(a) outside (a, 2A(a)), y(x) has one zero in each of the intervals
[a, ca), (c.a, c2), (c2, Ca),’". To complete the proof, we suppose that y(x) has a
relative extremum at T, and apply (3.6) to the interval [a, T]. Since y’(T) 0, we
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have

0 < y,2 q_ y2 dx

y(T) y’2(a) y(a)
[y(T) 2A(T)] [y(a) 2A(a)].

A(T) f (a) f(a)

The last two terms on the right are nonpositive, since y(a) is outside (0, 2A(a)).
Consequently,

y(T) [y(T) 2A(T)] > 0,

and each relative extremum of y(x) is outside the y-interval [0, 2A(x)]. The proof
is complete.

In [8], Leighton and Skidmore developed an analogue of the B6cher-Osgood
theorem [6, p. 226]. Theorem 3.7, that follows, extends their result.

THEOREM 3.7. Suppose p’(x) >- 0 and y(x) is a solution of(NH) with successive
relative maximum, minimum, maximum values at a, m, and M. Then

(i) ly(a)l > ly(m)l;and
(ii) if, in addition, A’(x) >= O, then y(a) > y(M).
If we .set g(x) lip(x) in (3.4), we have

0 > y,Z + 2Ay’ dx yZ(m) y2(a),

and (i) follows at once.
To prove (ii), we assume that y(M) >= y(a). Then y(m) > y(x) on (a, M). If we

set g(x) lip(x)in (3.5), we have

[yZ(x)- 2y(x)A(x)] y,2 2A’y dx

< 2y(M)[A(a)- A(M)].

Simplifying this inequality, we obtain

y2(M)- y2(a) < 2A(a)[y(M)- y(a)].

Hence 2A(a)> [y(M)+ y(a)] _> .2y(a). It follows that y(a)< A(a). But this is
impossible since y(a) is a relative maximum. We conclude that y(M) < y(a), and
the proof of the theorem is complete.

Acknowledgment. I wish to express my thanks to Professor Walter Leighton
for suggesting that I undertake this study.
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MAXIMIZATION OF GREEN’S FUNCTION OVER CLASSES OF
MULTIPOINT BOUNDARY VALUE PROBLEMS*

P. W. BATES AND G. B. GUSTAFSON"

Abstract. An inequality is established for the Green’s function of a multipoint boundary value
problem, which estimates the multipoint Green’s function by two-point Green’s functions. This basic
inequality leads to a maximization principle for Green’s function over classes of boundary conditions.

1. Introduction. The purpose of this paper is to establish a maximization
identity for the Green’s function G(t, s;, T) of the multipoint boundary value
problem

k-1

(1.1) ytk) + p,(t)y,)= f(t),
i=0

(1.2) ytJ)(si) O, 0 <__ j <= n 1, 0 <__ <= v,

where (no,’", n), 2i:0 Hi k, T {so <... < s}, f e C[a, b-I.

The maximization identity, in the simplest case, takes the form

(1.3) sup IG(t,s;z, 7)1 max IG(t,s;[3, S)l,
(a,r)e,k (,S)e,

pointwise in (t, s). In the space L1, the identity is

sup G(t, s; o, T)[ ds max [G(t, s; fl, S)[ ds.(1.4)

In both (1.3) and (1.4), ff is the class of all boundary conditions (1.2) with
a So <’.. < s b, v + __< k, and 2 is the class of two-point boundary
conditions of the form (1.2). The operator on the left in (1.1) is assumed to be
disconjugate on [a, b].

The function F(t)= supt,r)y(.blG(t,s;, T)lds appears in the study of
boundary value problems in the following way. Suppose y(t) is a solution of (1.1)
which arises by a purely existential argument. For example, suppose (1.1) is ob-
tained from a nondisconjugate equation ytk) + qk- (t)Ytk- ) + + q0(t)Y 0 by

k-1selecting f(t) i=0 [Pi(t) qi(t)]Y3(t)
Then problem (1.1), (1.2) is inverted to

(1.5) y(t) G(t, s; z, T). f(s) ds

and we obtain the operator inequality

(1.6) I[y](t)l _-< IG(t,s; , T)I ds fll

* Received by the editors March 17, 1975, and in revised form July 7, 1975.
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for the linear integral operator c on the right side of (1.5). To obtain an estimate
for I11, we would have to maximize the integral in the right side of (1.6). The
problem that emerges is that [a, b] is fixed, but we really did not know the location
of T, or the multiplicities assigned by a. So the best that can be said is

(1.7) I[y](t)l _-< F(t)llfll.
On the other hand, writing out j’, IG(t, s;, T)I ds is to no avail, because the

best known formula has terms which change sign, and it does not respond to
simple algebraic manipulation. Therefore, relation (1.4) makes a precise and
essential contribution to the estimation of I111.

Ramifications of (1.3) and (1.4) and their generalizations are to appear in a
forthcoming paper by Bogar and Gustafson [4], which treats the question of
estimating the length of the disconjugacy interval, and the length of intervals of
uniqueness for multipoint boundary value problems (1.1), (1.2).

An intermediate step in obtaining (1.3) and (1.4) is to prove an inequality,
which for the special case v k is

k-1

(1.8) IG(t,s;, T)I < Z(s,_,,s,)(t)lG(t,s;,,S)l,
i=1

where S {a < b}, ei (i, k i). Inequality (1.8) leads to estimates in the spaces
C[a, b] and Ll[a, b] which imply (1.3) and (1.4). Accordingly, (1.8) may prove to
be of independent interest, aside from the maximization problem discussed in this
paper.

Attempts to compare (1.8) with the Beesack inequality [2] for D",

(1.9) IG(t, s;
k !(b a)

have led us to believe that each inequality has its virtues, with (1.9) being quite
good near each interior point s, and (1.8) being quite good near the ends a, b. Of
course, Beesack’s inequality (1.9) does not apply to maximization problems of the
type considered in this paper.

Potential use of (1.8) has been greatly increased by recent research of the
authors [1] on two-point problems. We have illustrated the contribution of [1]
to inequality (1.8) in the examples of 6.

The program to establish (1.3) and (1.4) is as follows. First, in 2 we introduce
notation and terminology. In 3 and 4 we show that G(t, s; , T) is differentiable
in the boundary data variable si, provided n 1, and we determine the sign of
this derivative. The differentiation result is used in 5 in a monotonicity argument
to establish (1.8) and certain generalizations. Then we proceed to prove the
maximization formulas (1.3) and (1.4) in 6 with the aid of the Green’s function
convergence theorem in Gustafson [7].

Illustrations for nonspecialists appear in 6.

2. Preliminaries. Consider the linear ordinary differential equation
k-1

(2.1) Ku=O; Ku= u) + pi(t)ui),
i=0

withpC[a,b],0<= <= k 1.
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Throughout the paper, it is assumed that K is disconjugate on [a, b], that is,
K admits a Libri-Frobenius-Mammanafactorization
(2.2) Ku b; 1(... (b; l(b- lu)’)’..- )’

with hi(t) > 0 on [a, b], 0 =< =< k. This condition can be tested in terms of the
coefficients of K (see Willett [19], Hartman [8], Levin [10]). A direct attack is to
show that no solution has k zeros on [a, b], counting multiplicities; this has been
shown equivalent to (2.2) by Polya [16].

The terminology "u has a zero of order at T" will be used to denote the
Nicoletti boundary conditions

(2.3) ui)(sj) O, 0 <= <= nj 1, 0 <= j _<_ v,

where we write a (no,’", n), T {So < < s}, and demand always that
]a]-= i=oni k. Unless otherwise stated, we shall assume that v _>_ 1, a So,

Green’s function. The Green’s function G(t,s;a, T) for problem (2.1), (2.3)
always exists under the disconjugacy assumption. This function is the kernel of
the linear integral operator which inverts the problem

(2.4) Ku f, u has a zero of order a at T,

hence the unique solution of (2.4) is

(2.5) u(t) G(t, s; t, r)f(s) ds,

for eachf C[a, b].
Define for each u

by the relation

(2.6)

Define for each fixed basis U (u 1,..., Uk) of Ku 0 a k x k matrix Z
Z[U; , T] as follows" the columns of Z are the vectors 5(ul), ..., (Uk).

Let W(s) denote the Wronskian matrix of U(s), define e(u) for u >= 0,
e(u) 0 for u < 0, and put h(t, s) U(t)W- l(s)e, e _= (0, 0, 1)r Rk, ’(t, s) =-
e(t s)h(t, s). Define V _= V[a, T] by

V(s) diag (e(So s)l,o, e(s, s)l,),
where 1j is the j x j identity matrix.

The following representations of Green’s function are valid (see Gustafson
[7, 2 and 5])"

(2.7) G(t, s; , T) e(t s)h(t, s) U(t)Z- 1V(s)ZW- l(s)e,

(2.8) G(t, s; o, T) (t s) U(t)Z- &a[Cg( s)].

The function h(t, s) is the Cauchyfunction for the operator K; it satisfies h)(s, s)
6,_ [Kronecker’s delta] where h =_ [?/Ot]Jh. The connection between (2.7) and
(2.8) is that w[vg(., s)] V(s)Y’[h(., s)] and 5[h( s)] ZW- l(s)e. Relation
(2.7) is efficient for explicit computation, provided one selects U such that
Z[U;e, T] I. In practice, the use of (2.8) in computation reduces to the use of
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(2.7). Relation (2.8) can be considered as a reformulation of a scalar identity for
two-point problems due to Westfall [18] (see also Birkhoff [3, p. 378]); it has
definite advantages in proofs. For example, the following lemma follows easily
from (2.8), but is not evident from (2.7).

LEMMA 2.1. The Green’s function G(t, s; o, T) is continuous on [a, b] [a, b].
LEMMA 2.2. Let K be disconjugate on [a, b]. Then

(2.9) -I (t- si)-n’G(t,s;,T)>O, a <s<b, a__< t=<b,
i=0

where (2.9) is interpreted as a limitfor si, 0 <= <= v.

Proof. See Coppel [5] or Pokornyi [15].

3. The boundary data derivative ofG. The purpose ofthis section is to establish
some special differentiability results for G(t, s; , T) in the boundary data variable
T.

Let us now state this more precisely. Put
o (no,... nio_X, 1, nio+ l, n),

T(s*) {so <... < Sio-a < s* < Sio+X <"" < sv}.
The project is to define for each fixed t, s the function f:s* G(t, s;, T(s*)) on
the open interval (So_ , So + ), and establish some differentiability properties of
the function f.

Throughout,
io-

ko 1+ nj,
j=0

which denotes the row location of u(s*) in the vector 5(u). The standard unit
vectors in R are denoted by e, 1, ..., k.

The set difference T(s*)\{s*} is defined to be" the ordered set {So <’" <
So-1 < So/ < < sv}. Terms not defined here are located in 2, in Gustafson
[7], or else are standard terms of analysis.

LEMMA 3.1. Using the notation as given above, let / ck-2[a, b] Rk be
defined by //u (0,..., O, u’(s*), 0,..., 0)(u’(s*) in position ko). Then the follow-
ing relation is valid for (t, s) e [a, b] x [a, b]:

G(t, s;, T)= U*(t)tOs,z-lq[(. s)]- #[)rf(., s)]/’(3.1)
c3s*

where U*(t) U(t)Z- and Z Z[U e, T].
Proof Compute, using relation (2.8).
LEMMA 3.2. Using the notation given above, let y(t; s*)= G(t,s; , T(s*))

f(s)ds, and denote by u(t) the unique solution of Ku 0 with a zero of order
(no,’", nio- 1, nio+ 1, nv) at T(s*)\{s*}, u(s*) 1. Then for each f C[a, b],

(3.2) ,(t; s*)= u(t)y’(s* s*), a <__ <__ b.

Proof To prove (3.2), employ (3.1), then after a justification of differentiation
under the integral sign one has

c3y
(t" s*) U*(t) ’5(’[ot( s)] /g[grg( s)] f(s) as

Os* -fs* Z "’ "’
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To evaluate the integral, observe that cZ/t3s* has koth row U’(s*) and all other
rows zero therefore the portion {... } of the integrand is a multiple ofthe standard
unit vector eko Rk. Since u(t) U*(t)eo, the desired identity is a consequence of
the equality

y’(s* s*) { U’(s*)Z- Sa[( s)] )(’(s*, s)} f(s) ds,

which follows immediately from (2.8).

4. The sign of the boundary data derivative. The purpose of this section is to
establish a theorem on the sign of the boundary data derivative (3/cs*)
G(t, s; , T(s*)) of Green’s function. Throughout, let

P(t;a, T) =- -1 (t
i=0

THEOREM 4.1. Let K be disconjugate on [a, b]. Then

(4.1) c3P(t.a T(s*))[--filG(ts’a T(s*)) > 0

Remark. The question of strict inequality in relation (4.1) will not concern
us, since inequality is sufficient for the purposes of this paper.

The proof of relation (4.1) will use the following result.
LEMMA 4.2. Let K be disconjugate on [a, b] and put

y(t s*) G(t, s; , r(s*))f(s) ds,

with f e C[a, b], f > O. Then

(4.2) 0 < s,(t;a, T(s*)) ;s*) s* f’

for a < <= b (interpret as a limit when necessary).
Proof The hypothesis of disconjugacy implies that y(t;s*) cannot have addi-

tional zeros, counting multiplicities. Indeed, otherwise f(t) Ky would have a
zero in [a, b], by Rolle’s theorem, and the Libri factorization of K; see Coppel [5].

In particular, y’(s*;s*) : O, so cy/Os* is a nontrivial solution of Ku 0, by
virtue of (3.2). But, according to Lemma 3.2,

gy
c3s*

-u(t)y’(s* s*)’

and IV(t; , T(s*))/(t s*)]- u(t) is never zero, so (4.2) will be proved if it can be
shown to hold for a single value of t; we intend to verify (4.2) for s*.

Since K is disconjugate, one can apply Lemma 2.2 to obtain P(t;, T(s* +
h))G(t, s;, T(s* + h)) >= 0 for h > 0 and small.

On the other hand,

t3y
(s*" s*) lim

y(s*; s* + h)
tOS* hO + h
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because y(s*;s*) 0. But

;cx, T(s*)) It- s*- hi P(t;a,T(s* + h)),

and taking s* in this relation, we have

8P ,y(s* s* + h)s, (S , T(s*))

h .P(s*’ T(s* +h))G(s*,s ,T(s* + h))f(s)ds> 0

Now divide by h, limit, and obtain (4.2) for s*. This completes the proof.
Proof of Theorem 4.1. Let

oY{’(t, s) c-ssP, (t [c 1a, T(s*)) G(t, s; , T(s*)).

Since :f’(t, s) 0fort T(s*)\{s*},itsufficesto prove (4.1) in caset T(s*)\{s*}.
For such fixed values of t, Jf’(t, s) is sectionally continuous as a function of s, and
by Lemma 4.2, a :K(t, s)f(s) ds > 0 for every f C[a, b], f > 0. Therefore, (t, s)
cannot take on a negative value; this completes the proof.

5. General inequality theory for Green’s function.
LEMMA 5.1. Let S {So < sl <’" < st-1 < sr+l <"" < sv}, S(s*)--

S U {s*} for s,_ < s* < s, + 1, and put

o (no,’", n_l, 1, n,+ x, nv),

+ (no, nr-l,n,+l + 1, nv),
a- (no,... n_l + 1,n+l, n).

Q(t) =_ Q(t a, s)= fi (t
i=0

If K is disconjugate on [a, b], s, (sr_ 1, s+ 1), then

(5.1) Q(t)[G(t,s;a+,S)- G(t,s;a,S(s))] <= O,

(5.2) Q(t)[G(t,.s;a,S(s))- G(t,s;a-,S)] <_ O.

Proof It is easy to verify that Q(t)= -(c3P/c3s*)(t; a,S(s*)), hence Q(t)
[c3/c3s*] G(t,s; , S(s*))<= 0 by Theorem 4.1. By virtue of the Green’s function
convergence theorem in Gustafson [7], the mapping s* G(t, s a, S(s*)) is con-
tinuous on s,_ =< s* =< st+l; therefore (5.1) and (5.2) follow from (4.1) and the
mean value theorem.

Remark. The proof of the Green’s function convergence theorem in [7] for
the special case considered in this paper can be obtained from (2.8) using
L’Hospital’s rule.

LEMMA 5.2. Let T {So <’" < s}, a (no,..., n), S T\{sr}, -(no, ", n,-1 + n,, n,+l,-.., n), a+ (no,-", nr_l,n, + n+l, "-, nv).
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IfK is disconjugate on [a, b], then

(5.3) [G(t,s;o, T)[ =< Zt,,(t)[G(t,s;o+,S)[+ Ztsr,bl(t)[G(t,s;o-,S)l.
Proof. Define S(s*)-- {So <"" < s_ < s* < s_t <... < s}. The result

is proved by finite induction on the integer n,.
Consider first the case when n 1. If Q(t) is the polynomial of Lemma 5.1,

then by Lemma 2.2,

( s*e.(O(t, s , S(s*)) >= o.

If s > 0 and s_ ( S* ( St, then s* > 0, so Q(t)G(t, s; , S(s*)) >__ O.
An application of Lemma 5.1 gives

(5.4) 0 <__ Q(t)G(t, s; o, T) <_ Q(t)G(t, s; -, S),

valid for s < __< s. We may take absolute values in (5.4) to obtain

(5.5) Ztsr,v](t)[G(t, s; , T)[ __< Zt,,v](t)[G(t, s; - S)[.

In a similar way, consider < sr and sr __< s* < st+ 1. Then

Q(t)G(t, s; , S(s*)) > 0

and Lemma 5.1 gives

(5.6) Q(t)G(t, s; +, S) >__ Q(t)G(t, s; , T) >__ O.

Taking absolute values in (5.6) gives

(5.7) Zo,s(t)[G(t, s; , T)[ __< Zo,,(t)[G(t, s; +, S)[.

Now let’s use the fact that G(s,, s; e, T) 0 and add (5.5) and (5.7) to obtain
relation (5.3) in the special case n 1.

Suppose now that relation (5.3) has been proved for n __< I. We prove it for
G=/+I.

Let T(s*) T U {s*} for s_ < s* < st. Define

fl=(no,’",n_l,l,n,- 1,n+l,...,n),

fl+ (no,..., n) a, fl- (no,"’, n,_l + 1,n, 1,nr+l,..., n).
By relations (5.1), (5.2), for s,_ < s* < s, < t,

Ql(t)[G(t,s;+, T) G(t,s;, T(s*))] __< 0,

Ql(t)[G(t,s; fl, T(s*)) G(t,s; fl-, T)] =< 0,

where Q l(t) (t s*)Q(t). Adding these two inequalities and employing Lemma
2.1, we have for > s, > s* the inequality

(5.8) [G(t, s; fl +, T)[ =< IG(t, s; fl- T)[.

Let us now invoke the induction hypothesis that inequality (5.3) holds
whenever zeros are assigned at s,. Then (5.3) applied to (fl-, T) gives

Zt,](t)[ G(t, s; fl- T)[ __< Zt,s](t)[ G(t, s; -, T)[.
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However, fl + , so the preceding inequality and (5.8) give

(5.9) Z,,(t)lG(t, s; , T)I _-< Z,,s(t)lG(t, s; -, T)I.

In a similar way, one can show that

(5.10) Zto,i(t)[.G(t, s; , T)[ __< Zto,(t)[ G(t, s; +, S)[.

Adding relations (5.9) and (5.10) proves the lemma.
THEOREM 5.3. Let q >_ 2 and 0 <- p <__ v be integers, p + q <= v, and put
(no,"’, n,), T {So <’" < s},
S {So <...<Sp < s+, <... < s},

p+j-1 p+q

no,...,np_ x, ni, ni, np+q+ x,...,,n j <= q.
i=p i=p+j

If K is disconjugate on [a,b], and ro =-So, ra --Sp+l, %_ =-Sp+q_,
rq sv, then

q

(5.11)a [G(t, s; , T)[ <= Zt_,,)(t)lG(t, s; j, S)[.
j=l

Proof This is easily proved by induction on q, using the preceding lemma.
Indeed, Lemma 5.2 establishes the result for q 2. If the inequality is valid for all
integers =< q l, then to prove it for q, proceed as follows. By the induction hypo-
thesis, the zeros ro, "", %-2 will satisfy an .inequality (5.11), with j and S re-
placed by and $, to help keep the notation appropriate. The Green’s function
G(t, s; 1, S) on the right side of (5.11)q_ will have a multiple zero at Sp+q_ 1" By
Lemma 5.2, applied to the point rq_ Sp+q_ 1, the following inequality is valid"

(5.12) IG(t,s;,)l <= Zto,_)(t)lG(t,s;j+,S)[ + Zt,_,,)(t)[G(t,s;j-,S)[,
where S has the meaning given in the hypothesis of the theorem. Therefore, using
(5.12) for __< j <__ q 1, relation (5.11)q_ gives

q-2

IG(t, s; , T)l _-< Zt_ ,)(t)lG(t, s; , )1 + Zt,_ 2,,)(t)[G(t, s; q_ , )1
j=l

q-2

<= Zrj_,,rj)(t)lG(t,s; / ,S)[ / Zr,_2,,_l)(t)lG(t,s; a-1 / ,S)I
j=l

/ Zq_,,q)(t)[G(t, s; a- --, S)[.

It is easily verified that j j+ for =< j =< q 1, and % a-1- therefore
the induction is completed, and the theorem is proved.

Remark. At first appearance, it would seem that relation (5.11) is not the
most general relation possible. However, because of the Green’s function con-
vergence theorem in Gustafson [7], every inequality of this same kind can be
obtained from (5.11) by a limiting procedure.

Remark. Simple induction using relation (5.11) is sometimes convenient. For
example, let us start with (2, 1, 3, 1, 5), T {So < sl < s2 < $3 < $4}. It is
clear from relation (5.11) that we can estimate G(t, s; , T) by 3-point problems at



866 P. W. BATES AND G. B. GUSTAFSON

S---{SO < S2 < S4}. In fact, using 1 (2,1,3,6), z (2, 1,4,5) and $

{So < Sl < s2 < s4}, one has

IG(t, s; , T)I =< Zto,(t)lG(t, s; ,, )l / Zt3,4(t)lG(t, s; 2, )l

<= Zto,,)(t)lG(t, s; +, S)l + Zt,,s3)(t)lG(t, s; x -, S)[

+ Z,.s,)(t)[G(t, s; 2 -, S)[,

where x- (3, 3, 6), + (2, 4, 6), 2- (3, 4, 5).

6. Maximization of G(t, s; or, T). Let us now reap the benefits of the results
of 5, and establish the following maximization theorems.

DEFINITION 6.1. Define S {So <’" < st, < to <’" < tr}, p 0 or r 0
allowed. Set

aj mo, mp + ni, o + ni, x,..., lr
i=0 i=j

where no nq are fixed integers with IjI k, and mo, "’, mp,/o, l are
-1 0).fixed, 0 _< j _< q + E,=o E=q+l

Let if(a) be the class of all T, where

a (mo, pand
...,m no n lo l)

T= {so <... < st,< xo <... < x < o <... < t},
and Xo, "’, x are arbitrary within the interval (st,, to).

THEOREM 6.2. Let K be disconjugate on [a, b]. Then

(6.1) sup{lG(t,s;a,T)[’Tff(a)} max [G(t,s;aj, S)[.
O__<j-<q+l

Proof By inequality (5.11) of Theorem 5.3 we have

JG(t,s;a, T)I <-_ max ]G(t,s;
O_<j_<q+l

On the other hand, by the Green’s function convergence theorem in Gustafson
[7],

IG(t,s’%,S)l sup {IG(t,s;a, T)I" T if(a)},

for 0 =< j =< q + 1. This completes the proof of (6.1).
THEOREM 6.3. Let K be disconjugate on [a, b]. Then

(6.2) sup [G(t,s;a, T)lds" T(a) max [G(t,s;aj, S)lds.
0-<j-<q +1

Proof The proof of (6.2) parallels that of (6.1). To reverse the inequality
supplied by integration of (5.11), apply the convergence theorem in Gustafson [7]
for the space LX.

COROLLARV 6.4. Relations (1.3) and (1.4) are valid.
Illustrations for nonspecialists. Consider the special case p 0, q v in

Theorem 5.3. Write mj Z-5o n. Then S {a,b}, % (mj, k- mj)and the
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following inequality is obtained"

(6.3) IG(t, s; , T)I =< i ZEj(t)IG(t, s; j, S)I.
j=l

An application of Theorem 3.1 in Bates and Gustafson [1] gives

(6.4) IG(t,s;,T)l <-_ ZEj(t)min{v’(t)v*(s) w,,(t)W*m(S)
=1 v’)(a) Iwfm)(b)l J’

* * satisfy Kv K’v*where E (s_ , s). The functions Vm, Vm, Wm, W mj

Kw=K*w* 0 and have zeros of order (m,k-m- 1) (k-m- m)mj

(mj 1, k mj), (k mj, mj 1), at S, respectively. Furthermore,

(__ 1)k-m- 119(k-mj- (b) v*(k-mj- (a) w- (a) (- 1)m- lw*(mJ- (b) 1--mj mj mj

The solutions Vm, v, Wm, W arc easily found, so (6.4) gives a simple pieccwisc
separable estimate for IG(t, s;, T)I, whenever K is disconjugatc on [a, b and the
adjoint K* of K is defined.

V’" V’Example 6.5. The operator Kv + on [0, X], (1, 1, 1), T=
{o < c < x}.

A short calculation gives

2 sin (t/2) sin [(X 0/2]
sin (X/2)

v’(t)= Wz(t)= w’(t),

sin2 (t/2)
w(t) v2(t)= sin2 (X/2)’

Therefore, as long as 0 < X < 2re,

G(t, s;, T)I 5

w(t) v(t)= vz(X- t).

2 sin [(X 0/2] sin (s/2)
min J2

sin2 (X/2)

2 sin (t/2) sin [(X s)/2]
sin2 (X/2)

2 sin sin X-2 t)’sin(X 2-s) sin

Example 6.6. The operator Kv /.)(k) on [a, b],

x (no ,nx,..., nv), T {a So < s <... < sv =b}.

Using the boundary conditions we compute the following"

(t- a)mffb t)k-m-
Vmj(t) (b a)mJ(k mj- 1)!

(t a)m- X(b t)k-m
Wmj(t)-- (b a)-;(--mS- 1)!’

(S a)k-m- (b s)mj
V*mj(S) (b a)m(k mj- 1)!’

W,m(S
(S a)k-m(b s)m-I

(b a)k-mJ(mj- 1)!



868 P. W. BATES AND G. B. GUSTAFSON

Thus,

and

mj !(b a)k- ms-1v)(a) (k mj 1)!(b a)mj

wfmJ)(b) (- 1)-m(b a)m- l(k m)!
(b a)k-m(m 1)!

for =< j =< v. This gives

[(t a)(b s)]m- l[(b t)(s a)]k-m-I
I(t, s; T)I Zj(t)

=1 (m- 1)(- m- 1)(- a)-.min{(t-a)(b- s) (b t)(s-a)}mj k- mj

For the special case k 4, (1, 1, 1, 1), r {a < c < d < b},
=(,,, =(,,, =(,,, r=r=r={a<c<b},

we obtain the estimates"

where

f,(t,s)

f:(t,s)

A(t,s)

[G(t, s; oil, T1) =< Zta,c)(t)fl(t, S) + Ztc,d)(t)f2(t, S) + Ztd,b)(t)f3(t, S),

[G(t, s; a2, T2) =< Zt.,o(t)fl(t, s) + Ztc,b)(t)f2(t, S),

[G(t, s; a, T3) =< Zta,O(t)fl(t, S) + Xtc,b(t)f3(t, S),

[G(t, s; a, T,)[ =< Zta,o(t)f2(t, s) + Ztc,b(t)f(t, S),

(b t)2(s- a)2 {min (t- a)(b s),
(b t)(s- a)

2(b a)3 3

(t a)(b s)(b t)(s a) {2(b-a)3 min (t-a)(b-s),(b-t)(s-a)

(t a)2(b S)2
min { (t a)(b s)

2(b a)3 3
(b t)(s a)

Example 6.7. The operator Ky yiv y on [0, X], X 4.73,

(1, 1,1,1), T- (O<c<d<X}.
The boundary conditions give the following identities"

cosh X -eos X
v,(t)

2

cosh (X t)- cos (X t)
cosh X cos X

V3(t)
sinh sin

sinh X sin X’

sinh (X- t)- sin (X- t)-]
sinh X sin X J
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V(t) W3(t Vl(X t), w(t)--

/)(t)-- Wl(t v3(X t), w(t)

sinh X sin X
v2(t w(t)= v(X- t),

-coshXcosX

V(t) W2(t v2(X t).

Thus

{ Vl(t)Vl(X- s) v3(X- t)v3(s)}[G(t,s;, T)[ __< ZO,c)(t)min Z oo1 -oX’ 2

[sinh X sin X]

+ c,a)(t)min {v1(X t)v(s), v(t)v(X s)}

min
v3(t)v3(X s)

+ Za,x)(t) 2

sinh X sin X
cosh X cos X

’1 -coshXcosXJ
[sinh X sin X].

For the cases (1, 1, 2), (1, 2, 1) and (2, 1, 1) with T {0 < c < X}, the bounds
are obtained from the preceding estimate by letting d X, d c and c 0
resp., and putting d c in the latter.

Example 6.8. The operator Kv viv + v on [0, X], X _<_ 5.553,

=(1,1,1,1), T= {0<c<d<X}.
This operator will be disconjugate on [0, X] where X is the first positive root

of tan [(X/x/ + (/4)] ex. Solving numerically, 5.5530 < X < 5.5531.
Let y x/,/ 1/x/, and put

Then we get

and

e
--z(t),

2

cos /x +

v3(t) e

vz(t) e -act-x)
z(t)
z’(X)’
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Further,

w,(t) v_(x t), v.*,(t) v(x t), w.*,(t) w(X t),

for 1,2,3. Thus

min 1/2)e -tx+t-)z(t)z(X s) etx+t_)y(X t)y(s)I(t s;, T)[< ZO,c)(t) ( z’(X) y(X)

+ Z(,e(t)min (eS-’z(t)z(X s), e"-Sz(X t)z(s)

+ Z(a,x)(t)min1/2{e -t(x+-t)z(X-t)z(s) etx+-t)Y(t)y(X-s)}z’(X) y(X)

where

z’(X) [e’x 2 sin 2 fiX]2 q- sin2 (2fiX).

The bounds for different (, T) are found as in Example 6.7.
Remark 6.9. For the operators (D y)k, [D2 2yD + 2 +//2]2, and

(D 7)2(D fl)2, the reader is referred to Bates and Gustafson [1, 5].

REFERENCES

[1] P. W. BATES AND G. B. GUSTAFSOrq, Green’s function inequalities for two-point boundary value
problems, Pacific J. Math., 59 (1975), pp. 327-343.

[2] P. R. BEESACI, On the Green’s function of an n-point boundary value problem, Ibid., 12 (1962),
pp. 801-812.

[3] G. D. BIRKHOFF, Boundary value and expansion problems of ordinary linear differential equations,
Trans. Amer. Math. Soc., 9 (1908), pp. 373-395.

[4] G. A. BOGAR AND G. B. GUSTAFSON, Effective estimates of invertibility intervals for linear multi-
point boundary value problems, The University of Utah, Salt Lake City, 1974.

[5] W. A. COPPEL, Disconjugacy, Lecture Notes in Mathematics 220, Springer-Verlag, New York,
1971.

[6] K. M. DAS AND A. S. VATSALA, On Green’s function ofan n-point boundary value problem, Trans.
Amer. Math. Soc., 182 (1973), pp. 469-480.

[7] G. B. GUSTA.FSON, ,4 Green’s function convergence principle, with applications to computation and
norm estimates, The University of Utah, Salt Lake City, 1974.

[8] P. HARTMAN, On disconjugacy criteria, Proc. Amer. Math. Soc., 24 (1970), pp. 374-381.
[9] ., Ordinary Differential Equations, John Wiley, New York, 1964.
10] A. Ju. LEVIN, Someproblems bearing on the oscillation ofsolutions ofordinary differential equations,

Dokl. Akad. Nauk SSSR, 148 (1963), pp. 512-515.
[11] G. LIBRI, MOmoire sur la rOsolution des kquations algObriques dont les racines ont entre elles un

rapport donn, et sur l’intOgration des quations diffOrentielles linOaries dint les intOgrales
paticuliOres pervent sxprimes les unes par les autres, J. Reine Angew. Math., 10 (1833),
pp. 167-194.

[12] Y. MAMMANA, Decomposizioni delle expressioni differenziali lineari omogenee in prodotti di
fattori simbolici e applicazione relativa allo studio delle equazioni differenziale lineari, Math. Z.,
33 (1931), pp. 186-231.

[13] Z. NEI-IARI, On an inequality ofBeesack, Pacific J. Math., 14 (1964), pp. 261-263.
14] V. V. OSTgOUMOV, Unique solvability of the de la Vallee Poussin problem, Differential Equations,

4 (1968), pp. 135-139.



MAMAXIMIZATION OF GREEN’S FUNCTION 871

[15] Yu. V. POKORNYI, Estimates for the Green’s function for a multipoint boundary value problem,
Math. Notes, 4 (1968), pp. 810-814.

[16] G. POLYA, On the mean value theorem corresponding to,a given linear homogeneous differential
equation, Trans. Amer. Math. Soc., 24 (1922), pp. 312-324.

[17] n. L. ROYDEN, Real Analysis, Macmillan, New York, 1963.
[18] W. D. A. WESTFALL, Zur Theorie der Integralgleichungen, Dissertation, University of G6ttingen,

Germany, 1905.
19] D. W. WILLETT, Generalized de la Vallee Poussin disconjugacy testsfor linear differential equations,

Canad. Math. Bull., 14 (1971), pp. 419-428.



SIAM J. MATH. ANAL.
Vol. 7, No. 6, November 1976

SOME A PRIORI BOUNDS FOR NONLINEAR VOLTERRA
EQUATIONS*

J. J. LEVIN-

Abstract. A priori bounds are obtained for the solutions, x, of the real vector Volterra equation
x(t) + o a(t s)g(x(s))ds f(t) under several different sets of hypotheses on the prescribed functions
a, g and f. In each case, the key conditions are on a and g. Thus there is a positivity assumption on
the matrix a(0) and an assumption on g which, in the scalar case, is typified by (but less restrictive than)
the hypothesis xg(x) >_ 0 (-o < x < ). The known procedure of reducing the problem of global
existence to that of finding an a priori bound is briefly reviewed together with a relevant local existence
theorem.

1. Introduction. In this paper, some a priori bounds are obtained for con-
tinuous solutions of the real Volterra equation

(1.1) x(t) + a(t- s)g(x(s))ds f(t), 0 <__ < t*,

where t* e (0, oe], g and f are prescribed vectors with values in ’, a (a0 is a
prescribed matrix and x is the unknown vector. Although t* oe is often the
situation in applications, the case t* < oe occurs when a and/or f have appropriate
singularities for finite t. In the present context, it is convenient to consider both
cases simultaneously.

An a priori bound for continuous solutions of (1.1), or simply, an a priori
bound for (1.1), is defined by

DEFINITION 1. A nondecreasing function

(1.2) F :[0, t*) [0, )

is called an a priori bound for (1.1) if every pair (, q) that satisfies

tp e C([0, ), ") is a solution of (1.1) on [0, ),(1.3) (0, t*],

must also satisfy

1/2

(1.4) Im(t)l qz(t) _<_ F(t) on [0, ).
i=l

An important application of an a priori bound is to establish the existence of
a solution of (1.1) on [0, t*), i.e., to establish global rather than local existence.
A well-known procedure for proving global existence, which involves a local
existence theorem, a continuation argument and an a priori bound, will be given
in a preliminary lemma and some corollaries below. It will then be unnecessary
to state the global existence theorems which correspond to most of the a priori
bounds obtained here.
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For the scalar case of (1.1), the key hypotheses will be that a(0) > 0 and that,
loosely speaking, g(x) is not too negative when x > 0 or too positive when x < 0.
Analogous hypotheses are obtained in the vector case. Examples are given which
show that global existence need not hold when these conditions are violated.
If in addition to a(0) > 0, it is further assumed that a is nonincreasing, then a
much stronger bound than the present ones is given in Levin [2]. Monotonicity
assumptions on a will not be made here.

The following notation is employed: For x col (Xx, x2, Xn) n, let

(1.5) Ixl (xx)x/2 )1/2
where xT (x1x2 Xn). For real n n matrices a (a), let

(1.6) lal a
i,j=

Loc([0, t*), [") denotes the set of real Lebesgue measurable functions (or matrices,
depending on the context) z on [0, t*), or on (0, t*), with values in ", such that

(1.7) Iz(t)l dt < o for all to [0, t*).

Similarly, BVoc([0, t*), ") denotes the set of real functions (or matrices) on [0, t*)
with values in " which are of bounded variation on [0, to] for every to [0, t*).
The sets ACoc([0, t*), "), denoting local absolute continuity, and Lo([0, t*), [")
are similarly defined.

Local existence for (1.1) is established in the following result of Nobel [5],
whose proof is an extension to Volterra equations ofa well-known one for ordinary
differential equations. For convenience, a proof is given in 2; see also Miller
[4, p. 36] and Hartman [1, p. 10].

LEMMA 1. Let g, a and f satisfy the conditions

(1.8) g C([", "),

(1.9) a 6 LXo([0, t*), "), a(t) (air(t)),
(1.10) f 6 C([0, t*), [").

Then there exists (0, t*) such that (1.1) has a continuous solution on [0, ].
Hypothesis (1.10) can be weakened to f Lo([0, t*), ") at the expense of

dropping the continuity assertion on the solution of (1.1). This is not done here
as the a priori bounds below require even stronger conditions than (1.10).

That uniqueness is not a consequence of the hypothesis of Lemma 1 is shown
by setting

(1.11) n 1, t* GO, g(X) X 1]3, a(t) =-- --1, f(t) =-- 0
in (1.1). Example (1.11 )is obviously equivalent to the ordinary differential equation
problem

x’=xl/3, x(O)=O,’ -)
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among whose solutions are x(t) =_ 0 and x(t) (32-t)3/2
That global existence is not implied by the hypothesis of Lemma is seen

from the example

(1.12) n--1, t*---, g(x)--xJx[, a(t)=-1, f(t) =_ 1,

which has x(t) (1 t)- as its unique solution. Note that (1.12) is equivalent to

x’- xlx[, x(0) 1.

The example

(1.13) n= 1, t*=, g(x)=xlxl, a(t)=-t, f(t)

also illustrates the nonglobal nature of Lemma 1. Let to e (0, oe) and q9 e C2([0, to)
[ 1) be defined by

()1/2 flO )1/2 fq(,,to (3 1)- 1/2 d, (3 1)- 1/2 d t.

Then (t) as to-. A little calculation shows that is the unique solution
of (1.13) on [0, to) and that (1.13) is equivalent to

x"= xlxl, x(0)--1, x’(0)=0.

Lemma has several well-known (see, e.g., Miller [4, p. 93]) consequences
concerning the continuation of continuous solutions of (1.1).

COROLLARY 1. Let (1.8), (1.9) and (1.10) hold and let q)e C([0, ], N") be a
solution of (1.1) for some e(O, t*). Then there exists e(, t*) such that q9 has a
continuous extension which is a solution of (1.1) on [0, ].

The proof given in 2 is an easy adaptation of that ofLemma 1 to the equation

(1.14) x(t) + a(t s)g(x(s))ds f(t), <= < t*,

where

(1.15) f(t) a(t- s)g(go(s))ds + f(t), <_ < t*.

COROLLARY 2. Let (1.8), (1.9) and (1.10) hold and let qeC([0,), N") be a
solution of (1.1) for some (0, t*). In addition suppose that lim supt_._
Then

(i) (p is uniformly continuous on [0; t),
(ii) there exists (, t*) such that q) has a continuous extension which is a

solution of (1.1) on [0, ].
The next result completes the abovementioned procedure for obtaining

global existence from local existence, a continuation argument and an a priori
bound. Its proof is an immediate consequence of Definition 1, Lemma and
Corollaries and 2.

COROLLARY 3. Let (1.8), (1.9) and (1.10) hold and let F be an a priori bound
for (1.1). Then

(i) (1.1) has a continuous solution on [0, t*),
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(ii) any continuous solution of(1.1) on [0, ), for some (0, t*), may be extended
continuously as a solution of (1.1) onto [0, t*).

As a final preliminary, it is convenient to state without proof the following
well-known global existence (and uniqueness) result for the linear equation

(1.16) x(t) + a(t s)x(s)ds f(t), 0 <= < t*.

LEMMA 2. Let (1.9) and (1.10) hold. Then (1.16) has a unique continuous solution
on [0, t*).

Suppose n 1. Then the g of(1.12), (1.13) and (1.16) satisfy

(1.17) xg(x) >= 0, -o < x < .
Observe that while the sign of a(0) is arbitrary in Lemma 2, a(0) _< 0 in (1.12)
and (1.13).

The following result establishes an a priori bound for (1.1) when n 1.
The crucial hypotheses are that a(0) > 0 and that the graph of g is bounded from
above in the second quadrant and from below in the fourth quadrant. Since g is
assumed to be continuous in this theorem, the latter condition is less restrictive
than the hypothesis

xg(x) __> 0 on (-m, --X) U (X, m)for some X e [0, m),

which reduces to (1.17) when X 0.
THEOREM 1. Let g, a and f satisfy the conditions

(1.18) g C(a, It), sup Ig(x)l K < ,
{xlxg(x) <= O}

(1.19) a C1([0, t*), 1), a(0) > 0,

(1.20) f C’([0, t*), x).
Then (1.1) has an a priori bound, Fa given by (3.2) below.

The next theorem is closely related to the preceding one.
THEOREM 1’. Let g, a and f satisfy the conditions

(1.21) g [K [ is nondecreasing

(1.22) a AC,o([0, t*), ), a(0) > 0, a’ Lo([0, t*), ),

(1.23) f 6 ACloe([0 t*), 1), f’ e Lo([0, t*), ).
Then (1.1) has an a priori bound, , given by (4.1) below.

Observe that the assumptions on a and f have been relaxed in passing from
Theorem to Theorem 1’. Further note that hypothesis (1.21) on g implies that
the second, but not the first, part of (1.18) is satisfied. However, the assumption
g C(x, ) must be added to (1.21) in order to invoke (the existence) Lemma 1
and its corollaries. Existence theorems for (1.1), with a replaced by a Hilbert
space and (1.21 replaced by the assumption that g is a maximal monotone operator,
have recently been studied by London [3] using the theory of such operators.
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Theorem 2 is concerned with [" for n > 1.
THEOREM 2. Let g, a and f satisfy the conditions

g grad G (i.e., gi(x)= -f_G(x)),
(1.24)

GCI(R",1), lim G(x)=

where

min G(x) > 0,

Ig(x)l
(1.25) sup K2 < (X

xn. a(x)

(1.26) a BVo([O, t*), ,2),

xra(O)x
(1.27) inf p > 0,

o Ixl

a(0) a(0+),

(1.28) f C fq BVoc([0, t*), ").

Then (1.1) has a priori bound, F:, given by (5.11) and (5.12) below.
When n 1, the assumptions on a and f are considerably weaker in Theorem

2 than in Theorems or 1’. Although a(0 +) o is excluded by (1.26), it will be
allowed in Theorem 3, which is a modification of Theorem 2 when n 1.

The hypotheses of Theorem 1 and Theorem 2 for n 1 concerning g overlap;
however, neither implies the other. The assumption min,n, G(x)> 0 is made
for convenience and, in view of the other conditions of (1.24), is not a serious
requirement as it can always be achieved by adding a sufficiently large constant
to G. In this connection, observe that the usual formula

(1.29) G(x) g() de + G(0), x

now requires that G(0) be added to the right-hand side of (1.29). In view of (1.24),
hypothesis (1.25) is equivalent to

Ig(x)l
lim sup G() < c.
ixl

The constant K2 is required in the definition of F2. Hypothesis (1.25) will be
dropped in Theorem 4 at the expense of a more stringent hypothesis on f than
(1.28).

Since a(0) is not assumed to be symmetric, (1.27) is not equivalent to the
assumption that the real part of each of the characteristic roots of a(0) is positive.
The following example, together with Corollary 3, shows that the latter condition
cannot be substituted for (1.27) in Theorem 2.

n=2, t*= oz G(x)= G(x x2)= 4X + 14--(X + X2)4 "-" 1,
(1.30)

a(t) f(t)
3 2’
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Except for (1.27), the hypotheses of Theorem 2 are satisfied by (1.30). The real
part of each of the characteristic roots of a(0) is 1/2. A calculation shows that (1.30)
is equivalent to

xl

3x + (Xl + x2)3
Xl(0)
12(0)/--- (10)

from which it follows that x(t)= (1- 2t) -/2. Thus the unique continuous
solution of (1.30) only exists on [0, 1/2) and cannot be continued onto [0, t*) [0, or).

The next result, unlike the preceding or succeeding ones, treats the situation
in which a is singular at 0. It covers, for example, the important kernel
a(t) t-1/2. For convenience set a b + c in (1.1), where b will be the "singular
part" of a; thus we obtain the equation

(1.31) x(t) + [b(t s) + c(t s)]g(x(s))ds f(t), 0 <__ < t*.

The assumptions on g and f are the same as in Theorem 2, except that here the
setting is

THEOREM 3. Let g satisfy (1.24) and (1.25) and f satisfy (1.28), all with n 1.
Further, let b and c satisfy the conditions

b e Llo([0, t*), ), b is nonincreasing,
(1.32)

b(0)= lim b(t)=
t-*O+

(1.33) c e BVo([0, t*), N).
Then (1.31) has a continuous solution on [0, t*).

The existence of an a priori bound, in the sense of Definition 1, for (1.31) is
left open in Theorem 3. Only the global existence of a continuous solution is
asserted. If uniqueness is also assumed, then the bound F3, (6.16) below, becomes
an a priori one.

Returning to R" with n >= 1, the following result shows that the hypothesis
(1.25) on g in Theorem 2 can be dropped if more is assumed about f.

THEOREM 4. Let g and a satisfy (1.24), (1.26) and (1.27) and let f satisfy the
condition

(1.34) f
Then (1.1) has an a priori bound, F#, given by (6.2) and (6.3) below.

2. Proofs of Lemma 1 and Corollaries 1 and 2. A combination of the proofs
from [1] and [43 which were cited in is used to establish Lemma 1. For m
1, 2, ..., set

(2.1) x,,(t)
a(t s)g Xm s ds + f(t), 0 <_ < t*.

Since for any to e [0, t*) the value of x,.(to) only depends on Xm(S for s e [- 1/m,
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to l/m], (2.1) is a valid definition of Xm(t) on [--1, t*). The hypothesis readily
implies that each x(t) C([- 1, t*), ").

Let

(2.2) M(t) + max [f(s)[, M(t) max [g(x)[, 0

_
< t*.

o _< s-< Ixl _-< 2M(t)

Choose 6 (0, t*) so that M M(g), M Ml(g) satisfy

(2.3) 2 la(s)l ds .
Let to [0, ] and suppose that

(2.4) [x,.(s)l 2M for -1 =<s=<to m

Clearly (2.1) and (2.2) imply that (2.4) holds for to 0. From (2.1)-(2.4) it follows
that

[Xm(tO)[ max
O <_s<_to

g Xm
tO0

la(to s)l ds + If(to)l =< 2M.

Thus (2.4) implies ]Xm(tO)
of length not greater than 1/m yields

(2.5) ]x,,(t)] =< 2M, -1 =< t=< g, m= 1,2,...

Hence the sequence {Xm(t)} is uniformly bounded on [- 1, g].
In order to establish equicontinuity of {Xm(t)} on [--1, g], observe first that

for each e > 0 there exists a 6(e) > 0 such that

(2.6) 0

implies

(2.7) If(t2)- f(ta)l + Mx la(s)l ds + Mx

Then (2.1) and (2.6) imply

Xm(t2) Xm(tX) f(t2) f(t) ft
dt

fl [a(t2 s)- a(tl

which together with (2.2) and (2.5)-(2.7) yields

(2.8) IXm(t2)- Xm(tl) ( 3.

[a(t2 tx + s)- a(s)[ ds < e.

6[(t2- s)g(Xm(S -)
s)]g(Xm S----)

ds

The asserted equicontinuity follows immediately from (2.6), (2.8) and the first
line of (2.1).



NONEINEAR VOLTERRA EQUATIONS 879

The Ascoli-Arzela lemma now implies the existence of a subsequence
Xmk(t)} of (Xm(t)} and an x(t) C[ 1, g] such that

(2.9)

From (2.1), with m replaced by m, and (2.9) it follows on letting k oe, that
x(t) satisfies (1.1) on [0, g], which completes the proof of Lemma 1.

For the proof of Corollary 1, replace (2.1) by

(2.10) Xm(t)= I_ f a(t_ s)g xm(s-) ds + f(t), <= < t*,

where f is given in (1.15), and (2.2) by

M(t) + max f(s)l, M(t) max Ig(x)[,
i<_s<_t Ix] 2M(t)

Instead of (2.3), now choose e(L t*) so that M(g), M(g) satisfy

M ]a(s)[ ds <- M.

<_t<t*.

As in the proof of Lemma 1, the sequence {Xm(t)} of (2.10) possesses a subsequence
{Xmk(t)} which converges uniformly on [-1 + , ] to a continuous function :t(t),
which satisfies (1.14) on [, ]. Let

(2.11) if(t) tp(t) on [0, [], q(t) (t) on [, ].

It follows easily from (1.1), (1.14), (1.15), (2.10) and (2.11) that @(t) satisfies the
conclusion of Corollary 1.

Part (i) of Corollary 2 is not really a consequence of Lemma or Corollary 1.
The hypothesis implies that

(2.12) sup Ig(q(t)){ M2 < zt3.
O<_t<i

Let e > 0. As in (2.6) and (2.7), there exists a 6(e) > 0 such that

(2.13) 0 2 < ,
2 q-- b(e)

implies
--tl

[f(t2)- f(tl)[ + ME [a(s)[ ds

(2.14)

+ M2 ]a(t2 t + s) a(s)] ds < e.

From (1.1) and (2.13), one has

q)(t) q)(t)= f(ta) f(t) a(t s)g(q)(s))ds

[a(t2- s)- a(tl s)lg(q(s))ds,
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which together with (2.12)-(2.14) implies Igo(t2) go(tx)l < e and thus establishes (i).
From (i) it follows that

o(i-) lim rp(t)
t-*-

exists, which together with the hypothesis implies

(2.15) go(-) + a( s)g(go(s))ds f().

Extend go(t) to [0, ] by setting go() go(-). Then go(t) 6 C([0, ], ") and, in view
of (1.1) and (2.15), is a solution of (1.1) on [0, ]. Assertion (ii) is now an immediate
consequence of Corollary 1.

3. Proof of Theorem 1. On [0, t*) set

la’(s)l
a x(t) max

o_<s_<, a(0)’

(3.1) a2(t) max

and

K, max Ig(x)l, max If’(s)l/
Ixl__<lf(o)l O_<s_<t a(0)

03(t x(t) 2(’) exp gl(S) ds dT,+

(3.2) Fx(t) la(t s)l3(s) ds + max If(s)l.
O<s<t

Then F is nondecreasing and satisfies (1.2).
Let (, 09) satisfy (1.3) with n 1. Then

(3.3) go(O + a(t s)g(go(s))ds f(t),

It will be shown that

0<t<.

(3.4) Ig(qg(t))l (t) Ig(qg(s))l ds + o2(t), 0 _< < .
From (3.1), (3.4) and the Gronwall inequality, it follows that

(3.5) Ig(qg(t))l <- o3(t), 0 < ,
which together with (3.2) and (3.3) implies (1.4), for F F1 and hence completes
the proof. It may be noted that while the maxima in (3.1) are required in the follow-
ing argument, the maximum in (3.2) only serves to guarantee that F1 is non-
decreasing. Thus (1.4) holds with the second term of (3.2) replaced by If(t)[.

It is evident from (3.3) and the hypothesis that go ca(J0, ), ) and that

(3.6) go’(t) + a(O)g(go(t))= a’(t s)g(go(s)) ds + f’(t), 0 <= < .
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(3.7)

Clearly,

Define the following eight disjoint subsets of [0, ):

S2 {t
$3 {t

S= {t
$5 {t

S= {t
$7= {t

Ss {t

go(t) => 0, g(go(t)) < 0},
go(t) >_ O, g(go(t)) >= O, go’(t) >= 0},
go(t) _>_ 0, g(go(t)) _>_ 0, rp’(t) < 0, f(0) >__ go(t)},

go(t) __> 0, g(go(t)) __> 0, go’(t) < 0, f(0) < go(t)},

go(t) < 0, g(go(t)) > 0},
go(t) < O, g(go(t)) <= O, go’(t) __< 0},
go(t) < 0, g(go(t)) =< 0, go’(t) > 0, f(0) __< go(t)},

go(t) < 0, g(go(t)) __< 0, go’(t) > 0, f(0) > go(t)}.

8

(3.8) [0, ) U Sk.
k=l

Inequality (3.4) will be established for an arbitrary to [0, ). Each case, to Sk,
is treated separately. Since the reasoning required for k 5, 6, 7, 8 parallels that
employed for k 1, 2, 3, 4, respectively, only the latter cases are considered here.

Let to $1. Then (1.18), (3.1) and (3.7) imply

(3.9)

(3.10)

Ig(rp(to))l K =< 2(to) _-< (to) Ig(go(s))l as + 2(to).

Let to $2. Then (1.19), (3.1), (3.6) and (3.7) imply

Ig(go(to))] g(go(to))_-< a--({go’(to)+ a(0)g(go(to)))

a(O)
a’(to s)g(go(s))ds + f’(to)

Let to $3. Even without invoking the condition go’(to) < 0 of (3.7), it follows
from (3.1) that

(3.11)
Ig(p(to))l max Ig(x)l 2(to)

Ixl-<lf(O)l

o(to) Ig(go(s))l ds + o2(to).

Let to $4. Since go(0) f(0), it is evident from (3.7) that there exists a unique
(0, to) such that

(3.12) p(t) p(to) and p(t) > p(to) on (tl, to).
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Since 99 e C([O, t), N), (3.12) implies

(3.13) tp’(tl) ->_ 0.

Reasoning similar to that employed for to e $2, but now also using (3.12), (3.13),
and the monotonicity of el(t) and 2(t) yields

(3.14)

]g(tP(to))] g(tp(to))= g(tp(t))

a(0)
{q’(t,) + a(O)g(q(t,))}

a(O)
a’(tx s)g(q(s))ds +-a-f (tl)

5 x(tx) Ig(go(s))l ds "k- (2(tl)

5 o(to) ]g(q(s))l ds -[- (2(to).

Thus (3.9), (3.10), (3.11) and (3.14) establish (3.4) for to Sk (k 1,2, 3,4),
respectively. This, together with similar reasoning for k 5, 6, 7, 8, completes the
proof as noted above.

4. Proof of Theorem 1’. Analogous to (3.1) and (3.2), on [0, t*) set

(4.1)

,(t) ess sup la’(s)___J
o__, a(0)’

2(t) "-max(Ig(O)]’ lg(f(O))l’ ess sup
a(O)

3(t) l(t) 2(’C) exp l(S)ds dz + 2(t),

P(t) la(t s)l3(s) ds + max If(s)l.
O_<s_<t

Then x is nondecreasing and satisfies (1.2).
Let (, q) satisfy (1.3) with n 1. Then (3.3) holds. Instead of (3.4), it will

now be shown that

(4.2) Ig(tp(t))[ __< (t) Ig(tp(s))l ds -+- t2(t a.e. on [0, [).

As in {} 3, however, (3.3), (4.1), (4.2) and the Gronwall inequality yield (1.4), for
F Pl, which completes the proof.

From (3.3) and the hypothesis it follows that

(4.3) q e AC,oc([0 [), [1)
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and that

(4.4) go’(t) + a(0)g(go(t)) a’(t s)g(go(s))ds + f’(t) a.e. on [0, ).

The a.e. nature of (4.4) necessitates making some modifications in the argument
of 3. Let

A {t e [0, )l go’(t) exists and (4.4) holds},
(4.5)

3k A f’) Sk, k 1,..., 8,

where the S are defined by (3.7). Then the Sk are disjoint and, instead of (3.8),

(4.6) Meas [0, ) f’l f"l S- O.
k=l

Inequality (4.2) will be established a.e. on U k8= ’k, which in view of(4.6), establishes
(4.2) a.e. on [0, ).

Let to e St. Then (1.21), (4.1) and (4.5) imply

Ig(tp(to))l Ig(0)l 2(to) ,(to) Ig(q(s))l ds + 2(to).

(4.7)

Let to e 32 B where

B {t e [0, t*)llf’(t)l <- ess sup [f’(s)[}.
O<s<t

It is an elementary consequence of (1.23) that Meas (B) t*. The same reasoning
employed in (3.10) shows that (4.2) holds for this to.

Let to Ss. Then (1.21), (4.1) and (4.5) imply

Ig(qg(to))l- g(qg(to)) <= g(f(o))

--<_ l(to) Ig(o(s))l ds + 2(to).

Let to e S,. Thus as before, (4.5) implies the existence of a unique tte (0, to)
such that (3.12) holds. From (3.12) and (4.3) it follows that

(4.8) 0 q)’(s) ds.

From (3.12), (4.3) and (4.8), there exists a set of positive measure C [tt, to)
such that

(4.9) tp’(t2) exists, qg’(t2) => 0, qg(t2) -> 0(to) for 2 e C.

Since Meas(B)= t* (recall (4.7)), there exists a 2 B ["1 C. Reasoning similar
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to (3.14), but now invoking (4.9) and (1.21), implies

Ig(qg(t0))l- g(q)(to)) <= g(qg(t2))

a(0)
{o’(t2) + a(O)g(qg(t2))}

lf2a(O)
a’(t2 s)g(qy(s))ds + a--lf’(t2)

=< (t2) Ig(qy(s))l ds + 2(t2)

< (to) Ig(qy(s))l ds + 2(to).

Analogous arguments hold for Sk (k 5, 6, 7, 8). Thus (4.2) is established,
which completes the proof.

5. Proof of Theorem 2. The hypotheses imply the existence ofseveral auxiliary
functions that are employed in the definition (5.11), (5.12) of F2. These auxiliary
functions are also employed in the succeeding sections.

From (1.24) there exists a function f with the properties

f c([o, oo), [o, co)),

f is strictly increasing,

f(0) 0, f(r) -< min G(x),
Ixl r

lim (r)

Let o9 denote the inverse of f. Then

o9 C([0, ), [0, c)), o(0) 0, o is strictly increasing,

lim og(r)= c, o(f(r)) r, f(og(r)) r.

From (5.1) and (5.2), it follows that

(5.3) G(x) <- y implies Ixl =< o(y).

Let

(5.4) y(r) max Ig(x)l.
Ixl<-r

Then

(5.5) C([0, c), [0, c)), is nondecreasing,

Note that (1.25) has not been invoked in (5.1)-(5.5).
Let

Ig(x)l (Ixl)

(5.6)
vg(t) total variation of aii on [0, t],

v(t)- vii(t).
i,j=
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Then (1.26) implies v’[0, t*) [0, ) and v(t) v(0)--0 as t 0+. Hence a
2 (0, t*) may be chosen which satisfies,

(5.7) v(2) =< 1/2#n-
where/ is as in (1.27).

Let

1/2

fli(t) total variation of f/on [0, t],

(t)- i(t).
i=1

Then by (1.28), fl C([0, t*), [0, )) is nondecreasing and there exists an infinite
sequence {tin} such that

0 o < < 2 < < t*, lim tm t*,
(5.9)

m-.

tm+ tm <- 2, fl(tm+ 1) fl(tm) <- [2Kznl/2] -1, m O, 1,...,

where K2 is as in (1.25). Let

(5.10) Im [tm, tm+ ), lm [tm, tm+ 1], m 0, 1, ....
It is convenient for later purposes, see (5.15), to always take the sequence {tm}
to be an infinite one, even though a finite one would satisfy the requirements of
(5.9) iff e BV([0, t*], Rn).

F2 may now be defined by proceeding inductively from Io to I, to 12, etc.
Observe that F2 e C([0, t*), [0, o)) is a consequence of the definition. It is con-
venient to simultaneously define nondecreasing functions o C(]m, [0, oC))) and
( e C([0, t’*), [0, o)). On 1o define

o(t) G(f(O)),

(t) o(t) + 2K2nl/2 o(Z) dfl(z),

F2(t o(((t)),

and on lm (m >= 1) define

Om(t (tm) -+- -,,ny2(F2(tm)) v2(z) dz,

(5.12) ((t) o,,,(t) + 2K.n/ e,,(z) dB(),

F(t)

Let (t, q) satisfy (1.3). Then

(5.13) q)(t) f(t) a(t s)g(o(s)) ds,

(5.11)

0=<t<,
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and

(5.14) [q(t) f(t)] -a(0)g(q(t)) da(s)g(q(t s)) a.e. on [0, ).

That q f e ACloc([0, ), N") and that (5.14) holds may be established by integrating
the right-hand side of (5.14) and invoking Fubini’s theorem and (5.13). It now
follows from (1.28) that q e C BVoc([0, t), N"). In (5.14) and the Stieltjes integrals
below, the convention j’ t,,aJ is used when t _< ft.

Define th by

(5.15) ta <__<ta+l ife(0, t*),

Let

rh= if=t*.

(5.16)

ho(t) O, 0 <_ <

h,,(t) f da(s)g(q(t- s)),
(t tm,t]

m 1,2,...,rh,

where the second line of (5.16) is vacuous if rh 0 and tn 1, 2,... if rh .
From (1.5), (5.6) and ’= Icil <= n/21cl (c [") it follows that

(5.17) [hm(t)[ =< n/2 1 dv(s)lg(q(t- s))[ =< n/2v(t) max [g(tp(s))[
t-tin O <--s<_tm

on [t,, ) for m 1,2, ..., h. From (5.14) and (5.16) one has

--[(p(t)- f(t)] --a(O)g((p(t))- da(s)g(q)(t- s)) + hm(t)

a.e. on [tm, ) for m O, 1, ..’, rh. Multiplying (5.18) by gT(q)(t)) and integrating
yields

(5.19) gr(q(Z))dip(z) -Et(m, t) Ez(m, t) + E3(m t) + E,(m, t)

on It,,, ) for m 0, 1, ..., rh, where

E,(m, t) gT(q(z))a(O)g(q(Z)) dz,

(5.20)
E2(m t) gT(tp(Z)) da(s)g(q(z s)) dz,

Ea(m, t) gr(q(z))h,,,(z) dz,

(m, t) g*(o()) df().
tm
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For any 0 C1([0, ), "), it follows from (1.24) that

d
G(O(t))d5 ,--, -x (O(t))O’(t) gr(O(t))O’(t)’ 0__<t<,

and hence that

(5.21) gr(0(z)) dO(r)= G(O(t))- G(O(t,)), tm <--_ < :.

Since o e C B Vloc([0, ), N"), there exists for each e s (0, ) (see Hartman 1, p. 7]
for more details concerning this argument) a sequence 0)e C1([0, t- el, ")
(j l, 2, ...) such that

O)(t) q)(t) (j --, oe) uniformly on [0, el,

sup 0()(t) dt < oe

Hence replacing O(t) by OJ)(t) in (5.21), letting j-, oe, and then letting e---, 0
we have

(5. g(o(tl q(t (o(0t (o(tl, __< < t.

Combining (5.19) and (5.22) yields

(5.23) G(qg(t)) G(qg(tm) E(m, t) E2(m t) -+- E3(m, t) -F E,(m, t)

on It,,, ) for m 0, 1, ...,
Hypothesis (1.27) and (5.20) imply

(5.24) E(m, t) <=
Schwarz’s inequality, the argument employed in establishing (5.17), and

Fubini’s theorem yield

IE2(m, t)l-< Ig(q(z))l da(s)g(qg(v s)) dr

<-_ n x/2 Ig(tp())l dv(s)lg(o(z s))[ d’c
tm

n 1/2 Ig(0(v))l Ig(o(v s))l dz dr(s).

Hence

Ig(qg(v))l 2 d’c dr(s)

+ n tg(rp(z s))l 2 dr dr(s),
S+tm
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which readily implies

(5.25) IE(m, t)l <-_ n/v(t tin) Ig(q(r))l dr,

From (5.7), (5.9), (5.10), (5.15) and (5.25) one has

(5.26) lEa(m, t)l <- .l Ig(o(z))l d:, e is fl [0, t),

Schwarz’s inequality implies

(5.27)

on [tm, ).

tm-<t<.

m 0, 1,..-,rh.

Hypotheses (1.25) and (1.28) together with (5.8) and the argument employed
in establishing (5.17) yield

(5.28) IE4(m, t)l =< n /2 Ig(o(,))l dfl(r) _< K2nl/2 G(qg(r)) dfl(z)

on Its, ).
Combining (5.23), (5.24), (5.26), (5.27) and (5.28) yields

(5.29) G(cp(t)) <= Pm(t) + K2nl/2 G(tp(z)) dfl(r)

on im I1 [0, ) for m 0, 1, .-., rh, where

(5.30) Pm(t) G(q)(tm) + - Ihm(r)l z dr, <-- < :.

Upon integrating (5.29) against dfl(r), interchanging the order of integration in
the last integral, and invoking (5.9) one finds

(5.31) G(qg(r)) dfl(r) <= 2 pro(r) dfl(’c).

From (5.29) and (5.31), it follows that

(5.32) G(rp(t)) < pro(t) + 2Kn/2 p,,(r) dfl(r)

on im VI [0, ) for m 0, 1, ..., rh.
It will be shown below that

(5.33) G(qg(t)) <= (t) on i,, I"1 [0, [) for m 0, 1,...,

From (5.3), (5.11), (5.12) and (5.33), it then follows that

(5.34) Icp(t)l _-< F2(t) on i,, VI [0, ) for m 0, 1,...,
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Clearly (5.9), (5.15) and (5.34) imply

Igo(t)l F2(t), 0 < ,
which is (1.4) with F replaced by F2. Thus establishing (5.33) will complete the
proof.

From (5.16), (5.30) and (5.32) with m 0, qg(0) f(0) and (5.11), one has

G(rp(t)) <_ G(f(O)) + 2K2n/ G(f(O)) dfl()

on io 91 [0, ), i.e.,

(5.35) G(go(t)) < o(t) / 2K2n/2 o(Z) dfl(z) ((t) on io f’l [0, ).

Thus (5.33) holds for m 0.
In view of (5.35), there is no loss of generality in now assuming that => 1.

Suppose, therefore, that (5.33) holds for m 0, 1, ..., mo- where 0 =< mo
< . Then > rio (by (5.15)) and

(5.36) G(rp(t)) <= ((t),

From (5.3), (5.11), (5.12) and (5.36), one has

O<=t<=tmo.

(5.37) IrP(t)l < F2(t), 0 < <= tmo.
From (5.5) and (5.37), it follows that

(5.38) Ig(go(t))l <= y(F2(t))_-< Y(F2(tmo)),
Setting m mo in (5.17) and then invoking (5.38) yields

O<--t<tmo.

(5.39) Ihmo(t)l <-_ n/2v(t)7(F2(to)), tm 5 < .
Setting m mo in (5.30) and (5.32), and then invoking (5.36) with tmo, (5.39)
and (5.12) readily yields

G(go(t)) <= mo(t) + 2K2nl/2 (mo(’) d(r) (t)
mO

on imo f’) [0, ), which is (5.33) for m mo. This completes the proof of (5.33) and
the theorem.

6. Proof of Theorem 3. Without loss of generality, it is assumed that c(0)
c(0+) and that b is continuous from the right.

It is convenient to first rewrite (1.31) in an equivalent form. Choose (0, t*)
so that b(0 / c(0) _>_ 1. Let

(t) b(t) + c(O)- 1,

(t) O,

g(t) c(t) c(O) + 1,

g(t) b(t) + c(t),

0=<t__<t,

<t <2t*,

o__<t_<t,

<t<t*.
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Then

(6.1) (t) + ?(t) b(t) + c(t), 0<t<t*

(6.2)
LI([0, 2t*), N1), is nonincreasing,

(0) lim (t) o, (t +) =/(t)
t-*O+

(6.3) e BVoc([0, t*), 1), (0) (0+) 1.

Thus b satisfies (1.32) on a larger interval (if t* < o) than b does, as well as some
additional properties, and satisfies (1.33) as well as hypotheses (1.26) and (1.27)
of Theorem 2 on a with # for n 1. In view of (6.1), (1.31) is equivalent to

(6.4) x(t) + Eb(t s) + o(-t s)]g(x(s)) as f(t), 0 <= < t*.

For each e e (0, t*), (6.2) and (6.3) imply that (t + e) + O(t) satisfies (1.26)
and (1.27) with # + b(e). Therefore Theorem 2 implies that the equation

(6.5) x(t) + [/(t s + e,) + ,(t s)]g(x(s)) ds f(t), 0 _< < t*,

has an a priori bound, F2(. ), on [0, t*). Hence by Corollary 3, there exists a
solution q e C([0, t*), [1) of (6.5). Thus

(6.6) q(t) + [b(t- s + e)+ g(t- s)]g(q(s))ds f(t), 0 <= < t*

(6.7) Io(t)l-<_ r(t, ), o <__ < t*,

for each e e (0, t*).
The main task of the present proof is to obtain a function F3 which satisfies

(6.8) F3 C([0, t*), 1), F3 is nondecreasing and independent of e,

such that

(6.9) Irp(t)l Fs(t), 0 =< < t*, 0 < e < t*.

Using (5.11) and (5.12), we readily can show that, in general, lim_.o + F2(t, e) o
on (0, t*). Hence (6.7) does not imply (6.8), (6.9).

Assuming the validity of (6.8), (6.9) for the moment, the existence of a solution
p C([0, t*), [ 1) of (1.31) which satisfies

(6.10) Irp(t)l-< Fs(t), 0 =< < t:*,

is readily demonstrated. Let to (0, t*). Then (6.8), (6.9) implies the uniform
boundedness of {rp(t)} on [0, to]. Let 0 __< --< 2 o. Then (6.6) implies

rPt(t2) rPe(tl) f(t2) f(tl) Fl(tl, t2, e) + F2(tl, t2,
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where

F(t, t2, g)-- [b(t2 S -F g) + (t2 s)]g(rpe(s))ds,

F2(t, t2, e)-- [b(t s + e)- b(t2 s + e)

+ (tl s)- ’(t2 s)]g(tpe(s))ds.

From (6.8), (6.9), (1.24) and (6.3), one has

M sup Ig(c&(s))l
O<_s<_to
O<e<t*

which together with (6.2) implies

t2,IFl(tl,

tl

IF2(tl, t2, e)l <= M b(s) as

+ M le(s- e(

It now follows from (6.2) and (6.3) that

M2= sup le(s)l<
O<_s<_to

b(s)ds + MM2(t2 t),

t + s)l as.

Fx(t,t2, e)O and Fz(t,t2, e)O ast2-t0
uniformly on 0 <= ta <= 2 <= to, 0 < e < t*. Thus the family {p(t)} is equi-
continuous on [0, to]. The Ascoli-Arzela theorem and an obvious diagonalization
argument imply the existence of a sequence e, + 0 (n- o) and a function
rp C([0, t*), 1) such that p.(t)- p(t) as n- o uniformly on every compact
subinterval of [0, t*). Setting e e, in (6.6) and letting n c readily yields the
result. Thus only (6.8), (6.9) remains to be proved.

The following definitions, which will be employed in the definition of 13,
are analogous to (5.6)-(5.10); however, they do not involve b or e. Let

(t) total variation of on [0, t], 0 _<_ < t*.

Then (6.3) implies the existence ofa 2 (0, t*) such that

(6.11) (2) =< 1/2.
Let

fl(t) total variation off on [0, t], 0 __< < t*.

Then (1.28) implies the existence of an infinite sequence {tm} such that

(6.12)
0 <= to < tl < t2 < < t*., lim tm t*

+ < )c fl + fl ____< m 0, 1,..-,
2K2
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where K2 is as in (1.25). As in (5.10), let I [tm, tm+ 1)"
Let , ro and be defined by (5.1), (5.2) and (5.4), respectively. Define the

nondecreasing functions m, (m and m, which belong to C(lm, [0, )), for rn 0
by

%(0 G0r(0)),

(6.13) (o(t) %(0 + 2K2 o(z)dfl(z),

and form>__ lby

Po(t) O((o(t)),

(6.14)

am(t)-- m- (tm) + G(f(O)) + /(mo_ (tm))fl(tm)

+ Y2(F,no- 1(tin)) (z)(1 + 1/2(z))

((t) (t) + 2K2 (z) d(z),
tm

(t) (At)).

Observe that (6.13) and (6.14) imply

(6.15) z,,,_ 1(tin) Om(tm),

form= 1,2,....
Let Fa satisfy

(6.16)
Fa e C([0, t*), Na), Fa is nondecreasing,

m(t) 1-’3(t) on i for rn 0, 1,-...

Clearly, there exist many such functions. The assertion is that any 1-"3 which
satisfies (6.16) also satisfies (6.8), (6.9). This will be proven by showing that

(6.17) Icp(t)l -< ,,(t) for t6i,,, rn 0, 1,..., 0 < , < t*.

From this point on, the present proof and the argument of 5 have many
points in common; however, there are some essential differences. Where the
reasoning is similar to that already employed, many details will be omitted.

The first step in the proof of (6.17) is to use the monotonicity of/5 to obtain
an inequality, (6.21) below, which then eliminates/5 from the discussion. In view of
(1.28), (6.2) and (6.3), the reasoning employed in the passage (5.13)-(5.22) now
yields

G(go(t)) G(f(O))

(6.1at
[1 + (t] g(q(tt d (t, et (t, t + (t, et
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for0_<_t<t*,0<e<t*,where

(6.19)

(t, ) fl
E6(t, e) fl
ET(t, e) fl

g(o(z s)) db(s + )}
g(qg(v s)) d(s)} dz,

g(cp(’r)) df(z).

In view of (6.2), the argument employed in the proof of (5.25) with m 0 now
yields

(6.20) IEs(t, e)l-</(e) g2(q(z)) dz, 0 <= < t*, 0 < e, < t*.

From (6.18) and (6.20), it follows that

(6.21) G(qg(t)) <= G(f(O)) g2(o(v)) d’c E6(t e,) + ET(t, )

for0=< < t*,0<e <t*.
The inequalities (6.17) will now be proved by induction. Analogous to (6.20)

(and hence to (5.25)), it follows from (6.11), (6.12), and (6.19) that

(6.22) IE6(t, e.)l <= - g2(cpe(z)) dz, e io, 0 < ; < t*.

Analogous to (5.28) with m 0, it follows from (1.25), the definition of fl, and
(6.19) that

(6.23) lET(t, e.)l <= K2 G(cp(r)) dfl(r), 0 <-- < t*, 0 < e. < t*.

Combining (6.13) and (6.21)-(6.23) yields

(6.24) G(q(t)) <= ao(t) + K2 G(qg(r)) dfl(r),

Analogous to (5.32) with m 0, it follows from (6.11)-(6.13) and (6.24) that

(6.25) G(qg(t)) <_ o(t),

which together with (5.3) and (6.13) implies

qg(t)l -< o(t),
Thus (6.17) holds for m 0.

Suppose (6.17) holds for rn 0, 1, -.., mo
the nondecreasing nature of the k’s imply

Icp(t)l-_< mo-l(tmo),

teio, O < e < t*.

tio, O < e < t*.

with rno >= 1. Then (6.15) and

O<=t<=tmo,

tio, 0<e<t*,
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which together with (5.5) yields

(6.26) Ig(o(t))l )(mo-(tmo)), O<--t<tmo.
From (6.19), (6.21) and the definitions of and fl it follows that

(6.27) G(q(t)) <= G(f(O)) g2(o(:))

on [tmo, t*), where

E8(mo, e) Ig(cp(v))l Ig(cp(z s))l dO(s) d,
0

E9(mo, t, e) Ig(())l Ig(( s))l dO(s) d,

(6.28) E o(mo, t,
tm lm O

tmO

E ,(mo, e) Ig(qo(v))l dfl(),
aO

E12(mo, t, g) Ig(cP())l dfl(z).
mo

From (6.26) and (6.28), it follows that

o

E8(mo, e) =< 2(mo_ l(tmo)) (T) dT,
vo

(6.29)
E (mo ) 7(mo- (tmo))fl(tmo)"

As in (6.22), (6.11) implies

g(e(r)) a,(6.30) E9(mo,t e)<
o

Similarly to (5.27), (6.26) implies

0<e<t*,

(6.31) Exo(mo, t, e) _< g2(cpe(Z)) dz + -7 (too-l(tmo)) 2(Z) dz
mO mO

for tmo < t*, 0 < < t*. From (1.25), one has

(6.32) E12(mo, t, e) =< g2 G(cp(q:)) dfl(:),
mO

Combining (6.14) and (6.32) yields

(6.33) G(q)(t)) <-- Omo(t + K2 G(fpe(-c)) dfl(-c),
mo

tmo < t*, 0 <; < t*.
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From (6.12), (6.14) and (6.33) it follows, as in the passage from (6.24) to (6.25), that

G(go(t)) <= mo(t), t lmo 0 < <

which together with (5.3) and (6.14) implies

Icp(t)l =< Pmo(t), t imo 0 < < t*.

Thus (6.17) holds for m too, which completes the proof of (6.17) and, therefore,
of (6.8), (6.9) and the theorem.

7. Proof of Theorem 4. This proof uses much of the machinery of 5. The
key difference between the two proofs is caused by the new definition of the
functions hm, (7.4) below instead of (5.16) above. This difference reflects the added
smoothness of (1.34) over (1.28), and sufficiently simplifies the present argument
so that (1.25) is no longer required.

Since they are consequences of(1.24), formulas (5.1)-(5.5) apply here. Similarly,
(5.6) and (5.7) are consequences of (1.26) and 1.27) and again hold. Definition (5.8)
is not needed here and (5.9) is replaced by the following less stringent requirement
on the infinite sequence {tin}"
(7.1) 0 -< to < t < t2 < < t*, lim t*, tin+ < 2,

m--

m=0,1,....
The intervals Im are again defined by (5.10).

If t* , then it is sufficient to take tm= m2. If t* < , then it would be
sufficient to take a finite sequence in (7.1). By taking an infinite sequence, both
situations may be simultaneously discussed and many of the formulas of 5
may be used without change.

F4 C([0, t*), [0, )) may now be defined inductively. (Note that (5.11) and
(5.12) do not hold here.) On o define

(7.2)
’(t) G(f(O)) + If’(:)l 2 d,

Fg(t) o((t)),

and on im (m >-- 1) define

(7.3)
(t) (t,.) + {If’(v)l + nl/2/(I4(tm))V(z)} 2

F(t) (o((t)).

Let (, go) satisfy (1.3). Since (1.34) implies that (1.28) holds, (5.13) and (5.14)
are valid here. However, (1.34) and the discussion concerning (5.13) and (5.14)
now yield go ACloc([0, ), "). Define rh by (5.15).

Replace (5.16) with the definition

ho(t) f’(t),

(7.4) hm(t) f’(t) t-tm,t] da(s)g(go(t- s)),

tm<__t<[, m 1,2,.-.,tfi.
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Then, analogous to (5.17),

[h,(t)] =< [f’(t)] + n/2v(t) max ]g((s))]
O<_s<_tm

on [tin, ) for m 1, 2, ..., rh. From (5.14) and (7.4), one has

tm

(7.6) (p’(t) -a(0)g(tp(t))- da(s)g(q)(t- s)) + h,,(t)

a.e. on [tm, ) for m 0, 1,.-., rh. Multiplying (7.6) by gr(q(t)), integrating and
invoking (1.24) yields

(7.7) G(q)(t)) G(q)(t,,)) El(m, t) Ez(m, t) + Es(m, t)

on It,,, ) for m 0, 1, ..-, rh, where the Ek(m, t) (k 1, 2, 3) are defined by (5.20).
(E, of (5.20) does not occur here because f’ has been incorporated into hm.) As in
5 the inequalities (5.24), (5.26) and (5.27) now follow. Together with (7.7), they

imply

Ihm(z)l 2 d’c(7.8) G(q(t)) <_ G(tP(tm)) + -on i [0, f) for m 0, 1, ...,
Analogous to the discussion concerning (5.33), the proof will be completed

by showing that

(7.9) G(o(t)) =< (t) on im f’) [0, t) for m 0, 1,...,

where is defined by (7.2) and (7.3).
From (7.4) and (7.8) with m 0, o(0) f(0) and (7.2), one has

(7.10) G(tp(t)) <= G(f(O)) + If’(z)l 2 dz (t) on io f’) [0, ).

Thus (7.9) holds for m 0.
Suppose that

_
and that (7.9) holds for m 0, 1,..., mo- 1, where

0__<too- <rh. Then>t,.oand
(7.11) G(rp(t)) <= ((t), 0 <= <= t,.o,

which together with (5.3), (7.2) and (7.3) implies

(7.12) Io(t)l _-< r,(t), 0 =< =< t,,o.

From (5.5) and (7.12), one has

(7.13) Ig(o(t))l =< y(F4(t)) -< y(F4(t,,o)), 0 <= <_ tmo.

Setting m mo in (7.5) and then invoking (7.13) implies

(7.14) [h,.o(t)l-< If’(t)l + nl/2y(F4(t,,o))V(t), t,, <= < .
From (7.8) with m too, (7.11) with t,,o, (7.14), and (7.3) with m too, it
readily follows that (7.9) holds for m mo. This completes the proof.
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A METHOD OF ASCENT FOR PARABOLIC AND
PSEUDOPARABOLIC PARTIAL DIFFERENTIAL EQUATIONS*

WILLIAM RUNDELL" AND MICHAEL STECHER:I:

Abstract. This paper extends the idea of a method of ascent as developed by Gilbert for elliptic
equations and Colton for pseudoparabolic equations. We develop a method of ascent for parabolic
equations and extend Colton’s results for the pseudoparabolic case.

1. Introduction. In 1969, R. P. Gilbert [8], [9] discovered what he called a
method of ascent for the equation

(1.1) Anu(X + A(rE)u(x) O,

where A(r2) is an analytic function. In the above paper, he showed the existence of
an analytic function G(r2, ) depending only on A(r2) and not on the space dimen-
sion n, such that every solution of (1.1) has the representation

(1.2) u(x) h(x) + a"-XG(r, a2)h(xa2) da.

Here h(x) is a harmonic function. Gilbert illustrated how this operator could
be used to construct solutions to standard boundary value problems for (1.1).
Later, Colton and Gilbert [6] were able to construct a method of ascent for higher
order elliptic equations with spherically symmetric coefficients.

A natural question now arises; can one construct similar operators for
nonelliptic equations? An affirmative answer to this question was given by
Colton [3] for certain types of pseudoparabolic equations, namely those of the
form

(1.3) (A, + A(r2))ut + [l’lA .-}- B(r2)]u O.

Colton showed that if u(x, t) had zero initial data, then u(x, t) could be written as

(1.4) u(x, t) h(x, t) + an-lG(r, tr2, z)h(xo"2, z)da dz,

where h(x, t) is a solution to the pseudoparabolic equation Anht 0. As in (1.2),
the function G depends only on the coefficients of the equation and not on the
spatial dimension. Using this operator, Colton gave a constructive method for
solving the first initial-boundary value problem for (1.3).

Colton also used the idea of a method of ascent to construct a fundamental
solution for the three-space variable heat equation from a fundamental solution
for the two-space variable case [5].

* Received by the editors February 20, 1975, and in revised form August 22, 1975. This work was
supported in part by AFOSR Grant 74-2592.

" Department of Mathematics, Texas A & M University, College Station, Texas 77843. Part of
this work was done for a Ph.D. thesis under the direction of Professor David Colton.

:I: Department of Mathematics, Texas A & M University, College Station, Texas 77843.
898



A METHOD OF ASCENT 899

Motivated by the paper of Colton and Gilbert [6], Brown [2] has developed
a method of ascent for fourth order parabolic equations with time-independent
coefficients. In this paper, he was able to show that for n 2, his operator is onto.

The second section of this paper is devoted to the parabolic equation

(1.5) AnU(X, t) + A(r2)u(x, t) u,(x, t),

where A(r2) depends analytically on r2. We show that if u(x, t) is an analytic
solution of (1.5), then u(x, t) can be written as

(1.6) u(x, t) h(x, t) + a 1G(r, a2, t, z)h(xtr2, "c) da dz.

Again G is an analytic function of its independent variables for q: z, and does not
depend on the spatial dimension n. Here h(x, t), rather than solving the simplest
parabolic equation Anu ut 0, is a harmonic function which depends analytically
on the parameter t. For technical reasons the first integration is a path integral in
the complex plane, and thus (1.6) is not an equation of Volterra type as are (1.2)
and (1.4). This forces us to consider analytic solutions of (1.5) rather than the
full class of solutions, and this restriction means that we have been unable to solve
boundary value problems for (1.5).

In 3 of this paper, we extend the results that Colton obtained for the pseudo-
parabolic case. We consider equations of the form (1.3), except that the coefficients
A and B are allowed to be time dependent, and the restriction that u(x, 0) be zero
is removed. Our method will also handle nonhomogeneous versions of (1.3),
and to our knowledge, this is new even for elliptic equations. In the manner of
Colton and Gilbert, we illustrate how one can solve boundary value problems
with this method in the final section.

2. A method of ascent for parabolic equations. In this section, we will develop
a method of ascent for the following parabolic equation,

(2.1) L[u] Anu + A(r2,t)u- ut=O,

where An is the n-dimensional Laplacian, A(r2, t) is an entire function of the
variables rE and t, and ut denotes the partial derivative of u with respect to t.
The operator which we construct will map solutions of the equation Anh(x, t) 0,
which depend analytically on the parameter t, into the family of analytic solutions
of (2.1) in a one-to-one manner. Ifwe also have the coefficient A in (2. l) independent
of t, then our map is actually onto.

Throughout the remainder of this section, we will use the following notation"
x (xl, x2, .’-, xn)e Cn, complex n-space,

f is some open polydisk in C" containing the origin,
r x {t’ltl < T} Cn+

(Or) is the set of analytic functions on r, and is given the topology
of uniform convergence on compact subsets of fir,

(r) those functions in which are continuous on r. is given
the usual supremum norm topology

Ilhll sup Ih(x, t)l for h .
(x,t)T
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It is perhaps unnatural to have C" rather than "; however, several ofour arguments
depend on the fact that the limit of a uniformly convergent sequence of analytic
functions of several complex variables is again analytic, and since the functions
we are interested in are all of this type, we have taken their domains of definition
to lie in C"+ .

Motivated by Gilbert and Colton (cf. [8] and [4]), we consider the linear
operator

(2.2) (I + ()h(x, t) h(x, t) + 0-"-lG(r, 0"2, t, z)h(x0-2, z)do- dz,
-tl=

where the first integration is over the indicated path in the complex plane, 6 is
any positive constant and G(r, , t, z) is an analytic function of its independent
variables when z. We also insist that G satisfy (2.3) and (2.4a) below,

(2.3) 02G/cr2 (1/r)(t3G/Or) + (2(1 )/r)c32G/Or O + A(r2, t)G OG/Ot O,
1(2.4a) (1/r)(OG/Or)(r, O, t, ) -fni { 1/(z t)2 A(r2, t)/(z t)}.

Clearly, if we restrict x to lie in ", (2.2) makes sense; moreover, since it turns out
that the function G is really a function of r2, we may allow the variables x to
take on complex values. We also note that (2.3) and (2.4a) do not depend on n.

THEOREM 2.1. Let G(r, , t, z) be as above, and let h(x, t) 1 such that A,h 0
for each t. Then u(x, t) (I + f)h is in and satisfies L[u] O.

Proof. The fact that u is in 3 is obvious. We therefore only need verify that
L[u] 0. Differentiating (2.2) and integrating by parts, we have

L[u] A,h + 0-" + aG(A,h) do- dz

+ II 0-"-lh{(c2G/c3r2) (1/r)(c3G/c3r) + (20-2/r)(O2G/Or
(2.5) dd

+ A(r2, t)G (OG/Ot)} do- dz

+ A(r2, t)h (Oh/ct) + f (1/r)(c3G/c3r)(r, O, t, z)h(x, z)dz.

Since A,h 0 and G satisfies (2.3), each of the first three terms of the right-hand
side is zero. Condition (2.4a) implies that the last three terms have zero sum,
and we conclude that L[u] O.

We note, in general, that we have

(2.6) L[u] A,h + 0-"+ GA,h d0- dr,,

from which we will later conclude that if u (I + f)h and L[u] 0, then A,h 0.
We remark, for future use, that (, as a map from 3 or into , is continuous.

We now proceed to establish the existence of G. Let B(r, t) be defined by

(2.7) B(r, t) A(s, t)ds.
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Then if G satisfies (2.4b) below, it satisfies (2.4a).
1

(2.4b) G(r, 0, t, v) ---{(r2/(v 02) B(r2, t)/(v t)}.

We now write G as the infinite series

(2.8) G(r, , t, ")-- E k-lc(k)(?’2 T)
k=l

where ct(r, t, )is the right-hand side of (2.4b), thus forcing G to satisfy (2.4b),
and hence (2.4a) (cf. the remark after (2.4a)).

Setting 2 r2 and differentiating (2.8) term by term, we see that G satisfies
(2.3) if

4k(cctk+’)/c3)t) --41(2c(k)/2) q- 4(k 1)(c(k)/i)- A(2, t)c(k) + (k)/t,

(2.9) k 1,2,-...

For later use we will also insist that ctk)(o, t, ) 0 for each k. Setting

(2.10) ctk)(2, t, Z) 2k etk)(2, t, ), k 1,2,’.’,

we see that {etk)} must satisfy

(2.11) e(’)(2, t, ) 4/{(1/(z t)2) 1/2(B(2, t)/(z t))},

k e(k+ 1)(,, t, z) --(63 etk)/c3/)(f, t, Z)

+ 2-(/’ -[(?e/Ot)(s,t,)- A(s,t)e(s,t,)]ds,

k= 1,2,..-.
We now definef by

(2.12) f(k)()],, t, Z) (Z t)k+ etk)(2, t, z), k 1,2,

Then the ftk)satisfy

(2.13) ft,)_
1

4n--{1 -((z t)/2)B(2, t)},

kf+ -( t)(f/O2)_
2-(k+ 1) -{[(k + 1) (z t)A]ftk) + (z t)(c3fk/c3t)} ds,

k= 1,2,....

We will use the method of dominants to derive some estimates on f(k), and these
estimates will imply that the series in (2.8) converges absolutely and uniformly on
compact subsets of C C {(t, z) C2:t - z}. Recall that if g(z) and h(z) are
analytic functions of the complex variable z, then by g << h we mean that if gm
and h,, are the coefficients of the Taylor series expansions of g and h, respectively,
then ]g,,] __< h,, for each rn (cf. [1 ]).

LEMMA 2.1. Let R and T be positive constants. Let

(2.14) A(2, t)<< C(1 2/R)-1(1 t/T)-’
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for IAI < R and Ill < T. Then each f(k) as defined in (2.13) is an analytic function of
its independent variables, and there is a positive constant M M(R, T) such that

(2.15) f(k)(2, t, Z)<< M(9/R)k{(1 2/R)(1 t/T)(1 z/T)} -2k.

Proof. It is clear from (2.13) that each f(k) is analytic. We now proceed with
an inductive argument to prove (2.15). Let ko max {R, C, 4R/T}. Let M be
such that (2.15) holds for k _<_ ko. We now assume (2.15) holds for ftk) and show
that it holds for ftk/ 1). Standard calculations give us

(2.16) [(k + 1) (z t)A]ftk) << [(k + 1) + 2C],//,

(2.17) (z t)(c3ftk)/&) << (4k/T)h/,

(2.18) ( t)(c3f(k)/c32) << (4k/R)#,

where ///= M(9/R)k{(1 2/R)(1 t/T)(1 -/T)} -2(k+ 1). In the above, use has
been made of the fact that z << T(1 z/T)-1 and << T(1 t/T)-1. Using
(2.16)-(2.18) and

(2.19) f<<g implies ,,-(k+ 1) skf ds << g/k,

we have

(2.20) f(k+ 1)<< [4 + ((k + 1)R/k2) + (2CR/k2) + (4R/(kT))](1/R)/.

Without loss of generality, we may assume k > ko. Thus [4 + ((k + 1)R/k2) +
(2CR/k2) + (4R/(kT))] =< 9 and (2.15) holds for ftk+ 1).

An immediate application of Lemma 2.1 along with Theorem 2.1 and the
preceding discussion gives us the next theorem.

THEOREM 2.2. Let A(r2, t) be an entire function of r2 and t. Let ctk) (k 1, 2, ...)
be defined by (2.9). Then G(r, , t, 7:), defined by (2.8), is an analytic function defined
on C C x ((t, 7:) C2"t # 7:}, and satisfies (2.3) and (2.4). Thus the operator

defined by (2.2) exists and maps harmonic functions of x into the space of analytic
solutions of (2.1).

We now give three lemmas which are needed to show that I + r as a map
from ’ into is onto when A(r2, t) A(r2). This latter restriction is only needed
to show that I + has dense range.

LEMMA 2.2. Let h . Then for any compact set E contained in ’T, h is
Lipschitz with Lipschitz constant depending only on E and

Proof. Let (x, tl) and (x2, t2) be any two points in E. Then since he
and is therefore analytic on "T and continuous on fr, we may deform the 7: path
of integration into 17:1 T. This gives us

Ih(x2, t2) (h(xl, tx)l =< an-l[G(r2, a2, t2, 7:)h(x2a2, 7:)
*1 =T

G(ra, a2, , 0h(xa2, v) daldvl
(cont.)
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i" (x2,t2)er"- dF dldv]
=T (x,t)

<= IdFIdldzl
=T (x,t)

where F(x, t, , ) G(r, 2, t, )h(x, ) and the and variables are regarded
as parameters in computing dF. It is clear that IdFI may be majorized by bounds
on G, G, G,, h and h/x. Since E is bounded away from the boundary of
we see that is bounded away from and we may, therefore, bound G, G and
by some constant depending on G and the distance between E and the boundary
of r. Moreover, we may also use Cauchy-type estimates for analytic functions
to show that h/x may be bounded above by some constant which depends on
E times Ilhll. Thus we have

where C depends only on E and G.
LEMMA 2.3. , considered as a map from to , is compact in the following

sense. If h , n 1, 2,..., is a bounded sequence, then h has a convergent
subsequence in i.e., this subsequence converges unormly on compact subsets
of

Proof. Let {h}= with IIl[ M, n 1,2,.... Let E, p 1,2,...,
be a sequence of open nested sets, whose closures are contained in Qr, such that

E tend upward to fir. On the set E, the family h is uniformly bounded, and
from (2.21) equicontinuous. Thus by the Arzela-Ascoli theorem, h has a
subsequence h) which converges uniformly to some u on E. The family
h) is uniformly bounded and equicontinuous on E2, and thus has a uniformly
convergent subsequence h2), which converges to u2 on E2. Clearly u2 is the
analytic extension of u to E2. Continuing in this manner, for each p we have a
subsequence h) ofh-) which converges to u on E, and u is the analytic
extension ofu_ to E. The desired subsequence ofh ish). Clearlyh) u.
on E. Thush)

converffes to some u in .
LEMMA 2.4. Let . Then u R(I + ), there is an h in such that

( + ) u.

Proof. The method of proof is identical to that found in the Riesz-Schauder
theory of compact operators (cf. [7]). For this reason, we omit the details and
merely point out to the reader that, in this case, we do not have h .

We now proceed to show that if A(r2, t) A(r2), the mapping given by (2.2)
has dense range, i.e., R(I + ) . In general, we may write

(2.22) G(r, , t, ) g()(r, , t)/( t),
=1

but when A is independent of t, as we assume from now on, each g() in (2.22) will
also be independent of (cf. (2.10(2.13)). Let u(x, t) (I + )h(x, t), and expand
u and h in a Taylor series in t, i.e.,

u(x,t)= Um(X)t’/m,
m=0

(2.23)

h(x,t)= E hm(X)t’/m"
m=0
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We then have

Hm(X (CmU/Ctm)lt= o

(Omh/otm)it=o + a l(c3mG/t3tm)(r, 0"2, 0, z)h(x0-2, "c)do- dr

(2.24)

hm(x) + 2gi 0-"- h,,,(0-)g(r, 0-) do-

+ 2hi 0--h+,,,_(x0-)(g((r, 0-)/(k 1)!)d0-,
k=

m=0, 1,2,..-.

These equations imply that if h(, t) is a polynomial of degree N in t, then so is
u(, t). Moreover, since the linear operator defined by

(2.25) h,,(x) + 2hi 0-"- hm(x0-2)g)(r, 1 0"2) do-

is invertible (the second term becomes a Volterra operator after the substitution
0-2 p/r) and the infinite matrix of operators defined by (2.24) is upper triangular
with all its main diagonal entries the same invertible operator, we may infer that
any N N square submatrix formed by taking the first N rows and columns is
invertible. Thus ifu(x, t) is a polynomial in ofdegree N, there is a unique polynomial
h(x, t) of degree N such that u (! + a3)h, from which we may infer that the
range of (I + f), as a mapping from into ’, is dense.

We remark that the function gt x)(r, ) multiplied by (2hi) is Gilbert’s G function
for the equation A,u + A(r2)u 0. This follows from the following characteriza-
tion of his G function [8]:

(O2G/Or2) (1/r)(c3G/Or) + (2(1 )/r)(O2G/(Or 0)) -1- A(r2)G O,
(2.26)

G(O, ) O, G(r, O) sA(s2) ds.

An easy computation using (2.3), (2.4b) and (2.22) verifies that 2nig)(r, ) satisfies
(2.26).

We now state the following theorem.
THEOREM 2.3. Let A(r2, t) in (2.1) depend only on r2. Then the linear operator

(I + c) defined by (2.2) is a continuous, one-to-one mapping of (fr) onto (fr).
Proof. The preceding discussion along with Lemma 2.4 shows that I + f

maps 90 onto 9. We, therefore, only need verify that I + f is one-to-one. Let
h such that (I + f)h 0. Expanding h(x, t) in a Taylor series in r (which is
possible for x["), we have h =ohk(rk/k!). Letting r tend to zero in
(I + ()h 0, we have

0 ho + lim 0-"- G(r, 0-2, t, z)h(x0-2, "c) do- dr.
rO -1=

,Since G(0, 1- 0-2, t, z)--0, we conclude that ho- 0. Differentiating (I + ()h
with respect to r and then letting r tend to zero, we may conclude that ha 0.
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Since we may similarly conclude that hk 0, for all k, we have h(x, t) 0 if x [",
and thus since h is analytic, h(x, t) 0.

We remark that we may now conclude from (2.6) and Theorem 2.3 that if
u (I + C)h and L[u] 0, then A,h 0.

In the special case when n equals one, we have the following theorem.
THEOREM 2.4 (n 1). Let u(x, t) be any analytic solution of (2.1) in some

neighborhood of the origin. Let h(x, t) u,,(O, t)x + u(O, t). Then u (I + )h.
Proof. Let v (I + C)h. Then v is an analytic solution of (2.1). Moreover,

since G(O, , t, z) (cOG/c3r)(O, , t, z) 0, we have

v(0, t) u(0, t) and vx(O, t) u,(O, t).

Thus from the Cauchy-Kowalewski theorem, we have

u v (I + C)h.

We conclude this section by writing down the G function for the equation
A,u ut 0:

1
(2.27) G(r, , t, z) -i(r/(z 0)2 exp [r2/(4(z t))],

where exp is the usual exponential function. The reader may easily verify that
(2.27) satisfies (2.3) and (2.4).

3. The method of ascent for pseudoparabolic equations. Throughout the rest
of this paper the variable x is restricted to lie in ".

In this section, we shall devote our attention to the construction of an integral
operator, mapping solutions of the simplest (nonhomogeneous) pseudoparabolic
equation onto solutions of a more general nonhomogeneous pseudoparabolic
equation. This operator will essentially be independent of the number of space
variables. In the next section, we will show how one can use this operator to-obtain
solutions to the more common initial-boundary value problems associated with
pseudoparabolic equations.

We shall consider the equation,

(3.1) (A. + A(r2, t))u,(x, t) + (r/A + B(r2, t))u(x, t) f(x, t),

where A(r2, t) and B(r2, t) are entire functions oft2, A(r2, t) being twice continuously
differentiable and B(r2, t) continuously differentiable with respect to t, and r/is
a constant. We need only assume that f(x, t) is continuous with respect to x and t.
By means of the transformation v(x, t) u(x, t)e"t, (3.1) becomes

(3.2) Lu(x, t) A,u,(x, t) + A(r2, t)u,(x, t) +/(r2, t)u(x, t) f(x, t)

with

B(r2, t) B(r2, t) r/A(r2, t); f(x, t) e’r(x, t).

It is this form which we consider, and for convenience we shall omit the symbol.
By the change of dependent variable v(x, t) u(x, t) u(x, 0) in (3.2), we may
without loss of generality assume that

(3.3) u(x, 0) 0
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provided that u(x, 0) is twice continuously differentiable.
We seek a solution of (3.2) and (3.3) in the form

(3.4) u(x, t) p(x, t) + a"-lG(r, 1 0
.2 t, "C)p(X0.2 "C)da dz,

where p(x, t) satisfies the equations

(3.5) zX,p, (x, t) g(x, t),

(3.6) p(x, 0) 0.

Condition (3.6) is required in order to satisfy the initial condition (3.3),
and g(x, t) is given uniquely in terms off(x, t) in the manner to be described.

We choose G(r, 0.2, t, ) to be a solution of

(3.7) Grrt (0./r)Gr.. (1/r)G, + AGt + BG 0

with the initial conditions

(3.8) G(r. O, t, t) -r(A(r2, t)).

(3.9) Gin(r, O, t, ) -rB(r2 t)

(3.10) G(r 0.2 t) O

We shall now show the existence of a solution to (3.7)-(3.10), leaving for the
moment the motivation for our choice of G.

As in [2], we will seek G(r, 0.2, t, ) in the form

(3.11) G(r, 0"2, t, ) c(k)(r, t, )(1 0.2)k-1

and derive each of the c(k)(r, t, ) by means of a recursive relation. Using these
relations, we will then show that (3.11) converges in any finite region rz < R;
Itl, I’1 < T and a _<_ for arbitrary large R and T.

Substituting (3.11) into the differential equation (3.7) and equating the
coefficients of powers of 0.2 yields the recursive relation

(2k/r)c +1) ((2k 1)/r)c ,() Acl) Bc), k >rrt

The initial conditions (3.8)-(3.10) lead to a determination of ca)(r, t, ) as

c(l(r, t, "c) r "c t)A(r, ) (s t)B(r, s) d dr.

By considering c((r, t, r) ((r, t, :) as a function of r, and for k >_ the
above become

(3.12)

and

(3.13)

(k+ 1) (k (k) 1A(k)

fo’ I(r-t)A(r2, t)-f,(s-t)B(r2, s)ds}dr2(1) -
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Equations (3.12) and (3.13) show that for each k __> 1, tk) is an analytic function
of r2. Since (1)(r2, t, t) 0, we have from (3.10) and (3.11) that

(3.14) g:(k)(r2, t, t) 0, k _>_ 1.

Now by integrating with respect to from to t, we obtain (3.12) in the form

k(rk + 1) (k hfi(k) ..2(k) fl,,,,_ %,z (A(r2, S)k)(r2, S, Z) + B(r2, S)Ik)(r2, S, Z)} ds.

(3.15)

If we simplify this expression by means of the transformation

(3.16) ()(r, t, ) r e()(r, t, ),

we are led to the scheme

el + n

i.e.,

k e( + e rl ( + r{A e + B e(} ds dr.
An integration by parts now gives our recursive relation its final form"

(3.17) ke( +- -o- _+ r Ae(+ (B A)e(d dr.r2

Under the transformation (3.16), (3.13) becomes

---f2"{(r-t)A(r )-f(s-t)B(r s)ds}dr(3.18) ,e
2r2

As in 2, it can easily be shown by induction that for arbitrary large numbers
R and T, there exists a positive constant M M(R, T) independent of k such
that as a function of r2, for r2 R and uniformly for [z], lt] < T,

2kM
(3.19) et) <<

k(1 rm/R) kR- k"

The details follow those in Lemma 2.1, and we omit them.
Returning now to our series (3.11) and using the fact that l, we have

G(r, -2, t, ) << r2k etk)(r2, t, )
k=l

<< M (mkrEk/k)(1 rm/R)-kR -k.
k=l

Let D {r2" r2 R/4} and let I [0, 1], B [0, T]. We will now show that
G(r, 2, t, z) converges in D I B B. Since (1 rE/R) for r2 G D,
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we have

(3.20)

G(r, cr2 t, z) << M
k (4/3)’

for (r, a, t, z) D I x B x B; that is th series (3.1) onveres bsolutely nd
uniformly for r R/ nd t Z hus sin R nd wer rbitrry
we n ondude that (r -t ) is n ntire function of r nlytic in
for nd twie ontinuously dirntibl in nd . his shows th
of solution to (3.V3.10).

If we now make the change of variable x (r, 0), where r, 0 are spherical
coordinates, and apply the operator L to both sides of (3.4), we obtain

Lu A.p + (1/r)G(r, O, t, t)p + A(r2, t)p

+ (1/r)G,r, O, t, )p(x, )d + B(r, t)p

+ -{G,, (/r)G,, (lit)G,, + AG,},=p,(x, t) d
o

+ 6n {Gm (a/r)G,, (1/r)G, + AG + BG}p da dr

+ a"+3{GA.p}l,=da + a"+3GtApda d.

In (3.20), we have used integration by parts and the relation p,,(xa2, z)=
(a/2r)p,,(xa2, z). We now substitute the conditions (3.73.10) on the function G
into (3.20) and obtain

f(x, t) g(, t) + e+ G(r, e, t, t)g(, t)d

(3.21)

+ a"+ 3G(r, 2, t, z)g(x2, z)d dz

with .p,(x, t) g(x, t).
Under the change o variables x (r, 8) and 2 p/r, this becomes

0(r, , t) (r, , t) + g(r, p, t)(p, , t)dp

(3.22)

+ K(r, p, t, )(p, , t) dp d,

where

(r, O, t) r"+ 2/2f(r, 0, t),

dp(r, O, t) rn+2/2g(r, O, t),
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K(1)(r, p, t) (p"+2/2r)G(r, p/r, t, t),

K(2)(r, p, t, z) (p"+2/2r)G,(r, p/r, t, ).

From (3.11) and (3.16) (where each etk is an entire function of r2 and twice con-
tinuously diffcrentiablc with respect to and z) we have that Ktl and K(2) are
entire functions of r, analytic in p for p =< r and continuous in and z for It[, [z[ < T.
Thus the Voltcrra integral equation (3.22) is invertiblc; that is, for each continuous
function (r, O, t), there exists a unique continuous solution (r, 0, t), and this in
turn shows the invcrtibility of (3.21).

Thus given any continuous function f(x, t), we can find a unique continuous
g(x, t) by means of (3.21) such that if u(x, t) satisfies equation (3.2), then p(x, t)
satisfies (3.5). From (3.4), it is immediate that p(x, 0) 0 follows from u(x, 0) 0.

Thus our operator (3.4) which maps solutions of (3.5) and (3.6) into solutions
of (3.2) and (3.3) is in fact onto.

In passing, we note that by comparing (3.7), (3.8) and (3.10) with the corre-
sponding equations in [8] for Gilbert’s G function for the elliptic equation

(3.23)

we have

(3.24)

Anu + A(r2, t)u O,

G(r, 0"2, t, t) ((r, a2, t),

where ((r, 0"2, t) denotes Gilbert’s G function for (3.23).
We thus have the following theorem.
THEOREM 3.1. Let u(x, t) be a real-valued solution of (3.2) and (3.3). Then u(x, t)

can be expressed in the form (3.4), where p(x, t) satisfies (3.5) and (3.6). The function
G given by (3.7)-(3.10) is an entire function of r2, analytic in 0- for 0- <= and twice
continuously differentiable with respect to and z for Izl, It] < T. For each fixed t,
G(r, 0-2, t, t) is Gilbert’s G function for the elliptic equation (3.23).

Suppose now that for each fixed t, f(x, t) and u(x, 0) are analytic functions
of x in a bounded domain flx T. Then the Volterra integral equation (3.22) has
a unique solution, which in turn implies that g(x, t) is an analytic function of x
in ft. Since for such a g(x, t), any solution of (3.5) and (3.6) is analytic in x for each
fixed and G is an entire function of r2, the fact that the mapping (3.4) is onto now
implies the following corollary.

COROLLARY. Let u(x, t) be a real-valued, strong solution of (3.1) in a bounded
domain x T. Let u(x, O) and f(x, t) be analytic functions of x in x T. Then for
each fixed t, u(x, t) is an analytic function of x in x T.

To complete this section, we consider the equation

Au, u, + Au f(x, t).

(It is this equation which occurs in most of the physical applications.) By using
the transformation v- etu, we see that A -1 and B 1, and in this case,
it is easily verified that the G function is

((1 0-2)k-X/(22k!(k + 1)!))r2kdp(k)(t- Z),G(r, 0-2, t, z) - k=
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where dptk)(s) is a polynomial in s of degree k + given by

4,,+ ’(s) 4,(s) 4,(s), 4,(o) o
and

()(s) s + 1/2s :.
Due to the presence of the factor 1/k!(k + 1)!, the series expansion for G

converges rapidly, and we can obtain an excellent approximation to this function
by using only the first few terms of its series expansion.

4. Initial-boundary value problems. In this section, we shall illustrate how
one can use the integral operator developed in the previous section to solve
boundary value problems. Colton in [3] gave a constructive method for solving
the first initial-boundary value problem for the equation (1.3). We shall follow
his approach and seek the solution to the first initial-boundary value problem

(4.1)

(4.2)

(4.3)

AnU, + A(r2, Ou + rlAu + B(r2, t)u f(x, t),

u(x, 0) Uo(X),

u(x, t) 4,(x, t), x cgf,

in a cylindrical domain f T. Here f is a bounded, simply connected domain
with Lyapunov boundary cf and T is the interval [0, T]. The boundary data
4)(x, t) is a continuous function on Of T and continuously differentiable with
respect to t. We may, without loss of generality, assume that (4.1) is written in
the form (3.2) and that Uo(X) 0.

For n > 2, we may represent pt(x, t) as a double layer potential

(4.4)

p,(x, t)

where/(y, t) is a potential to be determined (for n 2, we would represent p,(x, t)
as a double layer logarithmic potential) and g(y, t) is the unique solution to the
integral equation (3.21). As usual, F denotes the gamma function and /c% is the
derivative with respect to the inner normal v.

We now differentiate both sides of our representation (3.4) with respect to
and substitute in (4.4). By interchanging the orders of integration and letting x
approach the boundary 9f, we obtain the integral equation for the determination
of/4x, t),

(4.5)

O(x, t) #(x, t) + f0n #(y’ t)N(1)(x’ y, t)ds(y)

+ #(y, z)N(2)(x, y, t, z)ds(y)dz,
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where

a G(r cr2 t) (1/Ixcr2 yl 2)(x, t) ,(x, t) + ./:

g(y, t) dy da

a Gt(r a2, T) (1/IXff2 YI’- 2)n/2

g(y, z) dy da,

r(n/2)N()(x, y, t) n./2 (8/8v){1/Ix YI"-2)

+ r(n/2)fn,/2 "-6(r, , t, t)(/v){1/Ix yl"-:} d,-G(r )(/v){1/ y-} dN(x,y t,)= /

We note that (x, t) uniquely determines (x, t) since (x, 0) 0. The kernels N
and N( have weak singularities at y and hence (4.5) is of the form

(4. , ( + + .,
where is a Fredholm operator and a Volterra operator:

g g(y, t)g((x, y, t) ds(y),

(y, t)Na(x, y, t, ) ds(y) d.

We now require a lemma. The proof can be found, for example, in [7].
LEMMA 4.1. If is a compact operator and a compact, quasi-nilpotent

operator on a Hilbert space H commuting with , then

( ( + ,
where () denotes the spectrum of the operator .

From Fubini’s theorem, we see that and commute, and hence the
conditions of the lemma are satisfied. Using (3.24), the operator I + is identical
with the operator defined in equation (4.42) of [8], and hence if A(r, t) N 0 in
the closure of x T, then (I + )- exists. In this case, the lemma gives us that
(I + + )- exists and that the unique solution of (4.6) is

(4.7) (I + + )-.
We have thus proved the following theorem.
To 4.1. The first initial-boundary value problem for (3.2) (and thus by

means of the transformation u e-’v for (4.1) also) admits a unique solution given
by (3.4) and (4.4), where the potential is given by (4.7) and g is given by the solution
to (3.21), provided A(r, t) 0 in x T.
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In a similar manner, we can handle the second and third initial-boundary
value problems for (4.1) (except in these cases, we use a single layer potential in
equation (4.4)).
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ON THE POINTWISE COMPLETENESS OF DELAY-DIFFERENTIAL
SYSTEMS OF NEUTRAL TYPE*

A. K. CHOUDHURY

Abstract. Necessary and sufficient conditions for pointwise completeness of delay-differential
systems of neutral type are given. It is shown that there exist second order delay-differential systems
of neutral type which are not pointwise complete. It is also proved that degeneracy in case of nth order
delay-differential systems of neutral type with one delay can start no later than (n 1)h, where h is
the delay.

1. Introduction. It is an important property of delay-differential systems of
the form

(1) Yc(t):Ax(t)/ Bx(t- h), h >0, t>0,

(where A and B are constant n x n matrices, n > 2) that there exist A and B such
that solutions of (1) after a certain time do not span the whole space R for all
choices of initial functions (continuous). Such a property is called pointwise
degeneracy. Negation of this property (i.e., if solutions of (1) span the whole space
R for some choice of initial functions) is called pointwise completeness. This
property was first defined by L. Weiss [8] in connection with the study of control-
lability ofdelay-differential systems. V. M. Popov and others, [3], [7], [9], including
the present author, studied the above problem and obtained necessary and suffi-
cient conditions of pointwise completeness of such systems. The results obtained
by them are different in form, though they are equivalent.

In this paper, we shall obtain necessary and sufficient conditions of pointwise
degeneracy for the neutral system of the form

(2) (t) Ax(t) + Bx(t h) + CY(t h), h > 0,- > O,

where A, B and C are constant n x n matrices. Our approach in this paper is an
extension of the ideas in [3] and is based on a new representation for the solution
of (2) in different intervals.

It may be mentioned that boundary control of a certain hyperbolic system
can be transformed to the problem of controllability of a delay-differential system
of the neutral type [4], and the controllability of such a system with respect to the
initial function also appears in some loss-less transmission problems [2]. We shall
show that all delay-differential systems of the neutral type are pointwise complete
in case rank C n or AB BA, AC CA and BC CB. But unlike the systems
of the form (1), all second order delay-differential systems of the neutral type are
not pointwise complete, as seen by the following simple example:

(3) )l(t)- 2(t- 1),

(4) :2(t) Xl(t) x2(t 1), > O.

* Received by the editors December 3, 1974, and in revised form May 30, 1975.
Department of Electrical Engineering, Howard University, Washington, D.C. 20059.

913



914 A.K. CHOUDHURY

Differentiating (4) and using (3), we obtain for > 0,

52(t 0.

Hence for > 0, x2(t) a + bt, where a and b are scalar constants. Therefore for
> 1, it follows from (4) that

xx(t)-Jc2(t)+x2(t- 1)=b+a+b(t- 1)=a+bt

x(t),

which shows that the system (3)-(4) is pointwise degenerate for > 1.

2. Definitions and notations. We as usual denote the real intervals a < < b,
a =< =< b, a _<_ < b and a < _<_ b by (a, b), [a, hi, [a, b) and (a, b], respectively,
and the set of all real functions f’(t, t2) - R" having continuous kth derivatives
by ck(tl,t2). If re ck(tl ,t2)and, in addition, the right-hand kth derivative off
exists at tl and is continuous from the right at t, then f is said to be of class
Ck[tl, t2). Similarly, if the kth derivative is continuous from the left at 2, then
f Ck(tl, t2]. If both of these conditions hold, we say that f Ck[t, t2].

Pointwise completeness. The system (2) is said to be pointwise complete at
time t > 0, if for all y R", there exists a g(. C[-h, 0], such that

(5) x(t ;g) y,

where x(t; g) is the solution of (2) corresponding to the initial function g(.).
The system (2) is said to be pointwise degenerate if it is not pointwise complete.
If the system (2) is pointwise degenerate, then it follows that x(t ;g) does not span
the whole space R" for all choices of initial functions g(. C1[-h, 0], and hence
there exists a nonzero n-vector d such that
(6) drx(tl g) 0
for all g(. ) C [-h, 0] (dr denotes the transpose of the column vector d). There
may be more than one such d satisfying (6), and in that case, the system is said to
pointwise degenerate with respect to these vectors.

We introduce the matrix G(o) defined by

(7)
G(a) (o’I- A)-(B + Cr)=

h()

p()
det (aI A)

(8) A(D)F(t h)= g(t h), 0 <= <= h.

where A(a) det (aI A) and p(a) is a n n matrix each of whose elements are
polynomials in a of degree less than or equal to n.

Let D and s denote the operation of differentiation with respect to and z,
respectively. We denote the kth derivative of the function f(t) by Dkf(t) and the
kth derivative at the point to by Dkf(t)lt=to skf(z) and skf(z,)l=O have similar
meanings.

Consider the function g(. ) Ci[-h, 0], and let F(. ) C"+ 1J-h, 0] satisfy the
differential equation
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Associated with the matrices A,B, C and the function g(. ) Cl[-h, 0], we intro-
duce the notation L(t; g((. h)) defined by

(9) L(t;g((. )- h))= p(D)F(t h), 0 <__ <= h,

where p(D) and F(. are defined in (7)-(8). We observe that L((. ); g((. )- h))"
[0, h] ---, R". Since there is more than one function F(. satisfying (8), it follows
that L(t, g((.)-h)), 0 =<t<_ h, is not unique. If b(.) satisfies the differential
equation

(10) Ak(O)b(t- h)= g(t- h), 0 =< =< h,

k being a positive integer, then we observe from (8)-(9) that

(11) L(t; g((. )- h))= p(D)Ak- l(D)d?(t- h), 0 <= < h.

We next introduce the notation L2(t; g((. 2h)) defined in the following way:

(12) L2(t;g((.)- 2h))= L(t;gl((.)- h)), h __< __< 2h,

where the function gl(" )" [0, hi --. R", is given by

(13) gl(t) L(t;g((.)- h)), 0 _<_ _<_ h,

and the notation L(t; g((. h)) is defined above. Combining (12)-(13), we see
that

(14) L2(t;g((.) 2h))= L(t;L((.)- h;g((.)- 2h))), h N <= 2h.

In general, we define Lr+ l(t; g((. (r + 1)h)) by the relation

c’+’(; g((. (r + )h)) C(t; g((. h)),
(5)

rh<=t<=(r+ 1)h, r= 1,2,3,...,N,

where N is a positive integer and gr(. is given by

(16) g(t) U(t; g((. )- rh)), (r- 1)h __< =< rh.

We observe that U/ 1(. g((. (r + 1)h))" [rh, (r + 1)hi - R". If g(.) Cl[-h, 0]
and

g(t- (r + 1)h)= Ak(D)dp(t- (r + 1)h), rh <= <= (r + 1)h,

then it follows from (15) that

(17) U+ l(t; g((. (r + 1)h)) (p(D))+ I(A(D))-"+ 1)(t (r + 1)h ),

rh <= <= (r + 1)h.

With obvious modification the notation L(t; g((.)- h)) can be defined when
g(. is a matrix function.

3. Representation for solution. In this section, we shall obtain a new repre-
sentation for solution of (2) in different intervals in terms of L(t;g((.)-h)),
L(t; ea((’)-h)), etc. This representation is different from the usual kernel representa-
tion, and the new representation will be used to obtain necessary and sufficient
conditions of pointwise degeneracy of the system (2) by performing simple opera-
tions on the matrices A, B, C associated with (2).
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LEMMA 3.1. Consider the function g(.) C1[ -h, 0]. Then L(t g((. h))
satisfies (2) in the interval 0 < <= h, i.e.,

(DI A)L(t;g((. h)) (B / CD)g(t h), 0 < _< h.

Proof. Using the definition of L(t;g((. h)), we have for 0 / __< h,

(DI A)L(t; g((. h)) (DI A)p(D)f(t h)

(B + CD)A(D)F(t h) (using (7))

(B + CD)g(t h) (using (8)) 0 < __< h,

which shows that Lemma 3.1 is true.
LEMMA 3.2. Suppose that the continuously differentiable function v(t), >_ 0,

satisfies the differential equation

(18) (t) Ax(t) + Bg(t- h) + C,(t h), > 0,

where g(. ) C[-h, 0]. Then the function w(t) defined by

(19) w(t) v(t) + eat(g(O)- v(0)), 0 _< =< h,

is the solution of (2) in the interval [0, hi corresponding to the initial function
g(. C1[ h, 0].

Proof. We observe from (19) that

w(O) v(O) + (g(O)- v(O))- g(O)
and

(t) f(t) + A e’t(g(O) v(O)) (0 < __< h)

Av(t) + Bg(t h) + C,(t h) + A ea(g(O)- v(O))

(since v(t) satisfies (18))

Aw(t) + Bg(t- h) + C,(t- h).

Hence the existence and uniqueness of the solution of (2) implies that w(t) is the
solution of (2) in the interval [0, hi corresponding to the initial function g(-)
C[-h,O].

LEMMA 3.3. Let g(. )e C[ h, 0]; then the solution of (2) in the interval [0, hi
corresponding to the initial function g(. is given by

(20) x(t g) L(t g(( h)) ea’(g(O) L(O;g((. h))).

Proof Lemma 3.3 follows from Lemmas 3.1 and 3.2.
Remark. Though L(t; g((. h)) is not unique, the solution of (2) correspond-

ing to the initial function g(. ), as given in (20), is unique.
LEMMA 3.4. If g(t) eat’-h), 0 <__ <= h, then L(t g((. h)) is a differentiable

function of in the interval [0, hi.
Proof We note that

(21) L(t; eA((’)-h)) p(D)F(t h), 0 <= <= h,

where F(t h) satisfies the equation

(22) A(D)F(t h) eAte-h) O<__t<_h,
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and

A(D) det (DI A);

p(D) defined in (7) is a matrix each of whose elements are polynomials in D. From
(21)-(22), it follows that L(t; eAt{’)-h)) is a differentiable function of t.

THEOREM 3.1. Let the function dp(. ) C"k / i_ h, 0] and satisfy the differential
equation

(23) Ak(D)dp(t- h)- g(t h), 0 __< _< h,

where g(. C [- h, 0], k >__ r is a positive integer. Then the representation for the
solution of (2) in the interval [(r 1)h, rh] corresponding to the initial function g(.
is given by

(24)
x(t; g) gr(t) (p(D))r(A(D))k-’dp(t rh)

/ (W,(t, s)X,(z))=o, (r- 1)h <= <= rh,

where

(25)

r-1 r-j

W(t,s) , , Li(t; eA{e)-"+J-h)Y_x(s)(A(s))"-j
j=1i=1

r-1

+ ea"- Y{s) (A(s)) -j=O (r- 1)htrh,
r-1

(26) Y_(s) (p(s))"- L’-)((r 1)h;ea"’-{’-ih))Y_i(s)(A(s))"-,
j=l

(27) Yo(s) I, the identity matrix ofdimension n,

(28) Xr(T (a(s))k-r+ 1(T) p(S) (a(s))k-r(T h).

Proof. We shall prove Theorem 3.1 by induction. Assuming the representa-
tion to be true in the rth interval, we shall prove that it is also true in the (r / 1)th
interval.

We observe that W(t, s) in (25) is defined in the interval (r 1)h <_ <= rh,
and we introduce the notation L(t; W((. h, s)), and we note that it is given by

(29)

r-1 r-j

L(t; W,((. h,s)) Li+ ’(t; ea"’-ti+h’)Y_l(S)(A(s))’-J
j=l i=l

r-1

+ L(t; ea({’)-{g+ 1)h))Yj(s)(A(s)f-J-’,
j=O

rh <= <= (r + 1)h.

Combining the two terms in the right-hand side of (29) into a single summation,
we obtain

(30)
r-j+

L(t; W,((.)- h,s))= Li(t;eA((’)-(i+j-1)h))Yj_l(S)(A(s))r-J,
j=l i=l

rh <= <__ (r + 1)h.
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From (25), (30) it follows that

[(W,(t, s) L(t W(( h,
r-j

2 2 Li(t;ea((’)-(i+J-1)h))YJ-l(S)(A(s))r-J
j=li=l

r-1

+ ea"-h)(s)(A(s))--j=O

(31) 2 Li(t; ea((’)-"+-x)h))-(S)(a(S)Y- X(r)
j=l i=1 t=rh

eA(r-)h(S)(A(S))r--I
LX=O

= t=rh

Changing the independent variable (t rh) to , we observe that

[(p(D))(A(D))-dp(t rh) (p(D))+ X(A(D))-(+ 1)(/)(t --(r -- 1)h)],=n

(32) (p(s))’((a(s))k-’q(r)- p(s)(a(s))k-(’+ 1)(])(’6 h)): o

((p(s))x+()L- o.

Using Lemma 3.3, we note that the solution of (2) in the interval [rh, (r + 1)hi
corresponding to the initial function g(. ) Cl[-h, 0] is given by

(33) x(t; g)= gr+ l(t)= L(t; gr((. )- h)) + ea(’-h)(g,(h) L(h; g,((" )-- h))),

rh <= <= (r + 1)h,

where g,(. is the solution of (2) in the interval [(r 1)h, rh] corresponding to the
initial function g(. )e C[-h, 0]. Let

(34) Zx(t) a_ L(t; gr((. h)), rh <= <__ (r + 1)h,

(35) zE(t ___A eatt-rh)[gr(h)_ L(h; g,((. )- h))], rh <= <= (r + 1)h.

Noting (30), we observe that

(36) zx(t (p(D))’+i(a(D))k-r-ldp(t (r + 1)h) + (L(t; W((.) h,s))X,(z)),=o

(p(O))+ (A(D))k-"- 1(t (r + 1)h)
(37)

r-j+l

+ [ E (Li(t;eA((’)-(i+j-1)h))YJ-l(S)(A(s))r-j+l)Xr+l(’C) 1j=l i=1 z=0

From (24), (35) and (36), it follows that

z2(t) ea(’-"h)[pr(D)(A(D))k-’dp(t rh) p"+ (D)(A(D))k-"-(t (r + 1)h)
(38) + {(L(t; W((. h, s)) W(t, s))X,(z)},:o],:rh.
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Using (31)-(32) and replacing A(s)X,(z) by X,+ a(z), we find that

(39)

pr(s Lr+ a-J(rh; eA((.)-,h))yj_ a(s)(A(s))r+

+ ea(’-J)hY(s)(A(s))"-j X,+
j=O

(40) eA(t-Jh)yj(s)(A(s))r-Jxr+ 1(’C)
j=0

where Y(s) and X,+ l(Z) are defined in (26)-(28). It follows from (33)-(35), (37) and
(40) that the representation for the solution of (2) in the (r + 1)th interval cor-
responding to the initial function g(. ) Ca[-h, 0] is given by

x(t; g)= g,+ a(t)= za(t) + z2(t)

F + (D)(A(D))-’- 4)(t -(r + 1)h)

+ Li(t; eA((.)-(i+j 1)h)_ l(S)(A(s))r+ 1-j
j=l i=1

(4)
+ eA(t-J){s)(A(s))r-i)X,+(z)Jj=0 =0

p+ (D)(A(D))-’- 4(t (r + 1)h) + (+ (t, s)X,+ (r))=o,

which shows that Theorem 3.1 is true in the (r + 1)th interval, if it is true in the
rth interval. Now, in the first interval, the representation for the solution of (2) is
given by (using Lemma 3.3)

x(t; g)= ga(t)= p(D)(A(D))k- a4(t- h)

(42) + [ea’(Ak(s)4(z)- p(s)Ak- a(s)4@: h))],:o

p(D)Ak- l(o)t(t- h) + (eAtXl(’C)),=o,

which shows that Theorem 3.1 is true in the first interval, and therefore by induc-
tion, the representation for solution of (2) is true in any interval.

Remark. Though L(t; ea((’)-h)), U(t; ea"-’h)), etc., are not unique, the r.epre-
sentation for the solution of (2) as given by (24)-(28) is unique. This follows from
the remark following Lemma 3.3.

LENMA 3.5. Thefunction W(t, s) defined in (25) can be expressed in the form
1)n(43) W(t,s)- W,o(t) + W,a(t)s + W2(t)s2 +... + Wt(r_l)nS(r-

(r- 1)h .<= _< rh,

where Wo(t), Wrl(t), etc., are differentiablefunctions in the interval [(r 1)h, rh].
Proof We observe that Li(t; eA((’)-th)), i= 1,2, 3,-.., r, are differentiable

functions in the interval [(r 1)h, rh]. This follows from Lemma 3.4, and Lemma
3.5 is proved by noting that Y_ a(s) is a polynomial in s of degree n(r 1) and from
(25)-(26).
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4. Necessary and sufficient conditions of pointwise completeness. In this
section, we shall obtain necessary and sufficient conditions of pointwise complete-
ness of the system (2) and some related properties.

LEMMA 4.1. If the system (2) is pointwise degenerate at time > 0, then the
system is pointwise degeneratefor all >= l.

Proof. The lemma follows from the fact that if x(t;g), > 0 is the solution of
(2), then the shifted function x(t + z; g(. )), z > 0, is also a solution of (2) and the
definition of pointwise degeneracy.

In the next theorem, we shall prove that if the system (2) is pointwise degen-
erate, then degeneracy can start no later than (n 1)h.

THEOREM 4.1. Suppose that the system (2) is pointwise degenerate at

(tl > (n 1)h) with respect to the nonzero n-vector d. Then the system (2) is also
pointwise degenerate with respect to d for all >= (n 1)h.

Proof. Suppose that t [(r 1)h, rh], r > n. Then by Lemma 4.1, the system
(2) is pointwise degenerate for all _>_ tl. Let us choose the function b(. in (23)
such that

(44) Db(0) Db( h) 0, j 0, 1,2, ..., nk.

It follows from (25) and (43) that dTW(t, s)Xr(r) can be expressed as

drW,(t,s)X,(z) [(ao(t) + a(t)s +... +
(45) [(bo(t) + bx(t)s +... + b,k(t)s"k)dp(z h)],

where ao(t), ax(t), a,k(t) bo(t), bl(t), bk(t) are differentiable n-row vectors.
Hence from (44)-(45), it follows that

(46) (drW,(t, s)Xr(z))r=o O.

Since the system (2) is pointwise degenerate for all => l, it follows from (46),
(24) that

(47) dWx(t; g) drp*(D)(A(D))k-*dp(t rh) O,

t>= t, l[(r- 1)h,rh], r > n,

where p(D) is defined in (7). Equation (47) can be written in the form

(48) (S + SD + SD2
at-... -1- STnkDnk)(t- rh)- O,

t_> t, tl[(r- 1)h, rh],

where S, S, sT are (nk + 1)-row vectors. Let us choose b(. such that

Ddp(to) S.i, t < to <= rh, j O, 1,2, 3, nk.
Hence (48) reduces to

T(49) (SSo + sTs, + S$2 +... + S,kS,,)= O.

It follows from (49) that

and hence

Si=0, i= 1,2,3, ..., nk,

(50) dTp*(D) O, r > n.
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Now applying the Cayley-Hamilton theorem, it can be easily shown that

pr(D) O, r > n,
implies that

(51) p"(O) O.

Hence from (50)-(51), it follows that

(52) dp"(O) O.

Using (7), equation (52) can be expressed as

(53) dra"(o) O,

where G(a) is defined in (7) and satisfies the relation

(54) trG(a) AG(tr) + B + Ca.

Multiplying (54) from the right by G(a) successively and replacing trG(a) by
AG(a) + B + Ca, we have the following relation:

n-1

(55) aG"(a) pG"-’(a) + q,-1 + rX, a, n 1,2, 3,..., N,
i=0

where N is a positive integer and

p A, pl B + CA, p Ci-’pl, i= 2, 3,4,..., n 1, n > 2
.(56)

1, C,-1B C"q-1 r, n= 1,2,3,...,N.

Multiplying (55) successively by tr and replacing aG(tr), 1, 2, 3, ..., n, by the
corresponding expressions like the right-hand side of (55), we obtain, after
simplification, the following expression for

n-1 j-1

(57) trJG"(tr) Z plG"-’(a)+ q-i +
i=0 i=0

where

(58) p1 (PJk-1)(P-k), O, 1,2, 3,..., n 1,
k=O

n-1

(59) q-i (Pl-1)(q,-i
i=0

n-1

(60) r Z (Pl- 1)(r,X_ i) + q-
i=0

(61) ri,+k r,+,_
k= 1,2,3,...,j- 1, j=2,3,4,...,N.

Noting that G(a)/tr 0 as a --. , it follows from (53), (57), after taking the limit
as a ---, , that

(62) drr,+=O, i=0,1,2,3,4,...,j- 1, j= 1,2,3,--.,j- 1,

j 1,2,3,...,N.
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We observe that for > (n 1)h, (2) can be expressed as

n-1

l(t h),(63) (t) px(t ih) + qX,_ x(t- nh) + r,
i=0

where pl, q,_ 1, r,, etc., are defined in (56). Equation (63) is obtained from (2)
by successively replacing (t- h), ..., 2(t -(n 1)h) in the right-hand side of
(2) by Ax(t h) + Bx(t 2h) + C2(t 2h), ..., Ax(t (n 1)h) + Bx(t nh)
+ C2(t- nh), respectively. Differentiating both sides of (63) and replacing
2(t),2(t- h), ..., (t- (n- 1)h) by the corresponding expressions like the
right-hand side of (63), we obtain, after simplification,

n--1

5(t nh),(64) 5(t)= px(t ih) + q2,_lX(t- nh) + r2,2(t- nh) + r,+
i=0

>(n- 1)h,

where po2, p2 etc., are defined in (57)-(61). Differentiating (64) successively and
following the above procedure, we can express x(t), the jth derivative of x(t), as
follows:

n-1

(65) x(J)(t) pix(t- ih) + q_xx(t nh) + rJn+i_xXi(t- nh),
i=0 i=1

where p, p etc., are defined in (57)-(61).
Let v(t) drx(t). Then it follows from (62)-(65) that v(t) and its derivatives

satisfy the following equations:

(66) v(t) drx(t),
n--1

(67) v(J)(t) drp{x(t- ih) + dTqJn_xX(t- nh),
i=0

j 1, 2, 3,..., N, where N is a positive integer. Let

v(t) (v(t), ,(t), :)(t), --.,(68)

and

(69) Xr(t) (xr(t), x(t h), x(t 2h), ..., x(t nh)).

Then (66)-(69) can be expressed in the form

(70) V(t) MX(t), > (n 1)h,

where M is a (N + 1) (n + 1) matrix. For N > n, there exists a nonzero (N + 1)-
vector c (Cl, cz, c3, "-., cN+ 1) such that

(71) ClV(t -b Czf)(t +’’" -k- Clq + lV()(t) crmX(t) O,

which shows that v(t) satisfies the ordinary differential equation (71) for >
(n 1)h. But v(t) is identically equal to zero for > rh (r > n, since the system (2)
is pointwise degenerate in the rth interval). Hence v(t) must also vanish for all
greater than or equal to (n 1)h, and hence the theorem is proved.
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We shall now state and prove the main theorem of this paper.
THEOREM 4.2. The necessary and sufficient condition that the system (2) be

pointwise degenerate at (tl <= (n 1)h, e ((r- 1)h, rh)) is that there exists a
nonzero n-vector d and a positive integer r <_ n such that

(72) drpr(D) 0,

(73) dTl/Vr(t, s) 0,

where p(D) and W(t, s) are defined in (7) and (25).
Proof Necessity. Suppose that the system (2) is pointwise degenerate at time

t s [(r 1)h, rh). Then it follows (using Lemma 4.1 and Theorem 4.1) that r _<_ n
and the degeneracy set is Its, oe). Hence

(74) dTx(t g) dTpr(D)(A(D))k-*dp(t rh) + dT(W,(t, s)X,(z))=o 0

for all g( Cl[-h, 0].
We choose b(. such that

Ddp(O) Diqb(-h) O,

Then it can be shown, as in Theorem 4.1, that

(75) drp"(D) O.

We now proceed to show that

j =0,1,2,3,...,nk.

and

is also a necessary condition for pointwise degeneracy of the system (2). Since the
system (2) is pointwise degenerate and drp"(D) O, r <__ n, it follows from Theorem
4.1, that the system (2) is pointwise degenerate in the interval [(r 1)h, rh]. Sup-
pose that drl/V,(t, s) does not vanish identically in the interval (r 1)h _< =,< rh.
Then it follows from (43) that not all of drW,o(t), drW,(t), etc., vanish identically
in the interval (r 1)h <_ <_ rh. Let Wry(t), 0 <= j <__ (r 1)n, be the first element
in (43) such that

dr Wg(t) - O, (r- 1)h __< __< rh.

Since (74) is valid for all g(. )e Cl[-h, 0], we observe that we can choose 4("
appearing in (23) such that

(sJX,(r,))r=o a, where a is a nonzero constant

sJ+ iX,(’c)),= o 0, 1,2, 3, ..., (r 1)n j.

Hence for such a b(. ), we have from (74) and (43) that

drW,(t)a 4= O, (r 1)h < < rh(77) 0 (drW,j(t)sJX,(z))=o
which is a contradiction and therefore it follows that dr Wo(t vanish identically in
the interval [(r 1)h, rh]. Proceeding similarly, we have

(78) drW,(t) O, j O, 1,2, 3,..., (r- 1)n, (r- 1)h <_ <__ rh,

(76) dr l/V,(t, s) O, (r 1)h <= <= rh,
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and hence it follows from (78) and (43) that

(79) drl/V,(t,s) O, (r 1)h <_ <= rh.

Sufficiency. Since drp’(D) 0 and drW,(t, s) 0, we have, from (24),

drx(t; g) drp’(D)(A(O))k-dp(t rh) + drW(t,s)X,(z)l,=o O,

(r- 1)h <= <= rh,

which shows that the system (2) is pointwise degenerate in the interval [(r 1)h, rh]
and hence in all subsequent intervals.

COROLLARY 1. If rank C n, then the system (2) is pointwise complete.
Proof. Suppose that the system (2) is not pointwise complete. Then there

exists a nonzero n-vector d and a positive integer r _< n such that

(80) dTp’(D) O,

where p(D) is defined in (7) and satisfies the relation

(81) ap(a) Ap(a) + (B + Ca)A(a).

Using (81), equation (80) can be expressed in the form

dT
Ap(a) B )".A(a) + -. + C 0.

Making a , we conclude that

(82) dTC 0,

which shows that the rank of C is less than n contradicting the hypothesis. Hence
the system (2) is pointwise complete and the corollary is proved.

COROLLARY 2. If AB BA, AC CA and BC CB, then the system (2) is
pointwise complete.

Proof. Part I. In this part we show that if AB BA, then the system (1) is
pointwise complete.

Case (a). Let us assume that the pair (A, B) is completely controllable and
the system (1) is not pointwise complete. Hence there exists a nonzero n-vector d
such that

(83) dr(p’(O)) 0,

where

p’(r)
(o’I A)- B,

A()

or

(84) ap’(a) Ap’(a) + BA(a).

Hence from (83)-(84), it follows that

(85) dT(AP’(o’) )"-,(,) +B =0.
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Noting that (p’(a))/A(a) 0 as a and taking the limit as a - , we obtain

dTB" O, r <= n.

This shows that the rank of B is less than n, and hence there exists a nonzero
n-vector q such that

qrB O.

Since AB BA, it follows that

qr[B, AB, A2B, A3B, A’- 1B] O,

which contradicts the fact that the pair (A, B) is completely controllable and, hence
the system (1) is pointwise complete.

Case (b). Suppose that the pair (A, B) is not completely controllable. Then
there exists a nonsingular linear transformation T such that the relation x(t)
Ty(t) transforms (1)into the form

(86) 37,1(0 Aly(t) + Bly(t- h) + A2Y2(t) + B2(t- h),

(87) .#2(t) A22Y2(t),

where the dimensions of y(t) and y2(t) are m (m __< n) and (n m), respectively,
and the pair (A, BI) is completely controllable. Since AB BA, it follows that

TAT- TBT- TBT- TAT-

or

A A B B B12 A1 A
(88)

2 .
0 A22 0 0 0 0 A22

It follows from (88) that

We observe that the system ((86)--(87)) is pointwise complete if the system

(89) Pl(t) AllYl(t + B11Yl(t- h)

is pointwise complete. But since AxxBxl BIxAaa and the pair (Aal,Ba) is
completely controllable, it follows from Case (a) that the system (89) is pointwise
complete. Hence the system ((86)-(87)) is pointwise complete and therefore, also the
system (1). Combining Cases (a) and (b), we conclude that the system (1) is point-
wise complete if AB BA.

Part II. We now proceed to prove Corollary 2; i.e., ifAB BA, AC CA and
BC CB, then the system (2) is pointwise complete. We introduce the following
sequence of matrices"

P C, r,,+, Ap[ P2+’ BP--21-
(90)

l= 1,2,3,...,2*, k= 1,2,3,...,n, r=O,1,2,...,n- 1.

Consider the matrix

Q [p; p, p2;pa,p3,p33,p,;..., p,w2, W3,’", W2,,-,].
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These matrLes appear in [6] in a different context. Let No be the rank of the
matrix Q.

Case (a). Let No n, and suppose that the system (2) is not pointwise com-
plete. By Corollary 1, the rank of C is less than n, and therefore there exists a non-
zero n-vector q such that

(91) qrC O.

Since AC CA, BC CB, we note that

(92)
qrp O, qWp’2[_l, O, q-r-*+’V2 =0,

l= 1,2,3,...,n, k= 1,2,3,...,n, r 0,1,2,3,...,(n- 1),

which contradicts that No n, and hence the system (2) is pointwise complete.
Case (b). Suppose that NO m < n. In this case, there exists a nonsingular

linear transformation T [6] such that the relation

x(t) Ty(t)

transforms (2) into the form

(93) .P(t) A ty(t) + By(t h) + C.P(t h),

where

Aa
0 A22 B22 0

The dimensions of the matrices A, Bxx, Cx; A22,B22; A12, B12, C12 are
m x m, (n- m) x (n- m) and m x (n- m), respectively. It follows, as in (88)
of Case (b), Part I, that

AllBll BxiAxx, AllCll CllAll, BllCll CllBll

As in (90), we introduce the sequence of matrices
_,+ A lp"+ r+Pl Cll, //2/-1 P21 B11prl,

l= 1,2,3,...,2k, k= 1,2,3,...,m, r=0,1,2,3,...,(m- 1),

and the matrix

(94) Q’ [pl; p, p2 p, p, p], p] p, p, p, "", P.7,,,-

It follows by virtue of the linear transformation T that the rank of the matrix Q1
in (94) is equal to m. We note that (93) can be written in the form

(95)

(96)

.P1(t) Allyl(t) + B11yl(t- h) + Cll.l(t h)

+ A12Y2(t + B12Y2(t h) + C122(t h),

)2(t) A22Y2(t) + B22Y2(t h).
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We observe that (93) is pointwise complete if the systems

(97)
.Pl(t) Allyl(t) + Bllyl(t h) + Cltl(t h),

)2(t) A22Y2(t) + B22Y2(t h)

are pointwise complete. Now since A22B22 B22A22 by Part I, the system (96)
is pointwise complete. Again, since AliBi1 BllAll, AllCll CllAll,
BllCll CllBll and the rank of the matrix Q1 is m, it follows from Case (a) of
Part II that the system (97) is pointwise complete. Hence the system (93) is point-
wise complete and therefore, also the system (2).

Example 1. Consider the system given by
e

(98) l(t)-- xz(t)- xl(t- 1),
1--e

e e
-xl(t- 1)+ l(t- 1).(99) :2(t)- x2(t)

1 e e

In this case,

I 1p(s) es(s 1)
(1 e)

0

L(t eA((’)- 1)) I t-e -e(e’- 1

(1 e) (1 e)

w:(t, s)
et-1 1e e(1 et)

(l--e) (l-e)

which shows that there exists a nonzero 2-dimensional vector dr (e/(1 e), 1)
such that

drp2(D) O, dr w2(t, s) O,

and therefore the system (98) is pointwise degenerate.
Example 2. Consider the system given by

(100)
1(t) x2(t)- 3x3(t) + 2xl(t- 1)- 3x(t 1) + 3x3(t 1)

+ l(t- 1)- 2(t- 1)+ 3(t- 1),

(101)
:2(t)-- --2x3(t + 2xl(t- 1)- 2x2(t- 1)+ 2x3(t- 1)

+ l(t- 1)- 2(t- 1) + ;3(t- 1),

(102) 3(t)- x2(t- 1)- x3(t- 1).
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In this case,

p(s)

0 1

w(t, s)

-3 2

-2, B= 2

0 0

1

eAt 0

0

($2 + S)(2 + $)

S2(2 + S)

0

t2+t-1

L(t eAe)- )) 2t 1

0

t2-t-1

L(t; eae)- 2)) 2t 3

0

0

LZ(t; ea((’)-2)) 2 3t + 2

t2-3t+2

and

-3 3 1 -1 1

-2 2 C= 1 -1 1

-1 0 0 0

-3t 2

1 -2t

0

-s3 4s2 5s 2 s3 + 4s2 + 5s + 2

--s3 2s2 2s s3 + 2s2 + 2s

S2 S2

--(t2 + t- 1) 2 + t- 1

-t --t2 + 3t- 1

(t-- 1) --t2 +
--(t2 t-- 1) --(t2 t- 1)

(t-2) -t2 + 3t-

O 0

-(t2- 3t+2) -(t2- 3t+ 2)

-(t2-3t+2) -(t2- 3t+2

S6(t2 + t)
+sS(2t + 1)+ 2s

S6(t2 + 1)
+ sS(2t 1) + 2s#

s6(t2- 3t + 2)
+ sS(2t- 3)+ 2s’

p3(D)

$6( 2 + 1) + SS( 2 3t)
+ S4(--2t- 3)- 2s3

$6( 2 + 2t 1) + SS( 2 + 1)
+ S4(-- 2t 1) 2s3

S6(--t2 + 4t- 3)+ sS(--t2 + + 2)
+ s4(-- 2t + 1) 2s3

s6(--2t 1) + sS(t2 2)
+ s#( 2t + 1)+ 2s3

s6(--2t + 1)+ sS(t2 3t + 1)
+s*(--2t + 3)+ 2S3

$6( -2t + 3) + sS(t2 5t + 4)
+ s*(--2t + 5)+ 2s3

0 0

0 0

0 0

0
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Hence we see that there exists a nonzero 3-dimensional vector dr (1,-2, 1)
such that drW3(t,s)= O, drp3(D)= 0, and therefore the system (100)-(102) is
pointwise degenerate.
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ON THE CARDINAL SPLINE INTERPOLANT TO ei’t *

CARL DE BOORf

Abstract. The cardinal spline interpolant Sn,u of degree n to exp(iut) is shown to satisfy
unless is an interpolation point. Also, it is shown that < C. < + 21-" for all odd n and
for all positive even n, with Cn sup.,,lexp (iut) S...(t)l/lu/l

1. Introduction. For k a positive integer, let Qk be Schoenberg’s forward
B-spline oforder k (see Lecture 2 of [2]), i.e., for each , Qk(t) is the kth divided
difference at 0, 1,..., k of k(s t)k+ as a function of s,

Set

Q(t)’.= k[0, 1,---, k](. t)k+-1.

(1) g,Z { aQk(" J) la C, all j},

the linear space of all splines of order k with simple knots at the integers. The
cardinal spline interpolant oforder k for a given bounded functionfis, by definition,
the unique bounded element s e ’k,Z which agrees with fat the points j + k/2, all
j 7/. Schoenberg [2] has analyzed this interpolation process in some detail.

This note is intended to amend Schoenberg’s results concerning the cardinal
spline interpolant S., of order n + to the function

f(t) ejut

with u e [- n, hi, as contained in [2; Lecture 3, 6]. Specifically, it is proved that,
for all n N,

IS.,.(t)l-<

with equality ifand only if is an interpolation point. Further, the number

is shown to satisfy

C, sup [e

1 <C,< 1 +21-" for all oddn,

thus disproving Schoenberg’s conjecture [2; p. 30] that C, 1 for all odd n > 1.
It is also shown that

C, 1 for all positive even n.

These results are of interest in the numerical construction of Fourier series and
transforms (see, e.g., Lecture 10 of [2]).

* Received by the editors March 24, 1975.
f Mathematics Research Center, University of Wisconsin---Madison, Madison, Wisconsin 53706.

This research was sponsored by the United States Army unler Contract DA-31-124-ARO-D-462.
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Schoenberg’s elegant analysis of the interpolation error is based on the
representation

(2) Sn,(t e’u, o)n’u(t)/gn’u(O)’

which uses the 1-periodic function

n odd,

n even,

(3) co.,.(t) e2’v’/(u + 2nv)"+1
Y’-

2. The odd-degree interpolant. We begin with an analysis of the odd-degree
interpolant, thereby supplementing Theorem 8 of Lecture 3 of [2]. Since S,,u(t)
S.,_.(t) S.,.+ ,(t) "e S.,.(t- k), all k e g, it is sufficient to consider only
u e (0, n] and e [0, 1].

LEMMA 1. For all odd n e N, and all [0, 1],

(4)

with equality only at 1/2.
Proof For n 1,

Sl,.(t) + ei"t

and one verifies (4) directly. With somewhat more effort, one also verifies (4) for
n 3, using the fact that

(6) S3,u(t l1 d"lZ[(1 t)3 + eiUt3] 611 + ei"t]
11 ei"l 2 6

on [0, 1]. For odd n => 5, we begin by inferring from (2) that

lei"’- &,.(t)l- Ico..(t)
so that (4) is equivalent to

(7)

with

max If(t)l- IF(1/2)I
o_<t_<l

v(t) o.,.(t) o.,.(0)

Z e2"’ 1)/(u + 2nv)"+

Since F(1 t) F(t), it is therefore sufficient to prove that

E e2rav’ 1)/(u + 2nv)"+

for e [0, 1/2). For this, note that

< IF(1/2)I 2 1/(u + 2gv)n+l
odd

odd
-1,1

(e2rtivt 1)/(u + 2nv)"+ 1/(u + 2nv)"+l
odd
-1,1
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with strict inequality unless 1/2, so that we are done once we show that

(8a)
e2nit- e2nivt-

(u + 2n)"+ + (u + 2nv)"+2,4,6,,.. <--(u+2)"+1’ te 0,

and

(8b)
e- 2nit e- 2nivt

(u 2g)" + + (u 2gv)" +2,4,6,... =<(u-2n)"+1’ te 0,

Consider first (8a). With

g(t) e2it- 4- Z e"iu’- 1) U +/=1

(8a) is equivalent to

Ig(t)l =< 2 for 6 [0, 1/2],

while [g(1/2)[ 2, hence (8a) is implied by

(d/dt)lg(t)l 2 0 on [0, 1/2].

For this, we obtain the estimate

(9)
ld
lg(t)l 2>_ 1-2S.+x-3S.

with

9
+ S, -S._1(1 +S.) 2nsin(2nt)

as follows’Since u [0, n], we have

3)"l+4v

hence, with

u+2n 3
u + 4n/ -t- 4/’

n+l

we have the bounds

IRe h(t)l =< 2S.+ ,

h(t) , (e4’u’- 1) + 2
u= + 4nl

sin4nt(+2nsin 2nt + 4nIIm h(t)l
n+l

sin 2nt

and, similarly,

IRe h’(t)] __< S,_ sin 2t, IXm h’(t)l <= 3S,.

But now observe that the coefficient of sin 2gt in (9) is increasing with n and is
positive for n 5, as one verifies by direct calculation.
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This proves (8a). Inequality (8b) is established analogously, except that S.
replaced by the yet smaller sum

(10)

It follows that

eiU’ S.,u(t) 2
odd

with

(11)

and

1/(u+ 2nv)"+l/ 1/(u+ 2nv)"+1

.(w),= 20.(w)/[1 + w"+ l(O.(w) + E.(w))]

O.(w) 1/(w -4- 2v)"+ 1, E.(w) 1/(w + 2v)"+1
odd even

v:O

COROLLARY. For odd n, the number

Cn

can also be computed as

sup le"’ S.,.(t)l/lu/l "+

C. max O.(w),
O-<w-<l

C3 1.0002334...,

with . given by (11). Specifically,

(12) C1 72/8 1.23

and, generally,

(13) <C.< +21-"

C5 1.0000021

Proof Only the specific statements concerning the constants C. need proof.
To begin with, C. >= .(1) 1, since

20.(1)-= 4-O.(1)4- E.(1).

But, with

h(w) 20.(w)- [1 + w"+ l(O.(w) + E.(w))]
and O. -(n + 1)O.+1 and E. -(n + 1)E.+I, we have

h’(w) (n + 1){-20.+ l(w) w"(O.(w) + E.(w)) + w"+ 1(0.+ l(w) + E.+ l(w))}
therefore

h’(1) (n + 1){E.+ 1(1)- O.+ 1(1) -(O.(1) + E.(1))}

2(n + 1) [(-)v/(Zv + 1)"+2 1/(2v + 1)"+1] < 0
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showing that 20,(w)> 1 + w"+l(O,(w)+ E,(w)) for w(1- e, 1) for some
positive e, hence that (I),(w) > there. This proves that

C,> 1.

On the other hand,

h(w) (2 w"+ x)O,(w) w"+IE,(w)

=< (w 2)"+1
4-

(w 4- ---1 4- (2 w"+1) + 7,+x + 0

0 + 2-" + 5-"

for w [0, 1] using the fact (already exploited by Schoenberg) that

’vodd 1/(w + v)"+ is convex and even, hence takes on its maximum on [0, 1]
at w 1. But then,

,(w) h(w)/[1 + w"+ l(O,(w) + E,(w))] =< h(w) < 2 -"+1

using the fact that also + w"+ l(O,(w) + E,(w)) is convex and even, hence takes
its minimum value on [0, 1] at w 0. This proves (13).

As to the specific values (12), C z2/8 was already found by Schoenberg [2]
it follows directly from the observation that

leiu/2 $1,.(1/2)1 2(sin u/4)2.

The values for C3 and C5 were obtained by finding maXowl I(I),(w)l for n 3
and n 5 with the aid of a computer. Q.E.D.

Remark. This corollary disproves Schoenberg’s conjecture [2, p. 30] that
C, for all n > and contradicts his assertion that (in our notation) C3 C5 1.

3. The even-degree interpolant. The even-degree interpolant has been looked
at much less, and Schoenberg [2] proves nothing about it.

While it is obvious from (2) that (for u - 2zk)
(14) for odd n, IS,,,(t)l _-< with strict inequality unless 7/,

the corresponding statement"
(15) for even n, IS,,,(t)l =< with strict inequality unless 1/2 6 7/,

though already mentioned by Schoenberg, does not appear to be an immediate
consequence of (2). It seems therefore worthwhile to begin this section with a
proof of (15).

Proof of (15). We consider again only u e (0, z] and [0, 1). Since

S,,.(t) ei"’o,,,(t)/o,,,(1/2)

by (2), and o,,,(1 t) o,,,(t), it is sufficient to prove that

(16) (d/dt)[co,,,(t)[ 2 > 0 on 0 < < 1/2.

For this, observe that

(d/dr)co,,,, + iUOgm, io,_ 1,,,



CARDINAL SPLINE INTERPOLANT 935

hence

and therefore,

Ogm,u(d/dt)ogm,u + iulog,l z i60m-1,uO)m,u

(d/dt)lOgm,.I 2 2 Re (i60 1,uO)m,u),
so that (16) is established once we prove that

(17) for 0 < < 1/2 and for even n, io9._ 1,.(t) and o.,.(t) are both in the open

first quadrant. See Fig. 1.
Im z

itOn_l,u

Rez

with

FIG. 1. Schematic drawing of the image of [0, 1/2) under ico._ 1,u and co resp., for even n

As to (17), note that

Im O)m,u(t (--)m O sin 2nvt

o (2nv u)-"- + (_)m(27Zv -F U) 1.

The sequence () goes to zero rapidly enough so that twofold summation by parts
results in

Im o,,,,(t) (--)m 21 (V + 1 ) sin 2,t e.
But, as first proved by Lukfics (see, e.g., (1.16) of Lecture of [1]),

(v+ 1-)sin2t0 for0NtN 1/2,
=1

while, with

0(X) (271;X U)-m- (__)m(27Zx + U)-m- 1,

we have A20v 0(2)(Xv) for some x s (v, v + 2), hence

A2>0 forv=l,2,....

Consequently,

Im (--)mOm,.(t) >= A21 sin 2rot > 0 for 0 < < 1/2.
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with

The argument concerning the real part of o,.,. runs similarly. We have

(d/dt) Re co,,,,(t) (- 2n)(-)m/ flv sin 2nvt

fl fl(v) (2rv u) (--)m(2ZV -t- U) -m-1

Fourfold summation by parts now gives

sin 2rt#t)
But, as Fej6r proved (see, e.g., (1.19) of Lecture 1 of 1]),

v + 3-/t)u= 3 sin2tt>0 for0<t< 1/2,

while A4/3 ff4)(x) for some x (v, v + 4), hence

A4fl>0 forv= 1,2,....

Therefore,

(-)m(d/dt) Re O)m,u(t > 0 for 0 < < 1/2,

i.e., Re Om,,(t) is strictly monotone on (0, 1/2) and therefore strictly positive there
since (as is easily seen) both Om,,(0 and Om,,(1/2) are nonnegative.

This proves (17), and so (15).. Q.E.D.
The argument just given establishes much more than (15), viz.,

(16)’ (d/dt)lcom,,(t)l 2 0 on 0 < < 1/2 for even
odd m.

This implies the following theorem.
JutTHEOREM 1. The modulus ]S,,,,(t)] of the cardinal spline interpolant to e

decreases strictly monotonely as moves awayfrom one of the interpolation points,
achieving its lowest value halfway between two neighboring interpolation points and
nowhere else.

Next, we compute

C. sup lei"’ S,,,(t)l/lu/nl "+

for even n, a computation requiring apparently much more work than the earlier
computation for odd n. The difficulty stems from the fact that, for-even n, the
interpolation error as a function of fails to be greatest halfway between the
interpolation points, i.e., at 0, for small u. In fact,

(18) for t Z, lei"’- S.,,(t)l O(lul "+z) as lul 0.

It is therefore not sufficient to consider the interpolation error at just one point
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when computing C..
By (2),

ei"t- S.,.(t)l Ic%.(1/2)- o,.(t)1/o,.(1/2)

v.o(-)-e2it / (-)
(u + (u + 2v)"+

with

(w, t),=

N(w,t)’.=
(-)- e2’i’’
(w +

We wish to show that, for

we have

IN(w, t)l
D(w)

D(w) ’o (w + 2v)"+1"

T,= [0, 13 [0, 1/23,

(19) sup O(w, t) I)(1,0)
(w,t)eT

which then implies that C. (for even n). As a first step, we prove that

(20) max I)(w, 0) I)(1,0) 1,
we[0,1

as follows. Note that N(w, 0) is real and compute

(-)(1 w"+1)
A(w) D(w) N(w, O) + (w + 2v)"+1vo

which shows that A(1) 0, hence (1, 0) 1. Further,

A’(w)- (n + 1)
v:O

w" (-)(1 w"+1)
(w + 2v)"+1 (w + 2v)"+ 2

which is negative at w 0, while

A"(w)

nw w
=(n+l) -2(n+ 1) +(n+2)

v, 0 (W + 2V)n+ (W + 20"+ 2

which is negative on [0, 1]. Consequently, A(w) > 0 on [0, 1), or,

(w,0)< 1 forws[0,1],

which proves (20).
Next, we prove that, for all and all sufficiently small w,

IN(w, t)l 1.
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Since

this then implies that

<__ D(w),

(w, t) <=
for all and all sufficiently small w. We compute

IN(w, t)l 2 (Re N)2 + (Im N)2

IRe NI

and

cos 2nvt (- )vvo (w + 2v)"+1

1< (cos 2nt + 1) +(2 w)"+1 (2 + w)

< (R_ R+)(cos 2nt + 1) + 2/3"+1

for (w, t) T, with

Also,

R_ 1/(2- w)"+ 1,

sin 2nvt

o (w + 2v)"+

with

cos 2nvt (- )
(w + 2v)"+

R+ 1/(2 + w)"+ 1.

=<(R_ +R+)sin2nt+
sin 2nvt

(w + 2v)" +

< (R_ + R+)sin 2nt + 2S.+1

(21)

Therefore,

with

S.+1,= 1/3"+1 + 1/5"+1+ 1/7"+1 + < 1/3"+1+ 1/(2n4").

(22)

But

IN(w, 012 < (R_ R+)2(cos 2nt + 1)2 .. (R_ + R +)2(sin 2nt)2 + 4A.,

A..’= (2 + 1/3"+ 1)/3"+1 + (1 + 3 -"-1 + S.+ 1)S.+ 1.

(R_ R+)2(cos 2nt + 1)2 -b (R_ + R+)2(sin 2/zt)2

(R2_ + RZ+)((cos 2nt)2 + (sin 2nt)2 + 2 cos 2nt + 1)

+ 2R_R+((sin 2nt)2 (cos 2nt)2 2 cos 2nt 1)

< 4(R

_
+ R+)+ 0.
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Therefore, finally,

IN(w, t)] 2 <-- 4R2_ + 2-2n + 4A,.

This proves that, for all w e [0, for which 4R2_ _<_ 1 2- 2, 4A,, i.e., for which

(23) (2- w)-2"-2 _< 1/4- 2 -2"-2 A,,
we have IN(w, t)[ <__ 1. Therefore, then, tI)(w, t) =< 1. Note that the biggest value of
w satisfying (23) increases with n but is strictly less than 1, so that we have to do
more work in order to show that (w, t) =< 1 for all w e [0, 1].

For this, we show next that, for all w sufficiently close to 1, O(w, t) has negative
slope with respect to t, hence, for all such w,

(w, t) __< O(w, 0) _<_ (1,0),
the last inequality by (20). The argument parallels that given for Lemma 1, in the
odd case. Since D(w) does not depend on t, it is sufficient to show that

for [0, 1/2]

for all w near 1. We compute

2 ct--IN(w, 012 (Re N) (Re N) + (Im N)(Im N)

and, using facts and abbreviations just introduced,

Re NtRe N
cos 2vt -(-))(R_ R+)(cos 2rot + 1) + Z w .v-I,1 >

sin2tvt/(w+2v)"+)sin 2rot /R_ -R+ + v (-2rcsin2rt)

(cos 2rt + 1) S + 3+i-< I-(R- -R+)Z(cos2rt+ 1)+(R_ -R+)

+,-r + 1)21S, + 2re sin 2rtt,

where we used the earlier estimate

cos 2zvt (- )
(w + 2v)"+

2
3n+l

and the estimate

V
sin 2nvt /

/(w + 2v)"+
sin 27tt

2

Iv (w + 2v)"+
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Also, with Ill> v/(w + 2v)"+ 11 =< S, 1/3"+ < S., we have

ImN-ImN=(R_+R++ sin 2rcvt/(w + 2v)"+ sin 2tt
sin 2ztt /

272 (R_ + R +) cos 2ztt +
cos 2tvt

(w + 2v)"+

<= (R_ + R+ + S,)((R_ + R+)cos 2ztt + S,)2rc sin 2ztt.

Therefore,

--IN(w, t)l 2 -<_ (-R2 + B.)2rc sin 2rot

with

B...= 6/3"+1 + (4 + 2/3"+ 1)(1/3"+1 + S.) + S.2.
This proves that, for all w [0, 1] for which

(24) (2- w) -2"-2 >_ B,,
we have O/3tlN(w, t)[ 2 <_ 0, therefore, then, (w, t) =< (I)(w, 0) _<_ 1. Now

{z __< 1/4- 2 -2"n-2 A,} U {z >= B,}
increases with n and therefore contains [2 -2"-2, 1] for all n >= 4, since direct
computations show that

B4 =< .102 < .236 __< 1/4- 2 -2.4-2 A4.

We conclude that, for n __> 4, each w e [0, 1] satisfies either (23) or (24), hence, in
either case, (w, t) _< 1. For n 2, this inequality can be verified directly using
the explicit expression

ei"/z(t2/2)l eiU[ 2 q- (t 1/2)e -iu/2 --(t d- 1/2)eiu/2
S2,,(t) l1 eiU[2/8

for t [0, 1]. For n 0,

therefore,

So,.(t) ei"/2;

Co rt/2.

THEOREM 2. For even positive n,
n+l

ei’ S,,,(t)l =< u

with equality on (u, t) (0, r] x [0, 1)/ff(u, t) (r, 0). Hence,
even n. Also, Co n/2.

1 for all positive
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DIFFERENTIAL EQUATIONS WITH MOVING SINGULARITIES*

H. GINGOLD]" AND S. ROSENBLAT

Abstract. A moving singularity of a differential equation is a singular point whose location
depends on a parameter. The solutions of initial-value problems for such equations are investigated in
this paper, with particular reference to the convergence behavior of these solutions as the parameter
tends to a singular limit.

1. Introduction. A differential equation containing a small parameter e is
said to have a moving singularity if the highest derivative is multiplied by a
function the location of whose zeros depends on e. A simple example is the
equation

(1.1) (x + e)y’+ y 1,

and the definition may be generalized in an obvious way to systems of equations.
The initial-value problem consisting of (1.1) and the condition y(0)= a has

the solution

(1.2) y(x,e) =x+ea

which exists for x _-> 0 provided e is positive. On the other hand the "reduced"
problem obtained by setting e 0 in (1.1) and imposing the same initial condition
does not have a solution unless a 1. Furthermore the limit as e - 0 of (1.2) exists
uniformly in all closed subsets of the open interval 0 < x < 1, but does not exist on
the closed interval 0_-<x _-< 1. This elementary example indicates that moving-
singularity problems are essentially singular perturbation problems of a special
type.

It was pointed out by Wasow [4, p. 137] that no general theory exists for
differential equations with moving singularities. Moreover the extensive literature
on singular perturbation problems reveals hardly any attempts to construct
asymptotic solutions to problems of this type.

An exception is the work of Lomov [2], which considers the linear system

(1.3) (x + e)z’ + g(x)z h(x), z(O, e) Zo,

where z, z0, h are vectors and K is a matrix. Under certain circumstances Lomov
obtains an asymptotic representation for the solution of (1.3) using the method of
multiple scales. The system (1.3) is a very special case of the problems considered
in this paper.

Distantly related to our work is the literature on the so-called P.L.K. method
(cf. 1] for a survey) which is also concerned with differential equations containing
moving singularities. The P.L.K. method, however, is basically concerned with the

*Received by the editors April 21, 1975, and in revised form October 14, 1975.
5 Department of Mathematics, University of Utah, Salt Lake City, Utah 84112.
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052 Australia.
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determination of formal asymptotic approximations to problems which are struc-
turally different from those considered by us, and so does not require further
mention.

In this paper we study initial-value problems for fairly general ordinary
differential equations containing moving singularities associated with a small
parameter e; it will be assumed throughout that e is real and positive. Our
particular objectives are the following:

1. To determine conditions which ensure that the family of solutions satisfy-
ing certain initial data is convergent for e 0.

2. To determine necessary and sufficient conditions on the initial data which
ensure uniform convergence as e 0 of solutions in the closed domain of their
existence.

3. To investigate equations which are close to the original equations in the
sense that the solutions of the former are asymptotic to the solutions of the latter
on the closed domain of their existence.

Our approach is based on the method of successive approximations, which is
applicable to both linear and nonlinear equations. As a preliminary we study in 2
a generalization of equation (1.1), namely,

(1.4) eht(X, e)y’ + fl(x, e)y y(x, e)

with h a real, nonnegative number, and with appropriate conditions imposed on
the coefficient functions. The results obtained in 2 provide the basis for the
principal investigation of this paper which is presented in 3. Our work is
concentrated on the nonlinear system of equations

(1.5) eh’4i(X, e)y;’+ fli(x, e)y,’=(x, e, Yl,

and, consequentially, on the n th order nonlinear equation

(1.6) ehqb(x, e)y")+B(x, e)y"-)=f(x, e, y, y’, y"-z)).
It will be seen that the results obtained for the linear equation (1.4) underlie in a
natural way the results for the more general equations (1.5) and (1.6).

2. First order equations. We shall require the following sets of points. Let E
be the set

(2.1) E={e "0<e -<-e0},

where e0 is sufficiently small, and let E be the closure of E. Let I and In be defined
by

(2.2) I={x.O<=x<_l}, In={x.O<6<_x<_l}

where 6 is a constant. Finally we define the sets S, S by

(2.3) S =IE, S =IE.

The moving singularity in the function 4(x, e) in equation (1.4) is charac-
terized by the condition

H.1. b(x, e) 0 on S except possibly at (0, 0).
In addition we shall assume throughout this section that
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H.2. /3 (x, e) 0 on S; and
H.3. qb’(x, e), fl’(x, e) and y’(x, e) are defined and continuous on S.
Let y0(e) be a function of e defined and continuous on E. Then for each e E

the solution of the initial-value problem

(2.4) e (x, e)y’ + fl(x, e)y v(x, e:), y(O, e) yo(e),

can be written as

(.5)

Io y(t, e) { ix fl(rl, e) d}"- ht exp h4 dt.

It is convenient to integrate by parts and to write (2.5) in the alternative form

(x, e+ yo(e)
(0, e

exp {-h(x, O, e)}- A(x, t, e) dr,(2.6) y(x, e)
(x, e) (O, e

where

(2.7) tOh (X, t, e =--

and

d [(t, e)
exp {--tOh(X, t, e)}.(2.8) A(x, t, e)----

It turns out that the behavior of the solution (2.6) depends critically on
whether h > 0 or h 0. We treat the two cases separately.

TI-IO 2.1. Suppose h >0 and assume that conditions H.1-H.3 are

satisfied. Suppose also that them exists a constant 0 > 0 such that

(2.9) H.4. h (x’ e)
>--0

(x, )-

on S. Then
(i) lim_,o y(x, e) exists uniformly on I;
(ii) lim_o y (x, e) exists uniformly on I if and only if

(2.10) lim yo(e)=
y(O, O)

-o t(o, o)"

Moreover, in both cases, (i) and (ii),

(x, O)
(2.11) ,-,olim y(x, e)= y(x, O)

(x, 0)"

Proof. It follows from (2.9) and the conditions H.1-H.3 that there exists a
constant M> 0 such that

hX, e) >__M/e(2.12)
e (x, e)--
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on S. Hence we have from (2.7) that

(2.13) tOh (fl, or, e >= M(fl ot /e h

for 0 _--< a _-</3 _-< 1 and e E. This implies that

(2.3_4) exp {--OOh(fl, a, e)}= O(1)

as e 0 uniformly for 0-< a _-</3 _-< 1, and, moreover, that

(2.15) lim exp {--OOh(fl, a, e)}= 0
e0

uniformly for 0 -< a </3 -< 1 with/3 a -> 6 > 0.
Now let

(2.16) J-- A(x, t, e )dt.

By virtue of conditions H.2 and H.3 we have that

I11 -< g exp {--tOh (X, t, e)} dt,

where K is a positive constant. Using (2.13) we infer that

(2.17) IJI =< Ke-tx/h ett/h dt

from which it follows that

(2.18) J=O(eh)

uniformly on I.
Applying (2.15) and (2.18) to the right-hand side of (2.6) we see that part (i)

of the theorem is proved. Applying (2.14) we conclude that (2.10) is a sufficient
condition for the limit to exist uniformly on L To verify that (2.10) is also
necessary we need only take the limit e 0 in (2.6) at some fixed x: if lim y(x, e)
exists uniformly on L ttien (2.10) is required to hold.

The last part of the theorem is an obvious consequence of the above.
The next result is concerned with asymptotic approximations to the solution

of (2.4). For this we need the additional condition
H.5. b()(x, e.), fl()(x, e), y()(x, e) are defined and continuous on q for

v=0, 1,2,....
THEOREM 2.2. Given h >0 and conditions H.1-H.5, define the sequence

Gk(X, e) by

(2.19) Go(x,e) t3(x, e)’

(2.20) G(x, e) =eqb(x’ e) cl___G_a(x, e) k 1, 2,""
(x,e) dx
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Then

(2.21)
(i)

k =0 k =0

exp {--OOh(X O, 8)} O[E (n+l)h]

uniformly on I;

(2.22) (ii) y(x, e)- (--1)kGk(X, e)= 018 (n+l)h]
k=0

uniformly on I if and only if

(2.23) yo(8)- (--1)kGk(0, 8)= 018("+1h].
k=0

Proof. We apply to (2.6) n successive integrations by parts to obtain

(2.24)
k =0 k =0

exp {--oh (X, O, 8)}-- A. (x, t, 8) dt,

where

(2.25) ndA,(x, t, 8)(-1) -Gn(t, 8)" exp {-oh(x, t, 8)}.

It follows from the conditions of the theorem that Gk (x, 8) is continuous on S and
that Gk(X, 8) 0(8 kh) uniformly on/. Comparing with (2.16)-(2.18) we infer that

(2.26) Io A,,(x, t, 8) dt= 018 ("+l)h]

uniformly on/. Hence (2.24) can be represented as

(2.27) y(x, 8)- (--1)kGk(X, 8)=A(8)exp{--OOh(X, 0, 8)}-t-018 (n+l)h]
k=0

uniformly on L where

(2.28) A(8)=yo(e)- (--1)kGk(O, 8).
k=O

The proof of the theorem is now achieved by repeating precisely the arguments
used in establishing Theorem 2.1.
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COROLLARY. Assume the conditions of Theorem 2.2 to hold. Suppose in
addition that h is an integer, and that

(2.29) yo(e)= yk8k "+o(8n+l),
k=0

(2.30) b(x, e) E qb(x)e + O(e"+),
k=O

(2.31) (x, 8)= k(x)ek+O(e"+l),
k=O

(2.32) y(x, 8) ")fk(X)8 k + o(8n+l),
k=O

where (2.30)-(2.32) hold uni[ormly on I. Then [or each n O, 1, 2,. .,
k n+l)(2.33) (i) y(x, 8) yk(X)8 +0(8

k=0

uniformly on I;
(ii) y(x, 8) has the representation (2.33) uniformly on I if and only if (2.23)

holds.
Proof. In view of (2.30)-(2.32) we may use standard results on asymptotics

(cf. [4, pp. 36, 44]) to expand Gk (x, e). Noting that Gk (x, e)= O(e kh) we have,
uniformly on L

kh Okv(x)8 .._o(8kh+n+l).(2.34) Gk (x, 8)

It follows after rearrangement of terms that

(2.35) (--1)kGk(X, e) Z yk(X)e k + O(e’+l)
k =0 k =0

uniformly on I. Substituting (2.35) into (2.27) we see that the results can be
obtained in the same way as before.

We turn now to the case h 0, for which it is evident that the proofs given
above fail to hold. We introduce two additional conditions which are relevant to
this case.

H.6. If h 0 and b(0, 0)= 0, then

(2.36) b(x, 0) xc(x),
where r -> 1 and

(2.37) I4,(x)l>=c >0

on I.
H.7. There exists a constant 0 > 0 and a constant st, 0 < r __< 1, such that

(2.38) /3 (x, e) _> 0
(x,)-

for 0--<x_--<sr, 8 E.
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The solution of the initial-value problem (2.4) can again be written in the
form (2.6), with (.Oh replaced by o0. The following is now the analogue of Theorem
2.1.

THEOREM 2.3. Suppose h 0 and assume that the conditions H. 1-H.3 and
H.6-H.7 hold. Let yo(e) be defined and continuous on E. Then

(i) lim_,o y(x, e) exists uniformly on I8;
(ii) lim,_,o y (x, e) exists uniformly on I i]’ and only if

(2.39) lim yo(e)=
y(O, O)

-,o /(o, o)"

Moreover, in both cases,

y(x, 0)
A(x, t, O) dr.(2.40) -,olim y(x, e)-= y(x, 0)

(x,0"----
Proof. It follows from condition H.7 that as e 0,

(2.41 exp {-oo(x, t, e )} O(1)

uniformly for 0_-< t _-< x -< 1. Next, let x e I8 and write

(2.42) Oo(X, 0, e) Oo(, 0, e) + Oo(X, , e)

with 0 < 6 _-< sc -< sr. Then by virtue of H.6-H.7 and Fatou’s lemma [3, p. 346] we
have that

Io/3 (r/, e) Io(2.43) lim Wo(s, 0, e) lim dv >K rt drt,
-,o -,o 4(n, e)

where K is a positive constant. Since r >= 1 we may infer that

(2.44) lim exp {-Oo(:, 0,. e)} 0
e-0

for 0 < 6 =< : =< . Combining this with (2.41) we see that

(2.45) lim exp {-Oo(X, 0, e)} 0
-->0

uniformly on 18.
The next step in the proof depends on the following lemma, which will also be

useful later.
LEMMA 2.1. Let q(x, t, e) be a continuous function on 0 <- t <= x <-_ 1, e E,

such that
(a) /,(x, t, e) O(1) uniformly on 0 <- t <= x <= 1, and
(b) lim,_,o /,(x, t, e) ,(x, t, 0) uniformly on 0 < <- t <= x <-_ 1.

Then

(2.46) lim O(x, t, e) dt O(x, t, O) dt

uniformly on L
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Proof. Write

(2.47) (x, t, e) dt qt(x, t, e) dt + (x, t, e) dt,

where 0 < a =< x. By virtue of condition (a) the first integral on the right-hand side
of (2.47) can be made arbitrarily small by taking a sufficiently small. On the other
hand q(x, t, e) converges uniformly as e 0 on 0<a _-< t-<x-<_ 1 by virtue of
condition (b). Hence the result follows from standard theory.

It is a consequence of (2.41) and the data of the theorem that the function
A(x, t, e) satisfies the conditions of the lemma. Therefore

(2.48) lim A(x, t, e) dt A(x, t, 0) dt

uniformly on L The theorem is now proved by repeating the arguments of
Theorem 2.1 and taking into account (2.41), (2.45) and (2.48).

We conclude this section with a theorem which bounds the difference
between the solutions of two initial-value problems of the form (2.4).

THEOREM 2.4. Let y(x, e) be the solution of (2.4) and y*(x, e) the solution of
the initial-value problem

(2.49) ehqb*(x,e)y*’+fl*(x,e)y*=’y*(x,e), y*(O,e)=y*o(e).
Assume thatthe triplets (b(x, e),fl(x, e), y(x, e)) and (b*(x, e),fl*(x, e), y*(x, e))
satisfy the conditions H.1-H.3 and either H.4 if h > 0 or H.6-H.7 if h -O. Let
yo(e) and yo*(e) be defined and continuous on ff. Letp(e) be a function ofe defined
on E such that p(e)- 0 as e - O. If
(2.50) (i) lyo(e)-y0*(e)] O[p(e)],

(2.51) (ii)
,/(x, e) ,*(x, e)
6(x, e) 6*(x, e)

O[e hp (e)]

uniformly for x e L and

(2.52) (iii) Ifl(x, e) fl*(x, e)
I(x, e) *(x, e)

O[e"p(e)]

uniformly ]’or x I, then

(2.53) ly(x, e)-y*(x, e)l OLo(e)]

uniformly on L
Proof. Using (2.5) we can write

y(x, e)-y*(x, e)=[yo(e)--y*o(e)]exp{--tOh(X, O, e)}

+ y*o(e) exp {--rOb(X, O, e)}" l(x, 0, e)

’ l 7(t_, _,,!(2.54) + [ehb(t, e)
v*(t,e) ]eh4*(t, e)

exp {--tOh (X, t, e)} dt

+ Io ,*(t, e)
ehdp*(t, e)

exp {--tOh(X, t, e)}" l(x, t, e) dt,
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where

(.55)

Since

12(x, t, e)- 1-exp {Wh (X, t, e)--oo’(x, t, e)}.

exp {-eoh(x, t, e)}= 0(1)

uniformly for O<=t<-x <-_ 1, it is evident that the first and third terms on the
right-hand side of (2.54) are each O[p(e)] under the hypotheses of the theorem.
Moreover it can easily be shown that l(x, t, e) O[p(e)] uniformly for 0 -< t -< x -<
1, from which it follows that the second term is O[_p(e)]. The fourth term can be
written

*(t, e) y*(t, e.__._) lq(x t, e) dthb
exp {--Wh(X, t, e)}" fl*(t, e)e *(t,e)

e__*(t, e)
exp {--oh (X, t, e)} dr.

and it can be inferred lrom (2.52) that this term also is O[o(e)].

3. Sye teq. In this section we establish the principal results of
this paper, which concern the behavior of solutions of systems of the form (1.4).

We define the n-vectors z(x, e), zo(e), z(e) and g(x, e, z) by the formulae

(3.1)

(3.2)

z(x, e) col (y(x, e), y,(x, e)),

Zi(e)=col (Yli(e),""", yni(e)), i=0, 1,

and

(3.3) g(x, e, z) col (f(x, e, z), f,(x, e, z)).

We also define the n x n diagonal matrices

(3.4) B(x, e)-=diag (ill(X, e),-.., ft,(x, e))

and

(3.5) P(x, e)=diag (ehll(X, e),""", ehnn(X,

With this notation it is convenient to write (1.5) in matrix form, and to focus
attention on the initial-value problem

P(x, e)z"+B(x, e)z’= g(x, e, z),
(3.6)

z(O, e)-" ZO(E), z’(O, E)’- Zl(E ).

It is necessary, however, to impose some conditions which restrict the permissible
nonlinearities in g(x, e, z).

We shall use standard notation for matrix and vector norms, namely,

(3.7) Ilmll--m.ax lail
j=l
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when aij are the elements of the matrix A, and

(3.8) Ilbll- m/ax Ib,

when bi are the elements of the vector b. It will be assumed that Zo(e), Zl(e) are
defined and continuous on E, and that the domain of definition of g is $ x Do,
where

(3.9) D. ={z "suP,lz-zo(e)][<--_pl#.
for some positive constant p. We now introduce the assumption

H.8. The functions

(3.10) 0--g-g(x, e, z) and Og(x, e, z)
ox Oz

are continuous on S D,. and satisfy the Lipschitz conditions

(3.11) -x(X, e,z)--x(X, e, w) <-_glllz-wll

and

g
(3.12) -z x, e, z Oz-g-g

z
e, w)

where K1, K2 are independent of x and e, and where

(3.13) az Layj

A second assumption is required to ensure that the solution of (3.6) exists on
the entire interval 0 <-x <_-1. Define

(3.14) U(x, t, e)=- B(r/, g)p-l(r/, g) dr/

and let

(3.15) M-=sup Ilexp {- U(x, 0, e)}. Zl()ll,
S

(3.16)

and

N--sup Ilp-l(t, e). exp {-U(x, t,  )}11 dt
S

(3.17) O= sup Ilg(x, e, z)ll.
SD

Then it is assumed that
H.9. There exists p, 0 <p <, such that

(3.18) M+N 0 <---O.
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Our main theorem can now be stated as follows.
THEOREM 3.1. LetZo(e ), z (e be defined and continuous on E, and let hi >- O,

1,. ., n. Assume that H. 1-H.3 and either H.4 (ifhi > O)or H.6-H.7 (ifhi O)
holdfor each i(x, e), i(x, e); assume also that H.8-H.9 hold. Define the infinite
sequence Z’k(X, e) by the formulae
(3.19)

and

(3.20)

Z’o(X, e)=exp{-U(x, O, e)}" z(e)

Z’k(X, e)= Z’o(X, e)+ P-l(t, e) exp {-U(x, t, e)}. g(t, e, Zk_l(t )) dt,

k 1, 2," , where

(3.21) z (x, s =- Zo(S + Z’k(t, S) dt,

k=0, 1,2,’". Then

lim Zk(X, e)= z’(x, e)(3.22) (i)
k-,oo

exists uniformly on S, where

(3.23) z(x, e)---Zo(e)+ z’(t, e) dt

is the unique solution of the initial-value problem (3.6);
(ii) lim_,o Z’k(X, e) exists uniformly on In ]’or each k O, 1, 2,..., and the

convergence is uniform on I if and only if

(3.24) -,01im {Yil(e)-] (0’
a,io,
e"yi (e

0) ))]] =0
for each 1,. , n;

(iii) lim_,0 z’(x, e) z’(x, O) uniformly on In, and the convergence is uniform
on ! if and only if (3.24) holds.

Proof. (i) Assumption H.9 ensures that each Zk, k 0, 1, 2,’’ ", falls within
the domain of definition of g. To verify this we observe that, from (3.19), (3.21)
and (3.15),

(3.25) I]Zo(X, s) Zo(S )l] <-M<p.

Moreover, if Zk-1 eDp, then from (3.20), (3.21), (3.16) and (3.17) we have that

(3.26) Ilzg (x, e)-Zo(e)ll<--_M+N

for each k 1, 2,....
The proof is now a matter of applying the standard technique for proving the

Cauchy-Picard existence theorem. We note that, by virtue of H.8, there is a
constant K such that

(3.27) IIg(x, z)-g(x, w)ll gllz
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uniformly on Is. Hence

(3.35) lim Z’o(X, e)= 0
e0

uniformly on 18. Noting that

dB-ltt dB-1

(3.36)
dt" e)g(t, e, z)]

dt
g +B-l [O--g+ Ogz ,]I_t Oz

we can use the same procedure as in 2 to demonstrate that lime_,o z(x, e) exists
uniformly on Is and therefore, by (3.21) and Lemma 2.1, lim_,oZk(X, e)

MOVING SINGULARITIES

uniformly on S. We construct the series

(3.28) Zo(X, E)+ X [Ztk,(X, 8)--Zk-X(X, 8)]
k=l

whose kth partial sum is Z’k(X, e). It is easy to show that

NQ(Kx)k-1

(3.29) IIz ,(x,  )11=<
(k-l)!

k 1, 2,. , and therefore the series (3.28) converges uniformly on S. In the limit
as k co, (3.20) becomes

(3.30) z’(x,e)=zo(x,e)+ P-(t,e)exp{-U(x,t,e)}. g(t,e,z(t,e))dt

and this combined with (3.21) represent a solution of (3.6). Uniqueness is a
consequence of the inequality

(3.31)
IIz(t, e)- w(t, e)ll dt

which derives from (3.30) and (3.27).
(ii) Integrate (3.20) by parts to obtain

Zk(X, e)= [zI(e)-B-I(O, e)g(O, e, Zo(e))] exp {- U(x, O, e)}

(3.32) + B-I(x, e)g(x, e, Zk_l(X E))

-[B-(t, e)g(t, e, z_(t, e))] exp {-U(x, t, e)} dr.

It follows from (2.14) and (2.41) that

(3.33) exp {-U(x, t, e)}= O(1)

uniformly on O<-t<-_x _-< 1, and from (2.15) and (2.45) that

(3.34) lira exp {- U(x, O, e)} 0
-0
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(3.41)

(3.42)

and

exists uniformly on L The proof is completed by examining each component in
(3.32).

(iii) A substantially similar argument can be used with reference to (3.30)
instead of (3.20). The details are omitted.

THEOREM 3.2. Given the initial-value problem

chub(X, g)y(n) q-[3(X, e)y(n-1)=f(x, e, y, y’, y(n-2)),
(3.37) y(0, e)= yo(e), y’(0, e)= yl(e), , y<n-1)(0, e)= y-l(e),

where Yi (e), O, 1, , n- 1, are defined and continuous on E. Suppose h >-0
and that the assumptions H. 1-H.4 and H.6-H.7 holdfor 4(x, e) and B(x, e). Let
zo(e) and zl(e) be two continuous vector functions on E defined by
(3.38) Zo(e col (yo(e ), y,-2(e ))

and

(3.39) Zl(e) col (y(e),..’, y,_(e))

such that H.8-H.9 hold for the vector function
(3.40) g(x, e, z)= col (f(x, e, z), 0, 0, , 0)
with n- 1 components. Define

u’(x,)--y<-(x,),
U’o(X, e)=exp {--tOh(X, O, e)}" y,-l(e)

(3.43)
exp {--Wh (X, t, e)}u’(x, e)=- U’o(X, e)+ e6(t, e)

f(t, e, y," , y(,,-2)) dt

for k 1, 2,.... Then all parts of Theorem 3.1 hold with z’(x, e) replaced by
u’(x,).

Proof. This is almost a formal repetition of the proof of Theorem 3.1 and is
omitted.

The subsequent results are concerned with the closeness of solutions of
systems of equations, and may be regarded as generalizations of Theorem 2.4.

THEOREM 3.3. Let z (x, e) be the solution of the initial-value problem

(3.44) P(x, e)z’ +B(x, e)z g(x, e, z),

and w(x, e) be the solution of

(3.45) P(x, e)w’ +B(x, e)w h(x, e, w),

z(O,e)=Zo(e)

w(O, e)= Wo(e).

Let H.1-H.4 and H.6-H.7 apply to each bi(x,e), /3i(x,e). Let g and h be
continuous in x, z and x, w respectively in their domains

(3.46) (i) [IZo(e)- Wo(e)l[ O[p(e)]

and

(3.47) (ii) IIe-(x,e){g(x,e,z)-h(x,e,



MOVING SINGULARITIES 955

uniformly on L where K is a constant, then

(3.48) IIz(x,
uniformly on L

Proo]’. We convert (3.44) and (3.45) into integral equations and subtract.
Then

IIz(x, )-w(x, e)ll_-<llexp {-U(x, o, e)}[I" Ilzo(e)-wo()ll

(3.49) +

Since

(3.50) exp {-U(x, t, e)}= 0(1)

for 0_-< -< x -< 1, we apply (3.46) and (3.47) to obtain

(3.51) IIz(x,)-w(x,)ll<-oEo()3+g [Iz(t,e)-w(t,e)l[dt

from which the result follows.
TrmOREM 3.4. Let z(x, e) be the solution

the initial-value problem

P(x, e)w"+B(x, e)w’= h(x, e, w),
(3.52)

w(0, e)= Wo(e), w’(0, )= w(e).

Assume that H. 1-H.4 and H.6-H.7 hold, and that g, h are continuousfunctions
x, z and x, w respectively. I[

(3.53) (i) Ilzo(,)- Wo(,)ll + Ilz(,)- Wl(e)ll- O[p(e)]

and

(3.54) (ii) Ilg(x, e, z)-h(x, e, w)ll -< O[p(e)]+KIIz wll,

where K is a constant, uniformly in L then

(3.55) IIz’(x, )- w’(x, )11

uni]’ormly in L
Proof. We refer to the integro-ditterential equation (3.30) for z(x, e) and its

analogue for w(x, e). Subtracting the two equations we obtain

(3.56)

ilz’(x, )- w’(x, e)ll Ilzl(e)- wl(e)ll. Ilexp {-U(x, 0, )}11

+ IIP-(t, e) exp {-U(x, t,

{O[o(e)]+gllz- will
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By the conditions of the theorem and with the aid of (3.23) this becomes

(3.57)

Ilz’(x,)-w’(x,)llo[o()]+g [IP-l(t,e)exp{-U(x,t,e)}[[

IIz’(n, )- w’(n, )ll dn dr.

When the order of integrations is interchanged, this takes the form

(3.58)
IIz’(x,)-w’(x,)llO[o()]+K IIP-a(t,e)exp{-U(x,t,e)}ll

IIz’(n, )- w’(n, )11 dt dn.
Using (3.16) we see that this inequality can be written

(3.59) IIz’(x,)-w’(x,)llO[,()]+KN IIz’(n,)-w’(n,)lldn

from which the result follows.
THEOREM 3.5. Given the assumptions of Theorem 3.4.

(3.60a) Ilzo()- wo()ll o[()3

and

(3.60b) sup [lexp {-U(x, O, e)}. [Zl(/ WI(8)]II a(& e)

hold in place of (3.53), and if (3.54) holds, then

(3.61) Ilz’(x, e)-w’(x, e)l[ a(& e) + O[p(e)]

uniformly on I.
Proof. Proceeding as in the proof of Theorem 3.4 we obtain

(3.62) IIz’(x, )- w’(x, ,)11 =< {a (& e + O[p(e )]} +K Ilz’(t, e )- w’(t, e)ll dt

on 18. The result follows immediately.
Finally we prove a closeness theorem for equations of n th order.
THEOREM 3.6. Let y(x, e) be the solution o]" (3.37) and v(x, e) be the solution

o]: the initial-value problem

(3.63)
ehqb(X, e)fg(n)-f-fl(X, e)t)(n-1)=p(X, e, f), I)’," V (n-z))

v(O, e)= VO(e), V("-)(O, e)= V,_(e).

Suppose h >-_0 and that the assumptions H.1-H.4 and H.6-H.7 hold.for b(x, e),
13 (x, e ). Assume that.f and p are continuous functions o.f their arguments on their
respective domains o.fdefinition, and that the vector[unctions constructedfromland
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p by formula (3.40) satiffy H.8 and H.9. ff
If(x, e, y, y’-))-p(x, e, v, , v-2)

(3.64) (i)
<= O[p(e )] +K

uniformly on L where K is a constant,

(3.65) (ii) ]ly,-z(e)-V,-z(e)]] O[p(e)]

and

(3.66) (iii) sup exp {--Oh(X, O, e)}" [yn-l(e)--)n_l(e)]l] a(6, e)
in

uniformly on I, then

(3.67) ]y"-l)(x, e)-v"-l)(x, e)l<-a(6, e)+O[p(e)]

uni[ormly on I.
Proof. We integrate each equation and estimate the difference ]y"-l)(x, e)-

/)(n-1)(X, e)l as before.
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