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THE RIEMANN—LIOUVILLE INTEGRAL AND PARAMETER
SHIFTING IN A CLASS OF LINEAR ABSTRACT CAUCHY
PROBLEMS*

L. R. BRAGGt

Abstract. Many important partial differential equations arising in the applications involve one or
more parameters. A shifting relation for a problem involving such an equation permits expressing the
solution corresponding to one value of a parameter in terms of a solution corresponding to a different
value of this parameter. The Riemann-Liouville integral and its properties are employed to develop a
set of shifting relations for solutions of a class of Cauchy problems involving an abstract version of the
generalized hypergeometric equation. The results are applied to two examples, one of which involves
the Riemann-Zeta function. They are also useful in developing properties of the hypergeometric
functions.

1. Introduction. Let X be a Banach space and let A be a closed linear
operator in X independent of . Further, assume that the domain of A’, ©(A"), is
dense in X for r sufficiently large. We shall be concerned with a class of Cauchy
problems of the form

{zD,(ﬁ (1D + B, — 1)) —At(iljl (D, + a,.)> }u(t) =0, >0,

j=1

(1)

u(0+)=‘P’ ¢e®(Ar)5 Q;, Bi real.

By u(0+) = ¢, we mean |ju(t)— ¢||— 0. There are many relationships existing
-0+

among the solutions of (1). Included in these are transformations between
solutions of such problems which affect a shift in some one of the parameters «; or
B, Bi#0, —1, —2, - - -, while preserving the data. The primary interest in this
paper lies in presenting a unified treatment of such shifting relations.

The class of problems (1) was considered by the authorin[1]in which A was a
partial differential operator P(x, D,). It was noted there as well as in a more recent
paper by Donaldson [3], that an extensive number of equations of mathematical
physics can be reduced to the form in (1) through changes in the dependent or
independent variables. Among the more notable of these are the wave equation,
the Euler—Poisson-Darboux equation, and the equation of generalized axially
symmetric potential theory (GASPT). In § 4 of [1], a number of results were given
which involved nonpositive values for the parameters or specific types of shifting
formulas in the parameters. Most of these results were motivated by general
properties of solutions of the generalized hypergeometric equation and one could
extend this set of relations by exploiting the large collection of formulas available
for hypergeometric functions. There are drawbacks to this approach. Firstly,
certain of the formulas which involve specific types of choices for the parameters
are actually connected with shifting, but their forms would fail to suggest this fact.
Secondly, in such an approach, there would be a problem of determining when
two apparently different formulas could lead to the same type of shifting result or
to different interpretations of one shifting procedure. Finally, and perhaps most
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2 L. R. BRAGG

important, one could overlook some basic notion connected with shifting. It
would seem desirable to have a more systematic and unified treatment of the
shifting problem.

In this paper, we present such a treatment based upon a pair of integrals, one
of which involves a continuous shift in the B parameter while the other involves a
continuous shift in the « parameter. Through the use of properties connected with
the Riemann-Liouville integral, these integrals can be extended analytically to
handle values of the parameters outside of their usual range for convergence
(except for the values of B noted earlier). Many of these extensions lead to results
which agree with those obtained in [1]. The « shifting formulas, other than those
occurring in [1], appear to be new.

The principal notions and results on the Riemann-Liouville integral needed
for this development will be given in § 2. These will be employed in § 3 to examine
B-type shifts and in § 4 to examine «-type shifts. In this latter case, analytic
extensions can be made to obtain both upward and downward shifting properties.
A precise determination of the number r in D(A") in (1) will not be given except in
special cases. As we shall see, a restriction on r imposes a limitation on the range of
values of @ and B which can be considered. Finally, the notions developed will be
applied to two examples in § 5. One of these involves the Riemann zeta function.
The shifting properties lead to integral representations for {(a) for a <0
(but# -1, -2, =3,---).

It should be mentioned that not all parameter shifting formulas fit into the
pattern considered here. For example, the important Weinstein formulas for the
Euler-Poisson—Darboux equation [8],[9] as well as the formula given by
Theorem 4.5 of [1] are not in this class. These fail to have the data preserving
property. Rather, they transform a solution of one equation into the solution of
another equation without regard to fulfilling a specific initial condition.

2. The Riemann-Liouville integral. In this section and the ones to follow, we
consider functions f : [a, b]- X. Such a function f is said to be strongly continuous
on theinterval[a, b]ifitis continuousin | - [|x at each point of [a, b]. We then write
fe Cla, b]. Similarly, we write fe C"[a, b] if f has strong derivatives through
order n and these are strongly continuous on [a, b]. When no confusion can arise,
we write fe Cor fe C".

We now summarize the basic definitions and properties of the Riemann—
Liouville integral. This integral and its generalizations by M. Riesz[7] have played
an important role in the study of partial differential equations (also see [4]). The
reader is referred to the Riesz paper for a more detailed treatment of these
notions.

Let f € C on an interval which includes the point ¢t = a. If Re a >0, define

2.1) I”f(t)=$‘[' flo)t—o)* " dt.

The operator I* obtained in this way is called the Riemann-Liouville operator
and it enjoys the following properties:

(2.2a) I°(I°f(8) = I"**f(1), Rea>0, Rep>0,
(2.2b) DI (1) = If(8), Re a >0.
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If f(t)e C" on an interval containing the point t=a, then the analytic
continuation formula for I°f(¢) with Re a« > —n is given by
W fa)

(2.3) I°f(t)y= Y,

N (44— a+k+ a+ng(n) .
Z etk @ H 0

Finally, we have the additional properties
(2.4a) I°f(1) = f(1), fed,
(2.4b) If(0) = f(1), fnec

3. Shifts in the B parameters. We now discuss shifts in the 8 parameters for
the problem (1). After obtaining a general result from the Riemann-Liouville
integral, we particularize to the case of (1) where p =0, g = 1, and 8, = 8. Some of
the properties holding for this special case are also applicable to (1).

It was shown in [1] (corollary to Theorem 3.2) that if u”(t) is a solution to the
problem (1) corresponding to B, =B > 1, then a solution to problem (1) with B8
replaced by B*, B*> B, is given by
1
uf'(t)= (1-0)*"*'¢* 'uP(to) do

B(B,;*—B) L

=F(B*) 1-B8* !
'@’ {F(B*—B)L (

Although we shall not prove it here, this relationship holds under the less
restrictive condition B* > B > (0. We will, however, prove the analogous result for
the « shifting in § 4.

The upward shifting formula (3.1) clearly shows that the solution u®’(¢) is a
continuous function of 8* for 8* > B. The bracketed term in the third member of
(3.1) has a form suggesting the applicability of results on the Riemann-Liouville
integral (if we choose a =0 in § 2).

To apply those results, first select B =1 and set y=B*—1. Then (3.1)
becomes

(3.2) u? (t)y=T(y+ Dt "u(t),

where u(t) is a solution of (1) with 8, =B = 1. In this form, the presence of the
factor I'(y + 1) shows that (2.4b) cannot be used for obtaining a solution when vy is
a negative integer. Indeed, this choice for vy leads to logarithmic solutions which
are outside the scope of this paper. In all other cases, the analytic continuation
formula (2.3) is applicable for assigning a meaning to u®’(¢). According to that
formula, we get

(3.1)

t—o) PP U (o) do-}.

n—1 (k k+y
(3.3) uf () =T(y+ 1)[*7{ Y U0

+ n+y. (n)t},
ETrken Ie®

provided that y > — n, y not a negative integer. From this and the definition of """
we have the following theorem.

THeEOREM 3.1. Ifu(t) € C"is a solution of problem (1) correspondingtoB, =1,
then a solution of (1) corresponding to B, = B*> —n+1, B* not an integer, is given
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by
n—1 (k) n 1
3.4) u”(t)= I’(B*){k{;o F(I;S*(-I(—))k)tk +F(n +t3* _ L (1—o)P" " 2u"(to) da},

where u™(7) = D u(r).

Note. The starting choice =1 may appear to be somewhat artificial.
However, we can arrange shifts involving positive values of these parameters
which permit this as we shall see later.

To see how (3.4) ties in with earlier results, we interpret its meaning for the
particular problem

(3.5) D/J[tD,+B—1]u(t) = Au(t), u(0)=e¢.

We shall suppose that uniqueness holds for solutions of this problem if 8 >0 and
that u(t)e C*** (see, for example, [1], [10]).

Taking u(t) to be a solution of (3.5) with B =1, repeated differentiations
show that u® " (¢) satisfies the equation

tD?u* ")+ kDu®* () — Au* () =0, k=1,2,---.

From the fact that ku®(0)—Au*“""(0)=0, we obtain inductively that u"’(0)
=(1/k!)A*¢. As a consequence, the summed expression in (3.4) takes the form

W (tA)e

oo e L areky

In order to interpret the integral in (3.4), we must compute u”(to). But by
the repeated differentiation procedure employed to obtain (3.6), one can show
that u™(¢) is a solution of the problem

1
tDXu™(t)+(n+1)Du(t)— Au™(t)=0, u™(0)= —n—'A .

Define v(t) to be a solution of the problem tD?v(t)+(n+1)Duo(t)— Av(t) =0,
v(0) = ¢. Uniqueness shows that

1 1 !
W) = ot = | (1- 0 e def,

where we have expressed v(¢) in terms of u(t) by means of (3.1) with 8 =1 and
B*=n+1. Inserting the expression for u(¢) in the integral in (3.4) with ¢
replaced by to, the integral in (3.4) becomes
S AR o] NS L
—_ 1__ n+pg*—2 1__ n—1
T+ —1) o (1-0) 1), (1-8)""'u(tof) dé do
[(B*)(tA)" J‘ ,1{ J‘ . }
= 1-&)" 1—o)"*# 2 .

The strong continuity of A"v(t) has permitted us to remove A" from under the
sign of integration. Again, from (3.1), the inner integral in this last expression is

{L(n+B*=1)/T(n+B")}u""*(t).
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From this, we finally see that the integral in (3.4) reduces to
r(B*)(tA)" J" i .
1-&"u® dé.
T 5 ), (170w ) de
Combining (3.6) and (3.7) we find that

(=Tt S A
I(B*)
(n=1)IT(B*+n)

(3.7)

1

(tA)" J' (1—o)" 'u?"""(to) do.
0

This agrees with Theorem 4.2 of [1] for the special problem (3.5) with 8 replaced
by B*.

It was also shown in[1], by a consideration of the equation in (1), thatif 8 # 0,
then

(3.9 uB(t)=é(tD,+B)u‘3“(t).

If B >0, this follows readily from (3.1). For then

t

ulti ()= Bt‘ﬁj o 'uf (o) do.

0

Hence

t

Duf*'(t)= —p*t " J o®'uf (o) do+ Bt ' u”(t)

0

= —?u"”(t)+

B e
- t).

Lty

Solving this for u?(¢), we obtain (3.9). This property is also easily shown to be valid
for negative values of B* —1 by using the u”’(¢) obtained through the extension
(3.4).

4. Shifts in the « parameters. As we have observed, the formula (3.1) served
as the basic starting point for building up the shifting relations. In the case of the «
parameters, it is desirable to have a similar relating integral. Such an integral will
be given below. To simplify details, we center our discussion around the problem

4.1) u(t)—A(D,+a)u(t)=0, u(0)= ¢,

obtained by selecting p=1, =0, and a; =« in (1). We shall indicate which
results are applicable to the more general problem (1).

THEOREM 4.1. Let u®(t) be a solution of (1) for &; = a >0 for some i and let
a®>0 with o* < a. If Au®(t) is strongly continuous, then a solution to (1) with «
replaced by a™ is given by

(4.2) O p—C) - L o (1= 0) " U (to) do.

[a*)(a—
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Note. This formula, which is applicable to shifting down on any one of the p
parameters «; in (1), is analogous to (3.1) except that the unstarred and starred
parameters have been interchanged. This turns out to be significant in that we can
apply the results of § 2 in two ways to obtain extensions of this integral.

Proof. We prove this result for the problem (4.1) and note that this proof can
be extended to apply to (1). The general proof for (1) involves the arranging of
more factors and is quite similar to the arranging process carried out in [2] for the
generalization of (3.1) to nonhomogeneous problems.

The condition u*"(0+) = ¢ is easily checked. Substituting (4.2) into (4.1) with
a replaced by a* in (4.1), we can invoke the strong continuity property to apply
the derivative operators to u® under the sign of integration. We can then use the
relation Du*(ot) = oDu“(ot) to reduce the differentiations to ones involving
the variable ot. Using (4.1) with the variable ¢ replaced by ot and the strong
continuity property, the operator A can be removed from under the sign of
integration. Finally, by a conversion of all differentiations to D,, under the sign of
integration, it follows that the remaining integral has the primative

o' (1- o) u(to),

which vanishes at 0 =0 and o =1 for a >a™>0.

(A) Downward shifting. Although the formula (4.2) permits us to shift down
on a, we are restricted to values of @®>0. To extend beyond this range, we
rewrite (4.2), through a change of variables, in the form

wipy o L@ [ e e
4.3) u*(t)= [(a)(a—a® L (t—o)* o u*(t—o)do.
Strictly speaking, this integral is not in the form required for the application of the
results of § 2. This is due to the presence of the ¢ variable in the u® function in the
integrand. We can circumvent this difficulty by first regarding this ¢ variable in u*
as a parameter A and then replace A by t after applying the Riemann-Liouville
techniques. With this understanding, we observe that (4.3) can be expressed as

(4.4) us(t) = - [(a)

(a—a®)

If we take a >0 and replace a ™ by a — (k + 1), k being a nonnegative integer,
then (4.4) becomes

tl—aIa*{ta—a*—lua(/\ _ t)}.

' T(a)
k!

In this form, the results of § 2 are applicable. We distinguish two cases: (i)
a—(k +1) a nonpositive integer and (ii) « —(k + 1) a negative noninteger.

Case (i). In this situation, « —(k+1)= —m, m a positive integer or zero.
Since a =1, we have m =k. Then (4.5) along with (2.4) readily proves that the
following theorem holds.

THEOREM 4.2. If « is a positive integer and if a —(k +1) is a nonpositive
integer, then

4.5) w0 () = Iy (A - ).

(4.6) (1) = T(a) kzo <T)(;:fl):;)![l){,u“(0')]q:o.
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In this case, the shift to u* **"(¢) is determined from u*(t) through its value
and the values of its derivatives at t =0.

We now correlate (4.7), which holds for the general problem (1), with results
in [1] by using (4.1). Successive differentiations of the equation in (4.1) will show
that Du®(t)|i=o=(a+j—1)AD}'u*(t)|:=o. By induction, we conclude that
Diu(t)|,—o=(a);A’¢. Using this and the fact that (k+1—a)!/(k+1—a—j)!
=(—1)/(a —1—k); we see that (4.6) reduces to

k+1—

(4.7) u () =y u]_l—’(a-k—l),«(tA)Qp,

i=0

and this is just the solution of problem (4.1) with « there replaced by (a —k —1)
(see Theorem 4.1 of [1]). The above discussion requires that ¢ € D(A*"'™).
Case (ii). We can apply (2.3) directly to (4.5) to get

ua—(k+1)(t)

I'a)t I i Ho*u*(A —a)}] R
kt % Ta—k+) °°
(4.8)

1 a—1yyk+1[ _k afy _
F(a)j (t—=o) 'DS o u (A 0)]d(f}.

The first sum clearly reduces to k!u*(A)t*"'/I'(a). Using this fact and
replacing A by ¢, we obtain

THEOREM 4.3. Let u®(t)e C*** satisfy (1) for some o; = a >0. If a is not an
integer, then

1-a

4.9) u () = ue (t)+t J' (t—o) 'DSNo*u*(t— o)} do

satisfies (1) with ;= a —(k +1).
In order to note some interpretations of (4.9), it is useful to rewrite it in the
form

(4.10) u () =u (t)+L’1)—+J o 'DE(1 - o) u(t0)] do.

COROLLARY 1. Let u*(t)e C**' satisfy (4.1) and let u*~"**"(t) be defined by
(4.10). Then u*"**"(t) = (1—tA)* 'u*(¢).

Proof. If k =0, the proof is trivial. If u*(t)e C**', it follows by (4.9) that
u*"'(r)e C*""'forintegral [, 0= [ = k. Then u“™""'(¢) = (1 —tA)u""'(¢) by the first
part of the proof. Successive applications of this formula yield the stated result.

Remark.If A and ¢ were constantsin (4.1), then Corollary 1 would reduce to
the trivial relation (1—tA)*"' o =(1—tA)*"'[(1—-tA)’¢], |t| <|A|™". Corollary
1 shows that what one would intuitively expect to get agrees with the correct
result.
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By applying Taylor’s theorem with remainder to the relationship in Corollary
1, one can readily deduce that

k
W)=+ Sa-k=1,1AVp
j=1]"

(4.11)
+(a”k_1)k+1

i AR J (t—o)u*(o) do,
: 0

and this is just Theorem 4.2 of [1] particularized to the case of problem (4.1).

CoROLLARY 2 (Upward shifting formula). Given the conditions of Corollary
1, then u* ™ (t)=(a—k—1)""[tD,+(a —k —1)Ju*"*"'(¢).

Proof. This follows readily from the formula u®*~**"(f) = (1 —tA)u*"*(¢) (see
Corollary 1) by computing [tD,+(a —k—1)]Ju*"*"'(¢) in terms of u“"*(t) and
noting the equation that u®*(¢) satisfies. This upward shifting holds, in fact, if
a # k+1 (see Theorem 4.4 of [1]) and applies to the general problem (1).

(B) Upward shifting. In order to treat this situation, we replace the variable of
integration o in (4.2) by o/t to get

u(t)= M) 1*”{1_‘( ! J“ (t—o) o u (o) dO’}

( 4~) a——a*) 0
(4.12)
_ (@) yrear 1y
Ty ! { (”}

Rather than use (2.3) in its full generality, we shall consider the cases in which (a)
a™—a is a positive integer, and (b) 0 < a*— a < 1. Any other shifting relation can
be obtained by using a combination of these two cases.

Case (a). a™—a = p. We rewrite (4.12), by means of (2.4b) as

(4.13) u () =Dy (1)),
Successive applications of D, to t**"~'u“(t) give
utr(t) = F(F(+ {tD,+a)tD,+a+1)--- (tD,+a+p—1)}u(t)
(4.14)
Q(E%E%igu(n if u* (1) e C”.

By taking p = 1, we see that this gives the same type of upward shifting formula as
Corollary 2 to Theorem 4.3.

Case (b). a*=a+1—pu, 0<u<1. From case (a), we have that u*"'(t)
=a '(tD,+ a)u“(t). Then (4.2) shows that

C(a)trv

L PR

) Jt (t—o) o *[oD, +alu* (o) do
(4.15)

1

(tD, + «) J (1-0o)* 'o* ™ u*(to) do.

0

_ ['(a)
Fla+1-w)l(n)
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The results of cases (a) and (b) are applicable to the general problem (1) since
their developments did not depend upon using properties of (4.1).

5. Applications of shifting. The shifting relations developed in §§ 3 and 4 are
applicable to a variety of problems in operator differential equations. As was
noted in the introduction, the Euler-Poisson-Darboux and GASPT equations are
ones which involve parameters. The author gave an extensive discussion of the
first of these in § 6 of [1] and treated the nonhomogeneous GASPT equation in
[2]. In this section, we limit our discussion to two examples, the second of which
involves both an «a- and a B-type parameter.

(A) The Riemann zeta function. Consider the Cauchy problem Du(x, t)
—D,(tD,+ a)u(x, t)=0, a >0, u(x,0)=e*/(e*+1). This problem has the form
discussed in § 4 with A = D,. It is easy to verify that a solution to it is

1 J>®Ua—1 ex+(t—1)cr
1 « = 2
(5.1) u*(x, t) M) )y e i1 do.
From this and [5, p. 20], we find that
(5.2) )= [ do=(1-2(@)
: YT ) e 1% @)

Re a >0, in which {(«) denotes the Riemann zeta function. Even though {(«) has
a pole at @ =1, u*(0, 1) is well-defined there. The results on downward shifting
given in § 4 are applicable for extending u*(x, t) for « =0 (we could consider «
complex but shall not do so here). In particular, (4.7) and (5.2) together show that

A=-2"""")(a—k=1)=u"*""(0, 1)
(5.3)

k+1l—a 1 .
= X ﬁ(a —k=1);(tD,) (e*/(e* +1))|s=0.=1
i=o J*
for a a positive integer, and (4.11) and (5.2) show that
ko1 ,
A=2""*"(a—k-1)=) it (a—k—1);D'{e*/(e* + 1)}];=0
i=0]"

(5.4)

+ (a —k—1)

1
—Detpe [ (1- o) 0) doles,
. 1]

if « —k —1 is a negative noninteger. An evaluation of (5.3) with « =1 and k =0
leads to the familiar results £(0)=-1/2, ((—1)=-1/12, ¢{(=2)=0, ¢(-3)
=1/120, etc. (see [5]).

To handle (5.4), we observe that if

K — ex+(t~1)a/(ex+ta+ 1) — e(t—l)o-(eat + e—x)—l,
then
Kx — e‘"”"{e"‘(e"’+e’")_2},

Ku = e('—l)a{_e~x(eat+e—x)—2+2e—2x(ear+e—x)—3}.
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Using these in (5.4), we obtain, for 0<a <1,

{la=1)=(1 _ZZ_Q)_I{%Jrr(al— 1) Ll {Lw % d‘f} d"}’

(5.5) ¢(a-2)=(1 —23“")*‘{(1 +“)/4+2r !

(@—2) J (1=o)

) . : —1 2 } ] }
X a=1 (o—1)¢ +
HO &e {(e"f+1)2 1yl %]y
(B) A Cauchy problem. The Cauchy problem

U, (x, t)=t"Uy(x, t) —vt™*'U,(x, 1), t>0,' m=2,
(5.6)
U(x, 0) = ¢(x), U.(x,0) = (x)

was considered in [6, p. 182] under the assumption |v| = m/2. This restriction on v
was removed in [1, p. 232] under the same condition on m but with (x) =0. We
shall here permit m to assume values in (—2, 0) (but not of the form —2n/(n +1),
n a positive integer, which leads to the logarithmic case), while permitting » to
take on any real value.

As was shown in [1], the problem (5.6), with (x)=0, can be reduced,
through changes in the independent variables, to

[D.(zD.+B—-1)—D,(zD. +a)]U(y, z) =0,
(5.7)
U(y, 0) = ¢(y),

with a =(m—2v)/(2m+4) and B=m/(m+2). If we take ¢(y)e C" and |¢|
=sup |¢(y)|, then this problem is in the form (1) with A = D, and ¢ replaced by z.
To simplify the writing, we denote a solution of (5.7) by U*?(y, z). We shall
indicate throughout the corresponding sets of values of m and v that go with these
U*(y, z).

The procedure we follow is first to obtain a solution of (5.7) for specific
positive choices of « and B8 (and hence for choices of m and v) and then use the
method of § 3 to shift on the 8 parameter to 8 = —n +v, 0<<y <1 (in which case
—2n/(n+1)<m< —2(n—1)/n). Associated with this choice of 8 are the corres-
ponding possible alternatives for « (and hence v), namely (i) « >0 or v <m/2, (ii)
a = —1I, [ anonnegative integer or v =(I+1/2)m+ 2/, and (iii) — I <a<—-1[+1,!
a positive integer or (I —=1/2)m+2(I-1)<v<(I+1/2)m+2l.

Select B =y and @ = y/2. From [1, p. 332] we find that

I'(y)
[T(y/2)F

In this particular solution, the choice B corresponds to a positive value of m, such
that m;/(m,+2)=1v and a corresponds to this same m; with »=0. Then

1
(5.8) Uy, z)= J > '(1—0)"* " o(y +0z2) do.
0

' There is a misprint in [1]. The minus sign rather than the plus sign should proceed » in the
equation corresponding to (5.6).
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according to (3.9),

(59) U‘y/2,—n+y(y, Z) — { ﬁ (ZDZ + ’;/—]
v—

j=1
Note that this shift on B8 has forced a shift in » so that the parameter « retains the
value y/2. Here, v was shifted from 0 to —n/(n+1—1y).

(i) a>0. With m as chosen to obtain the shift in 8 in (5.9), we observe that
a>0if we choose < —(n—7v)/(n+1—7). Then a = —3{(n—y)+(n+1—vy)v}.
According as a <y/2 or a > y/2, we must consider different types of shifts.

(@) a<vy/2 (or —n/(n+1—y)<v<—(n—vy)/(n+1—7v)). Under these
circumstances (4.2) shows that

Ve, 2.

(5.10) U™y, z)= Iy/2)

T T D — ol - v/2-a-1 v/2,—n+y
I‘(a)F(v/z—a)L" (1-a) U (y, zo) do.

(b) a>1vy/2 (or v<—n/(n+1—v)). Here we have the possibility that
a—y/2 may or may not be a positive integer. In the first situation, « —y/2=p, a
positive integer, and v = —(2p+n)/(n+1—1y). Then by (4.14)

p=l (2D, +v/2+ -
(5.11) Uv/2+m—n+7(y, z)= H <£_;72’Y4/—]__]) u”r 7(y, z).

j=0
In the second situation, a—vy/2=p—u, 0<u<1. Then v=—-(2p+n)/
(n+1—vy)+2u/(n+1—1+y) and we obtain, from (5.11) and (4.15),

['(p+v/2)

U7/2+p—urn+v( , Z) —
Y T T+ y/2— wT(w)

(5.12)

1
. J o?E L — o) U Yy, zo) do.
o
(i) « =0, a an integer. If « = —1I, then v = (I +1/2)m +21L Using (5.12) with
p=1and u = —vy/2 we obtain U""*(y, z). Then (4.6) (witha=1and m=1lin

that formula) shows that

1
U™y, 2) = DAs' Uy, 2 =8

! N1
=% (-1 )5 DIU o )
j=o0 i’
From (5.7) satisfied by U""*(y, z), we compute
_Jjii(y—n)

DUy, s)ls=o—r(y_n+].)D’;<p(y).
Hence
—lL—n+vy, — ! _ j l F(’Y“”) j
(513) U2 = (O D Vel
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(ili) « <0 and not aninteger. In this final case, —~ [ <a<—I+lora= —[+r7,
0<7<1. From the results for case (i) above, we determine U™ "**(y, z). Then
(4.9), with k =[—1, shows that

1-7

(I-1!

U-r—l,fn+y(y, Z)= U’l’,—n'\‘"y(y’ Z)+
(5.14)
. J (z—o) 'Dic" Uy, z — 0)] do.
0

The reader can easily write this solution in the form given in (4.13).
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OSCILLATION CRITERIA FOR
THIRD ORDER DIFFERENTIAL EQUATIONS*

GARY D. JONEST

Abstract. This paper gives some sufficient conditions for
y"+px)y'+q(x)y =0

to have oscillatory solutions.
1. Introduction. By an oscillatory solution of
(1) y"+p(x)y'+4q(x)y =0,

we will mean a solution of (1) that has zeros for arbitrarily large values of x. Other
solutions of (1) will be called nonoscillatory. We will say that (1) is oscillatory if it
has a nontrivial oscillatory solution. We will study (1) assuming p, ¢ and p’ are
continuous on [0, +00).

In studying (1), we will make use of its adjoint

2 y"+p(x)y' +(p'(x)—q(x))y =0
and the following easily verified lemma.

LEMMA. If N is a solution of (1) such that N(x)>0 for x > a, then two
independent solutions of (2) satisfy

3 (y'/N) +[(N"+pN)/N*]y = 0.

2. Oscillation theorems. If 2q(x)—p'(x)=0, then any solution of (1) is a
linear combination of u?, uv and v* where u and v form a fundamental system of
solutions for

4) y"+(p/4)y =0.

It follows that in this case (1) will be oscillatory if and only if (4) is oscillatory.

Our first result shows that there is a connection between (1) and (4) when
2q—p' is sign definite.

THEOREM 1. If 2q—p'=0 (=0) with 2q—p' =0 possible only at isolated
points, then (1) is oscillatory if (4) is oscillatory.

Proof. Assuming p'—2q =0, let N be a solution of (1) that satisfies N(a)
=N'(a)=0, N"(a)=1. Then N(x)>0 for x>a =0[2]. Now letting

FIN(x)]=N"(x)—2N(x)N"(x) — p(x)N*(x),
we have N2(x) —2N(x)N"(x) —p(x)N*(x) = F[N(a)]+ [, (2q —p’)N?. Thus
N?(x)—=2N(x)N"(x)—p(x)N*(x)=0 forx>a

and

5) 2N"(x) N"(x) -

N()C) NZ(x) = _P(x)

* Received by the editors March 18, 1974, and in revised form September 23, 1974..
t Department of Mathematics, Murray State University, Murray, Kentucky 42071.
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14 GARY D. JONES

Letting y = wN'?, we see that (3) becomes

3 2Nu N/2
©) weloed (i) w0

Now by (5), p+3(2N"/N—N"?/N? = p—3p/4 = p/4. Thus by the Sturm compari-
son theorem if (4) is oscillatory, then (3) is oscillatory. Thus since oscillation of (3)
implies oscillation of (2), we have by [2] oscillation of (1).

If 2q —p'=0, apply the first part of the proof to (2).

THEOREM 2. Suppose p=0, q=0, p'—2q =0 with zeros possible only at
isolated points. If j:o (p'—2q)= +00, then (1) is oscillatory.

Proof. For every nontrivial solution y of (1), let Fly(x)]
= y"(x) —2y(x)y"(x) =~ p(x)y*(x) = Fly(a)]+[, (2q — p")y*. Itis clear that F[y(x)]
is decreasing. Suppose (1) is nonoscillatory. Let u;, u,, u; be a basis for the solution
space of (1). Define vy, by y.(n)=y.(n)=0 and such that vy,
= Coiu1+ C,us+ Cosus where Coi+C2,+Chs=1. Assume, without loss of
generality, that im C,;=C, for i=1, 2, 3. Let N= Ciu;+ Cyu,+ Csus. The
function N is nontrivial since C3+ C3+ C5=1. Now F[y,(n)]=0 and F[y(x)] is
decreasing for every nontrivial solution y of (1). Thus, F[N(x)]> 0 for all x. Since
F[—N(x)]=F[N(x)] and (1) is nonoscillatory, we shall assume N is eventually
positive, i.e., N(x)>0 for x>a. Suppose N'(b)=0 for b>a. Then
(NN"+pN?/2)(b)= — F[N(b)]/2<0. Thus N"(b) <0 and N’ can have at most one
zero after a. If N'(x) <0 for large x, then N =0 with equality possible only at
isolated points. In that case N” is eventually one sign. If N">0 for large x, then N’
is eventually positive, which is a contradiction. If N” <0 for large x, then since
N'<0, Nis eventually negative. Thus we conclude that N'(x) >0 for large x. Thus
if N(C)>0and N'(x)>0on|[C, +00),

0< FINW)I= FINOI+ | 2q-p)N’

=F[N(C)]+N*O) E (2q—p')> —c0 withx.

Thus (1) must have an oscillatory solution.

We next generalize a theorem of Lazer [3] which applies to the case where
p=0, g>0 to apply to the case where p need not be of constant sign. We shall
state our hypothesis in terms of a property of a nonoscillatory solution of (2). Later
we shall give conditions on the coefficients of (1) to guarantee such a solution of
(2).

THEOREM 3. Suppose q >0 and (1) is C; (see [2]). Suppose there is a point x,
such that the nonoscillatory solution of (2) z defined by z(x,) = z'(x0) =0, z"(x0) = 1
has the property that f: z = +00. Then a sufficient condition for oscillation of (1) is

that
2(—=p)” J
- =400,
J’N q 3\/5 -N q

where
N={x:px)=0}
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Proof. First we observe that two independent solutions of (1) satisfy
(7 (v'/2) +[(z"+pz)/2°ly =0

for x > x,. Assuming (1) is nonoscillatory, we have that (7) is nonoscillatory. Since
j z = +00, there exists a solution y of (7) and hence of (1) such that y >0 and
y ’>0 for large values of x [1]. Let t=1y'/y. Then

t"+3t't=—(+pt+q).

Thus if p(x)<() —(P+pt+q)=—q+2(-p)*/3¥3 and if p(x)>0,
—(t3+pt+c\1/L< Thus '(xX)=t(C)+36%(C)/2-3(x)/2— ijCx)q
2(=p)**/3V3 = f_ycx 4- Since the right-hand side goes to — o0 by hypothesis we
have a contradiction. Thus (1) is oscillatory.

See [2] and [3] for various conditions under which (1) is C.. If p is bounded
above, then since (z"+pz) =qz >0 for x>x, and (z"+pz)(xo) =1, we have
X —x0<j‘:0 Z"+pz=z'(x)—z'(x)+B KO z, where p(x) < B for all x. Thus if j:) z<
o0, we have z'(x)— +00 which implies z > +00. Thus we state the following
corollary to Theorem 3.

CorROLLARY. If ¢>0, p<B for some real number B and y"+py =20 is
nonoscillatory, a sufficient condition for oscillation of (2) is that

L q—2(—p)/3J3+ L q=+00,

where

N={x:px)=0}
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CONVOLUTIONS OF ORTHONORMAL POLYNOMIALS*

W. A. AL-SALAMT? anp T. S. CHIHARA}

Abstract. In this paper, we determine all pairs of orthogonal polynomial sequences {p,(x)} and
{g.(x)}, such that their convolution,

Q.(x,y)= 2 Pe(x)Gu—i (¥), nz0,

defines {Q,(x, y)} as an orthogonal polynomial sequence in x for all y. All such triples are determined
explicitly in terms of their three-term recurrence formulas. Generating functions and “explicit”
representation formulas are obtained. The resulting sequences are found to consist of a class of
orthogonal polynomials characterized by J. Meixner (which class includes the Laguerre and Hermite
polynomials) together with a new class of orthogonal polynomials which includes the orthogonal
g-polynomials of Al-Salam and Carlitz. Explicit orthogonality relations are found for one new special
case of this latter class.

1. Introduction. Two rather pretty identities involving the Hermite and
Laguerre polynomials are [6, § 10.12 (41), 10.13 (38)]:

2" H, (e +y)= 5 ( Z)Hk<2“2x>Hn_k(2‘“y>,
k=0

L (x + y)= Y Li(x)L% .(y).
k=0

Notice that the first expresses an orthogonal polynomial as a convolution of
members of the same set, while the second expresses an orthogonal polynomial as
a convolution of members of two different sets of orthogonal polynomials.

Inlooking for acommon basis for such identities, one is led rather naturally to
consider their generating functions. One quickly observes that the class of
orthogonal polynomials characterized by Meixner [7] satisfy such identities.
Meixner’s class consists of the orthogonal polynomial sequences {P,(x)} having
generating functions of the form

A(W) exB(w)= Z P,.(x)w",
n=0

where A(w) and B(w) are formal power series such that A(0) # 0, B(0) =0, and
B'(0)#0.

In addition to the Hermite and Laguerre polynomials, Meixner’s class
includes the Charlier polynomials c.(x; a), the Meixner polynomials m,(x; 3, ¢),
and the Pollaczek polynomials pi(x, ¢); apart from trivial transformations of
these, no others are included. For these polynomials, see [6, §§ 10.21, 10.24,
10.25].

* Received by the editors July 15, 1974, and in revised form February 28, 1975.
t Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada.
it Department of Mathematics, Purdue University Calumet Campus, Hammond, Indiana 46323.
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From their generating functions, the corresponding ‘“‘convolution formulas”
are easily found:

n

(a+b)c.(x+y;a+b)= Y (Z)a"b""‘ck(x; a)c._i(y; b),

k=0

n

m(x+y;a+p,c)=% (Z)mk(x; a, c)m,_(y; B, ¢),

k=0

H“@+%¢%Z§PXM¢W#A%¢X

The question then naturally arises as to whether there are other polynomials
for which such identities exist. Specifically, are there orthogonal polynomial
sequences (OPS) {p.(x)} and {q.(x)}, such that if we define Q,(x,y)
=0 Pa(x)qn-r(y), then {Q,(x, y)} is also an OPS in x for infinitely many values
of y?

We shall answer this question by determining explicitly all such triples. The
resulting class of OPS will include previously studied polynomials as well as new
ones. Although we have been unable to determine orthogonality relations for
these in general, we shall obtain them for one new special case.

2. Necessary conditions. Let {p.(x)} and {q.(y)} be OPS, and let their
three-term recurrence relations be

(2.1) Pre1(x) = (Anx + B,)pa(x) — C,pai(x),
(2.2) Gne1(Y) = (@Y + Bu)gn(Y) = YuGu-1(y).
Next, let {Q,(x, y)} be defined by

(2.3) Q.(x, y)= éo P (X)Gn-i(y).

Since the coefficients of x" in Q,(x, y) and p,(x) are identical, {Q,(x, y)} will be an
OPS in x if and only if it satisfies a recurrence relation of the form

(24) Qn+lwl(x, Y) = (Anx + Dn)on(xa )’) - Enon—l(x’ Y)
In all three recurrence relations, n =0 and the initial conditions are
p1(x)=q-(y)=0-i(x, y) =0, Po(x) = qo(y) = Qolx, y) = 1.

Also, A,, B, C,, a,, B», v. are independent of x and y; D, and E, are independent
of x,n=0;and A,C, #0, a,y. #0, E, # 0, n =2 1. The polynomials are orthogonal
with respect to a real distribution on the real line if and only if all coefficients are
real and C,A,A,-, >0, v.a.a,-1 >0, E,AA,..1>0,n=1.

To begin with, we use (2.3) in (2.4) to obtain

n+1

3 P04 =Dn ¥ p0a i) ~Es $ pl6)ara(y)

+ A, éo AZICI..—k(Y)[PkH(x) - kak(x) + Ckpk—-l(x)]-
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Now, p.(x) is a polynomial of precise degree k. In the preceding identity, the
coeflicients of all p,(x) are independent of x, so we can equate the coefficients of
pi(x) on both sides of the identity to obtain

qn+1—k(y) = ann—-k(y) - Enqnvl—k(y)
1
+A [ n+ n— + n— ]
A 1q 1 () — Aq k(y) Akﬂq k-1(y)

This identity remains valid for k = 0 if we interpret 1/A_, =0.
Collecting terms, we then obtain

(1= Jaun 0= [ D= A2 g s+ [ A2 B g a0,

k=0,1,---,n, 1/A_=0.

Setting k = n in (2.5) then yields the necessary condition

(2.5)

(1- Af:jl)ql(y)=(0n—3")qo,

whence

(2.6) D, =Bn+(1— AA" )ql(y), n

n—1

v
e

Thus D, is at most linear in y.
Next, take k =0 in (2.5) to obtain

a0 =| D=2 a0~ [~ A5 a0

Comparing the latter with (2.2), we obtain

C
2.7 [D A—~,. ,.],, —[E —A—— ,.] -1(y).
(2.7) A, %Y Bn|4-(y) A Yo [Gn-1(y)
Now, D, is at most linear in y, and hence E, is at most quadratic in y. Since
q.(y) and g.-,(y) have no zeros in common (a well-known consequence of the
recurrence relation), it follows that, at least for n =3, the coefficients of g, (y) and

Gn-1(y) in (2.7) must both vanish identically. That is, at least for n =3, we must
have

(2.8) D,=a,y+B.+ An&a
Ao
C
2.9 E — 4+
(2.9) =A, VR
Comparison of (2.8) with (2.6) then yields (for n = 3):
A a
2.10 1-——"==
( ) Ao ao,
B. B, B. Bo
. (B By (B B),,
( 11) An AO Ay Qo «
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Returning to (2.7), we note it reduces to an identity for n =0 if (2.6) is
invoked. For n =1, (2.7) requires

(2.12) E,=[D,—a,y—B1—A,Bo/Aolq:(y)+ Ci + 4,
while for n =2, it requires

(2.13) D, =kq:(y)+asy + B2+ AsBo/ Ao,
(2.14) E>=kq,)(y)+v.+A,Ci/ A,

with k=1—-A,/A;—a,/ .

If we compare (2.13) with (2.6), we then find that (2.11) must hold for
n = 2. Further, it is clear that if (2.10) is satisfied for n =1 and 2, then D, and E,
reduce to (2.8) and (2.9), while E, is at most linear in y. But if E, is at most linear,
(2.7) would then require D;—A;Bo/Ao—a,y—B:=0 and E,= C;+ ;. Then
reference to (2.6) would show that (2.11) is valid for n = 1 also.

Thus our next task is to show that (2.10) is satisfied for n =1, 2. Then
(2.8)-(2.11) are satisfied for n =1 and, in particular, E, is independent of y for
n=1.

3. Independence of E, from y; a characterization of Meixner’s class. Since
we do know E, is independent of y for n =3, we can equate coefficients of y"*'™*
in (2.5). This yields

A, a,

3.1 1- = 2 0=k=n, n=3.
( ) Ao Qney "

Taking k =n—1 and k =n in (3.1), we eliminate «, and get
(3.2) (o= a1)pn — QoPn-1+ @1Pn-—2=0, n=3,

where p, = A"

In this difference equation, a, # a;, since otherwise A, = A, and (3.1) would

require «, = (0. Thus, taking a, # a,, we obtain the solution,
1 A] _’Az 1 _q"‘l

. , =—+
(3 3) P A, AA, l_q

v

s n

where

aq

q= #1.

Qo — Q)

The case q=1(ao=2a;) corresponds to repeated roots of the characteristic
equation and can be treated as the limiting case g - 1 (or, equivalently, a; > ao/2).
Thus we have
A1A2(1 -q )
Ai—qA;— (A~ Az)qnml’

Next, use (2.10) to eliminate «, from (3.1). This gives, for n=3,0=m=n,

_ (1 - An/An—l
o T = A Armr)’

(3.4) A, =

n=1.
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Using (3.4), we then find

aol1—q)q™
(3.5) Ay =°1_T,

On the other hand, if we use (2.10) and (3.4) to determine a, for n=3 and
then compare the result with (3.5), we find that consistency requires A,(1—q?)
= A,(1—¢?). But this means (2.10) is valid for n = 2.

Finally take n=3 and k=1, 2 in (3.1), and eliminate A,. This leads to
Ao(l1—q)=A,(1—¢g?%), and this means (2.10) holds for n = 1. We can then also
rewrite (3.4) as

v

m=0.

Ao(1 _CI)

1__qn+1 >

(3.6) A, =

v

n=0.

Now that we have shown that E,, is independent of y, we can characterize the
orthogonal polynomials of Meixner’s class as those corresponding to g = 1. Note
that g = 1 is equivalent to @, = (@,As")A..

THEOREM. If {p,(x)}, {q.(x)} and {Q.(x, y)} are all OPS in x related by (2.3),
and if a, = cA,, n =0, in (2.1) and (2.2), then all three OPS belong to the Meixner
class.

Proof. Introduce the formal generating functions

Flx;w)=Yp.(x)w",  G(y; w)=Y q.(y)w",
H(x, y; w)=Y Qu(x, y)w",
so that
H(x, y; w)=F(x; w)G(y; w).

If a,=cA,, the recurrence formula (2.4) together with (2.8) shows that
Q.(x, y) is a polynomial in x +cy. We can assume without loss of generality that
¢ = 1. Thus we can write (with a slight abuse of notation):

H(x+y;w)=F(x; w)G(y; w)=F(y; w)G(x; w).

It follows that F(0; w) # 0, and that
H(x; w)=G(0; w)F(x; w),  G(y; w)=G(0; w)F(y; w)/F(0; w).
That is,
F(0; w)F(x +y; w)=F(x; w)F(y; w).

Expanding both sides as formal power series in x, y, we compare the coefficients
and conclude that F(x; w) is of the form

F(x; w)=A(w) exp {xB(w)}

(which is essentially Cauchy’s theorem). Since p,(x) is a polynomial of degree n,
the conditions A (0) # 0, B(0) =0, B'(0) # 0 are automatically satisfied. Thus Fisa
Meixner-type generating function, and {p.(x)}, {g.(x)}, {Q.(x, y)} all belong to the
Meixner class of OPS.
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4. Explicit determination of recurrence formulas. We turn next to the
determination of the polynomials in the general case, q # 1(a # 2a;). As we have
noted previously, we must have a, # a;.

Since E, is now known to be independent of y for all n, we can compare (2.5)
with (2.2) and conclude (with the aid of (2.8), (2.9) and (2.10) that

Bn Bn—k) <Bk Bo)
1 (___ —(Be_Bo),
(4 ) a, Oy * A Ao A
Yn Ynk - Ck+1__g_1_)
(42) (a,, a,._k)a" <Ak+1 A] A".
Using (3.5) and (3.6), we then obtain from (4.1)
B, 1 [5~ Bo_(g_x__PQ) ]
(4.3) A, 1-qla, Ta, 4, a1/
(4.4) Bi__4q_ '&_&_(_B_I_Ee)q—n].
o, q—l-a1 qa a; Qo
Similarly, (4.2) leads to
C" —_ 1 ”_C_z_ Cl_(g_g) n—l] o qn
@3 LA TAd-gla a4 e A,
Y @ [v m (72 71) 1_"] n
4.6 = —_—— | 1- .
(4.6) s aol—qrle’ qan \a» a)? (1=47)
Introduce the monic polynomials
(47) ﬁn(x) =(140141 t An—l)—lpn(x) :[A()(l _q)]_”[q]npn(x)7
(4.8) Gu(y) = (@oas * * * @ 1)7'qu(y) = [ao(1 = )T "[q1eg """ ""qu(y),

where [alo=1, [al.=(1—-a)(1—-aq)---(1—-aq"™"), n>0.
With the use of (4.3)—(4.6), the recurrence formulas (2.1) and (2.2) can now
be written

(4.9 Pasi(x) =[x +f—aq"1p.(x) = (g —bq" )1 —=q")pu1(x),
(4.10) Gur(y) =[y +h—cq "1Gu(y) = (k —dq" ") (1= q7")Ga-1(y),
where
__1 (Bi_Bo __1 (B 4By
““1—q<A, AO)’ f_l—q<A1 AO)’
@1 1 G C 1 G, 4C
- 1 (L2 -t (L2 94
b—AO(l——q)2<A2 A,)’ & Ao(l—q)2<A2 A,)’
__4 (Bi_Bo __4 (Bi_Bo
¢ 1((11 a0>’ h—l——q<a1 qa0>’

(4.12)

=
_ q’ Y2 Y _q Y2 N

d=——7——\—"""), k=—7—5|"""-)
all1—q9)\a, a; al(1—q)"\a, qa,
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These coeflicients are related by the additional necessary conditions
B Bo) <B1 Bo) ('Yz 'Yl) <C2 Cl)
— =)o ={———7)A ———la,=\———)A,,
(a1 Q. o Al Ao v a A @2 A2 A1 2
which are equivalent to
(4.13) aoc = — Aoa, aid = Alb.

Note that (4.9)—(4.13) show that §,(x) can be obtained formally from p,(x) by
replacing q by q7" and A,, B, C..1 by a,, B, i1 respectively (i =0, 1).
Next, introduce the monic polynomials

(4.14) R.(x)=(A0Ay, -+, Aut) ' Qulx, y),

(4.15) Sa(y) = (a0  * * @ast) ' Qulx, y).

Use (4.3)—(4.6) together with (2.8) and (2.9) to obtain

(4.16)  R.u(x)=(x+F-Aq")R.(x)—(G—Bq"")(1—q")R,-i(x),
(4.17) Sa(y)=(y+H—=Cq™")S.(y)—(K—Dq" ™)1 —q ") Su-(y),

where

Qo Bl Bo ] 1 (Bl Bo)
A=—[ ———(1- , F=——|—— ,
A -l ay 17DY 1-q\a, 4,
_ aog <72 yl) 1 <C2 cl)
B=—r—(g—), G=—(22-42),
A1—-g\9a, A—qr\4a, a,
Aoq [Bl B, 4 ] q <Bl BO>
C=—t" 2L 20 (1gx|, H=—L(2-£2)
al(q—1)LlgA, A, (1=¢7) q—1\a; qao
D=__AL< G _Q) qu_2<zz_11_)
a(2)(1_CI)2 qu A, ’ 010(1“‘(1)2 a qoa, ’

The latter can be simplified to

— _&o -
A - AO()’"'h), F f’

(4.18)
B= (ﬂ)zk G=
AO t g’
C= —-%(x+f), H=h,
0
(4.19)
D= (%;’) & K=k,

Thus we see that {Q,(x, y)} is, in general, an OPS in y as well as in x. As
before, we observe that {S,(y)} can be obtained from {R,(x)} by interchanging x
and y and making the same replacements that turn {p,(x)} into {g.(x)}. Note
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further the interesting, and perhaps surprising, fact that Q,(x, y) is independent of

a, b, c and d.

5. Sufficiency; generating functions. It still remains to verify that these
polynomials do indeed satisfy the convolution property (2.3). This will now be
accomplished by means of generating functions.

We first simplify things a bit by taking (without loss of generality):

A0=—ao=(1—q)“l, f=h=0.
Referring to (4.7), we put

00 R t" _ (e o) "
(5.1 O(x;t)= Eﬂ p,,(x)[q]n = EO pa(x)t".

From the recurrence formula (4.7), we find that

D(x; 1) —D(x; qt) = txD(x; 1) — atD(x; qt) — *[gP(x; 1) — bP(x; qt)],
(5.2)

1—at+bt’
O(x; 1) —m@(x, qt).
We set
1—at+bt>=(1—at)(1-pBt),
(5.3)

1—xt+gt*>=(1—yt)(1-6t),

with the convention that if b=0 or g =0, we take 8 =0 or § =0, respectively.
Then for |q| <1, we have

= (1-atq")(1-Btq")

P 0= 11 s’
(5.4)
. elyt) e(dr)
0= ) eBry
where
e(w)= nf:[() (I-wq™)'= nlojo [;v]"n.
Next, referring to (4.8), we set
53) V0= (D000 E aao)r

Now, V¥ can be regarded as being obtained from (5.1) by replacing q by g, A: by

a;, etc. Under this replacement, a, b and g are replaced by c, d and k. Further,

according to (4.13), ¢ = a, d = b. From (5.2) we thus obtain that
_1—aqt+bq’t

Y(y; qt) —TW‘I’(Y; 1),
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whence, for |q|<1,

56 . ¢laqt) e(Bqt)

( ) q’(Y’ t) 6(’y’qt) e(slqt)’
where

(5.7) 1—yt+kt?=(1-vy't)(1-8"t)

and 8'=0in case k =0.
We then have

e(yt) e(8t)
e(y't)e(8't)

But if we compare (4.16) with (4.9), it becomes clear that the generating function
for {R,.(x)/[q].} must be

O(x; )W(y; 97 '1) =

_e(y*1) e(8*)

MO e ey

where
1-At+ B’ =(1—a*t)(1—B*1),
1—-xt+Gt=(1—-v*)(1—-86%1).

But according to (4.18), A=y, B=k, G =g, and hence, referring to (5.3) and
(5.7), we see that a* =1/, B*=8', y* =1y, §*=4. That is,

W(x; )=®(x; )¥(y; q't),
which shows that (2.3) is satisfied.

Summarizing to this point, we see that if {p,(x)}, {g.(y)} and {Q.(x, y)} are all
OPS related by the convolution property (2.3), then either all three belong to the
Meixner class (and Q, is a polynomial in x+y) or they are essentially the
polynomials satisfying, respectively, (4.9), (4.10) (related by (4.13)) and (4.14),

(4.15). In the former case, the convolution formula will be essentially one of the
five given in § 1.

6. Explicit formulas; special cases. A further study of the polynomials in §§ 4
and 5 will now be made. To fix the notation, we shall standardize our polynomials
by taking

Pa(x)=P.(x)=P.(x; q; a, b, g)
as the polynomials satisfying
(6.1) Poi(x) = (x —aq")P.(x)— (g —bq" ")(1—q")P._s(x),

where P_(x) =0, Py(x) =1, and q, a, b, g are parameters withq # 1, g—bq" ™" #0,
n = 1. With this notation, the remaining polynomials are

G.(y)=Pu(y;q7"; a, b, k),
(6.2) R.(x)=P.(x;q;y,k, g),
S.(y)=P.(y;q7"; x, g k).
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The convolution property reads
(6.3) Pu(x;q;y,k,g)=Y [:](—1)"q*"‘“’/2Pn_k(x;q;a, b,q)P(y;q"; a, b, k),
k=0

where

[n] __ [ql.
k1 [qllqlu-
We next note the identities (see [2, (1.4), (1.5)]):
e(yt) e(8t) =) H.(8/v)(v1)"/[q]n
[e(at) e(BO]" =2 (= 1)"q" """ G.(B/a)(at)"/[q].,

where

H,.(x)=1+x)H,(x)—x(1-q")H,-(x),
Guii(x)=(1+x)G,(x)—x(1—-q ") Ga-i(x).
Let

h.(x)=vy"H,(8/7), 8 =(¥)"G.(8'/¥"),
so that (cf. (5.3))
(6.4) Roir(x) = xh, (x) — g(1—q" ) ho-i(x),
g1 =0a8 —b(1—q ") g1

We see that h,(x) is a polynomial (in fact orthogonal polynomial) of degree n. The
generating function (5.4) now produces the “explicit” formula

6.5) Pcigia b= 3 |- 0q e g, )
k=0

With the use of other known series expansions for different rational combina-
tions of e(w), the generating function can be expanded in a variety of ways. For
example, use of formula (1.12) of [2], namely,

e(w) o< w"
e(aw) Eo[a]"[q]n’
yields
(6.6) P asab 9= 3 [ |vLalvhem 160k

Turning next to orthogonality questions, we first observe that we shall have
orthogonality with respect to a real distribution on the real line in the following
cases (only):
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All parameters are real, and
0 lal<1,  g>b=z0,
(i) 0<g<1, g=0>b,

(i) —1<¢g<0, g>bq>0,

(iv) g>1, b>g, b=0.

Referring to (6.1), we write ¢, = aq" ™", Avi =(g—bq" (1 —q"). If |q| <1,
then ¢, > 0 and A, » g > 0. According to a theorem of Blumenthal [3], the zeros of
the P,(x) are dense in the interval (—2«@, 2x/§). This conclusion is vacuous if
g =0, but in this case, a theorem of Krein [1, p.231] says the corresponding
distribution function has a bounded, denumerable spectrum whose only limit
point is 0.

When g > 1, we have A, - o0, so the interval of orthogonality is unbounded. If
a #0, a>0, say, then it can be shown (see [4]) that (i) if 4b < a®, then the set S of
limit points of the zeros is a denumerable set bounded below by min (a, ag/b) and
having no finite limit point, (i) if 4b = a®, the zeros are dense in (o, ©) where
o =min (a, ag/b), (iii) if 4b>a®, the true interval of orthogonality is (— 00, 00).

If g>1 and a=0, we have the symmetric case. By considering
{P,.(x'"*; q, 0, b, g)}, it can then be shown that S is a denumerable set with no finite
limit point.

In a more explicit vein, we note that the case of g =0, ab # 0 can be identified
with known OPS. We have

P.(x;q;1+a,a,0)= UP(x),
P.(x;q7';1+a,a,0)= V(x),

where {U{”(x)} and { V{”(x)} are orthogonal with respect to discrete distributions
explicitly found by Al-Salam and Carlitz [2]. (The general case, g =0, can be
transformed to the above by a linear change of the variable x.)

Finally, for the special case a =b =0, g>0, |q|<1 we have a new class of
orthogonal polynomials for which a weight function will now be obtained.

7. Explicit orthogonality relation for a =b =0. The case a =b =0 corre-
sponds to the recurrence formula (6.4):

P.(x;q;0,0, g)= h.(x).

Let

(7.1) hi(x) =g "?h.(2g8""x),

and let x = cos 6, 0= 6 = 7. Referring to (5.3), we then observe that we have
vy=g""e", 5=17, a=8=0.

Thus (6.6) yields

mw=g 5 | Flry= 5 |

i(n—2k)6
]e ’

(7.2)

n

hEx) =3 [Z] Tooai(x),

k=0
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where T,.(x)=cos m6 is the Chebyshev polynomial, and we write T_,(x)
=T,(x).
We shall now find a weight function w(x)= 0 such that

(7.3) I = J h¥(x)w(x)dx=0 for n>0.
1

Since {h¥(x)} is known to be an OPS, (7.3) will be sufficient to prove hx(x) is
orthogonal to h}(x), m # n, with respect to w(x) for all m, n. (This is a conse-
quence of the recurrence formula; see, e.g., [5].)

First, let
(7.4) o(x)= Y ATe(x),
where
A= (=1)qe s, v=0,+1, %2,
Then, putting
(7.5) w(x)=(1-x*"%p(x),

we use the well-known orthogonality properties of {T,.(x)} to obtain

2 2m
IZm [ m:l/\()ﬂ"‘l' Z [Zm:l(Am—k +Ak—m)z: T Z [Zm]Am—k’
k=0 k 2 k=0 k
k#m

where we have used the fact that
n n
= O=k=n.
[k] [n - k] ’ k=n

=(— 1)m @m+1)?/8 | (= 1)k k(k— l)/2q—mk

Now

so that
2m
o= (=170 [ 2] - 1ypgriogmy
k=0
In view of Gauss’ identity,
> [Z]q"”‘ DUk =1+ u)(1+uq) - - (1+ug™™),
k=0

we see that I,,, =0 for m > 0.
Noting that ¢(x)(1—x%)""? is an even function, we conclude that I,,.., =0
also. From the recurrence formula, we then obtain

J 1 x"ha(x)w(x) dx =2""[ql.Aom,

1
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whence we conclude the orthogonality relations,

1
(7.6) J h(x)hX(x)w(x) dx = 7G""*[q].8mn.
-1

There remains only the task of proving the positivity of w(x). To this end, we
note the identity due to Jacobi [6, 17.2.2.(16)],

Y x¥zk= ﬁ {(1=x>) (A +x>"2)(1+x> 27N}

k =-—00 n=1
Taking x =q', z=—q'? €*”, we get
(s

Z (_1)qu(k+1)/2 e2k9i — ﬁ {(l_qn)(l__qn e20i)(1_qn—1 e~29i)}

k=—c0
=(1 _e—zo.‘) l-[ {(1 _qn)ll _qne29i|2}‘
n=1
Comparing the latter with (7.4) and (7.5), we conclude that

(7.7) w(x)=2q”8 n (l—q")(l_x2)1/2 1‘[ |1_qne29i|2'
n=1 n=1

Note added in proof. The special case discussed in § 7 has been studied
previously by W. A. Allaway [8]. Allaway obtained the weight function in the
form of a sine series which is equivalent to (7.5). He also obtained the correspond-
ing special cases of the recurrence relation (6.1) and the generating function (5.4)
and an explicit formula which is equivalent to a known formula for H,(x) (see
[2,(1,2)]. However, the closed form (7.7) for the weight function and the
consequent proof of the positivity of the weight function are new.
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ON BIRTH-DEATH PROCESSES WITH
RATIONAL GROWTH RATES

DANIEL P. MAKI}

Abstract. Birth-death processes can be described by systems of differential equations together
with certain probability conditions. Karlin and McGregor have shown that these systems of equations
and the probability conditions have solutions which can be expressed by an integral representation
formula which uses an associated set of orthogonal polynomials and the distribution function for these
polynomials. It is shown that certain general results from the study of orthogonal polynomials can be
used to describe this distribution function in most cases where the birth and death rates are rational
functions of the population size.

1. Introduction. Karlin and McGregor have shown ([1], [2]) that there is an
intimate relationship between birth—death processes and distribution functions
with support on a subset of the nonnegative real numbers. They have also shown
[3] that in the case where the birth and death rates are linear in the population size,
the transition probabilities for the process are determined by a distribution function
which is either the distribution function for the Meixner polynomials, the Laguerre
polynomials, or a closely related distribution function which can be obtained by a
direct computation. Thus they are able to characterize all linear birth-death
processes. In this paper we show that a similar characterization can be given
for many birth—death processes with nonlinear, in particular, rational, growth
rates.

In § 2 we review the work of Karlin and McGregor and state some preliminary
results which are needed for the study of rational processes. In § 3 we characterize
most rational processes in terms of the associated distribution function. In §4
we consider some special cases, open questions and related conjectures.

2. Preliminaries. A birth-death process (henceforth called a b—d process) is a
special type of Markov chain with states which can be identified with the non-
negative integers and transition probabilities which are subject to certain basic
infinitesimal assumptions (the transitions may occur continuously). The prob-
ability P,(t), of a transition from state i at time 0 to state j at time ¢ = 0, depends
on the time ¢ available for the transition, but it does not depend on how or when
the process arrived at state i. The basic infinitesimal assumptions about the
quantities P;(t) which characterize a b-d process are as follows:

P;_ ((At) = w,At + o(At), At -0,
) PyAt) = 1 — (N, + up)At + o(At), At - 0,
P, ((At) = MAt + o(At), At -» 0,
P(At) = o(At), |i— jl > 1, At - 0.

* Received by the editors April 26, 1974, and in revised form February 10, 1975.
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In (S) the quantities A; and y; are the birth and death rates, respectively, for
the b—d process. These rates depend on the state of the process, but they do not
depend on time ¢. These rates are all positive, except possibly for p,, which may be
zero. Thus a b—d process is determined by the sequences {A;}§ and {1,}J, and one
seeks the probability functions P,(t), fori,j = 0,1,2,---and t = 0. For a general
discussion of b—d processes and for applications of this model, see [4, Chap. 7].

In [1], Karlin and McGregor established a correspondence between solutions
of the system of differential equations which follow from (S) and the other assump-
tions of a b—d process and solutions of solvable Stieltjes moment problems.
To be specific, let 4 = (a;;) be the matrix with

a; =~ + 1), e =%, a_;= and a;=0, [i—jl>1,
and let P(t) = (P;j(t)). Then the differential equations for a b-d process are sum-
marized as follows:

L P'(t) = P(t)4,
1I. P'(t) = AP(¢),
111 P0) = I = (5;)).
In addition to satisfying I, II and III, we also ask that the matrix P(t) satisfy
the natural probability assumptions associated with a Markov chain; namely,
IV. Pt) 2 0,

V. ZPiJ(t)él, i=0,1,2---, t=0,
i=o

VI P(t + s) = P(t)P(s).
Karlin and McGregor have shown that matrices P(t) which satisfy I — VI can be
represented by an integral with respect to a special distribution function which
solves a related Stieltjes moment problem. The related moment problem is obtained
as follows.
Let {Q,(x)}& be defined by the recurrence formula

Qo(x) = l’
(T) =xQo(x) = —(ho + 10)Q0o(X) + 2,0 4(x),
—xQn(x) = /'I'nQn— l(x) - (xn + :un)Qn(x) + }\'nQn*F l(x)’ n ; 1.

Thus, since 4; > 0, i =0 and u; > 0, i > 0, it follows that the polynomial Q,(x)
has degree n, and thus these polynomials can be formally used to recursively
define a sequence of “moments”, {M,}y. The Stieltjes moment problem (S.M.P.)
which corresponds to the sequence {M,,} & (i.., the problem of finding a distribution
function ¥ such that M, = [§ x"dy(x), n=0,1,---,) is called the SM.P.
associated with the sequences {x;}¢ and {A;}3 or the S.M.P. associated with the
b—d process determined by these sequences. A discussion of moment problems in
general and the S.M.P. in particular can be found in [5].
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A summary of the fundamental results of Karlin and McGregor follows.
(See [1] for proofs and for many interesting and useful related results.)

DEFINITION. A solution ¥ of the S.M.P. associated with the sequences {u,}
and {\,} is called extremal if the Parseval equation

2
Ty

| TR ) = 3
0 n=0

[ :f(x)Q,.(X) dy (x)

is valid for each f € L,(dyr). Here {m,}§ is the sequence defined by n, = 1 and
T, = 0\'0 T )"n—l)/(lul T /ln)fOI' nzl.

THEOREM 1. The S.M.P. associated with the b—d processes determined by the
sequences {u;}g and {\;}g is solvable. If { is any solution of this S.M.P. and if the
matrix P(t) = P(t, ) is defined by

0

VIL P =m, [ e 00y, 120,
0

i,j=0,1,2,---, then P(¢t) satisfies 1, 11, II1 and IV. In order to satisfy V1, it is neces-

sary and sufficient that W be extremal.

If ug = 0O, then P(t) given by VI satisfies V whenever \ is extremal. If py > 0,
then there is at least one extremal  such that P(t) = P(t, ) satisfies V. This extremal
Y is characterized by the property that the spectrum of ¥ has no points in the interval
(— o0, &), where & = lim, , ,, &,,, and &, is the first zero of Q,.

THEOREM 2. Any matrix P(t) which satisfies I — VI can be represented in the
form V1L, where  is an extremal solution of the associated S.M.P.

THEOREM 3. In order that there be one and only one matrix P(t) with properties
I — VI, it is necessary and sufficient that

}\'nnn

In [3] the results given above are used to study and classify b—d processes
for which A, and p, are linear in n. In § 3 below we shall consider b-d processes
for which 7, and u, are rational functions of n, subject of course to the constraints
A, >0, >0,n=1,2---,h >0, uy = 0. In most such cases we shall show how
to obtain the distribution function ¥ for the representation VII and we shall
describe the spectrum of . In order to do this we will need the following results
relating the coefficients in the triple recurrence formula for a set of orthogonal
polynomials to the distribution function of the orthogonal polynomials.

THEOREM 4. (Favard [6]). Let the sequence {¢,} of polynomials be defined
by the formulas

Polx) =1, @,(x) = (x — ay),
Pn+ l(x) = (X - an)(pn(x) - bn(pn— l(x)a h ; l,

where {a,}& is a real sequence and {b,}T is a positive sequence. Then there is a

(R)
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distribution function W such that the polynomials {¢,} are orthogonal with respect
to Y. Moreover, if the polynomials {¢,} are used to define a moment sequence
{M,}&, then  is a solution of the moment problem associated with this sequence.
Thus,

+o
J‘ (pn(pmdlll=0, n:)ém, n’m=09192,"',
+o
[ oo, 012,

+ o
J x"dy (x) = M, n=0,1,2,---.

Since all sets of orthogonal polynomials obey a triple recurrence formula
such as (R), Theorem 4 establishes a correspondence between pairs of sequence
{a,}¢ and {b,} T with the b,’s positive and distribution functions on (— oo, + 00).
The correspondence is not one-to-one, as many distribution functions may
correspond to the same set of orthogonal polynomials (same pair of sequences
{a,} and {b,}). We are interested in how properties of the sequences {a,} and {b,}
are related to properties of the corresponding distribution functions . In particular
we need the following result (see [7, p. 291] for a proof and related results).

THEOREM 5. Let the sequence {,}5 of polynomials be defined by (R) and suppose
the sequences {a,}§ and {b,}T obey the conditions

(1) a,—> o0 as nh-— o

.. . 1

(i) lim sup "— |=L<-.
n— oo anan—l 4

Then the polynomials {¢,}3 are orthogonal with respect to a distribution function
W which is a step function obtained as follows.
Form the continued fraction

1] bll b2|

K = e Tk —a,
x —a, Ix—a, Ix—a,

This continued fraction converges completely to a meromorphic function which has

the representation K(x) = ) 2 | A;/(x — o), where o,y > o, i = 1,2, -+, 0, > 00
asi— 0,A;,>0,i=1,2,---,and Z;“;l A, = 1. Then y is the distribution function
which is constant on each interval (— o0, ay), (oty, o), -+ - , (%, %4 1), -+ -, and which

has jump A; at o;, i = 1,2, ---. Moreover a; is the limit of the i-th zero of ¢,, as
n — oo, and Y is an extremal solution of the associated moment problem.

Remark. The last sentence of Theorem 5 is not explicitly stated in [7], however
an examination of the proof of the result given in [7] shows that this fact has also
been established.

We also need the following result about orthogonal polynomials (see [8,
pp- 438-440)).



BIRTH-DEATH PROCESSES 33

THEOREM 6. Let the real sequences {a,}g and {b,}7 of (R) satisfy the conditions
1) a,—> o #00 as n— w,
(i1) b,>0, n=12,---, b,»0 as n— oo.

Then the continued fraction

1 b b
K(x)=r I_l 1 |_, 2|
x—ay x—a, x—a,
is meromorphic in the complex plane with the point a deleted and has the representa-
tion
A, N XA
X —o

K(x) =

9
i=1 X — &

where o; > o as i — oo, each A; is nonnegative, and ZSO A; converges. Moreover
the polynomials {¢,}§ are orthogonal with respect to a unique distribution function
¥ which is a step function with jumps of size A; at o;,i = 1,2, ---, and a jump size
A, at a.

Remark. Theorem 6 is a special case of a similar result which holds when the
sequence {a,} is bounded and the derived set of {a,} contains a finite number of
points. The assumption b, — 0 is retained. See [8, p. 450].

3. Distribution functions for b-d processes with rational growth rates. In
recurrence formula (R) the polynomials {¢,} are monic (the leading coefficient
is one) while in formula (T) the polynomials {Q,} are not monic. Thus in order to
use Theorems 5 and 6 to study b-d processes, we must first normalize the poly-
nomials {Q,} to be monic. The formula for this normalization is quite simple and
it is given by the following lemma.

LEMMA 1. Let the polynomial set {Q,} be given by (T). Then there is a nonzero
sequence {k,} such that the polynomials ¢, = k,Q, satisfy formula (R), where the
sequences {A,}&, {i,}& and {a,}g, {b,} ¥ are related by

a, =\, + f,, n=0,1,2,.---,
b, =N,_ 15 n=1,2,---.
Proof. The proof follows directly by taking k, = 1, k; = —A, and
k, =(=1)"Ay - - Ay .

We now consider b—d processes with rational rates of growth. We adopt the
convention that A ,(x), B,(x), C,(x) and D(x) are polynomials of degree p, g, 1, s,
respectively. We also assume that these polynomials are such that A4,(x)/B,(x)
and C,(x)/D(x) are positive for x = 1,2,3,---, 4,(0)/B,0) > 0, and C,(0)/D(0)
= 0. Finally, we let a, b, ¢, d be the coefficient of the highest order term in 4,
B,, C, and D, respectively. In this setting we have the following results.

THEOREM 7. Let A ,(x), B,(x), C(x) and D(x) be as described above and consider
the b-d process with A, = A, (n)/Bn) and p, = C(n)/Dyn), n=0,1,2,---. If
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p=<qand r<sand p+r <gq+s, then the SSM.P. associated with this b—d
process has a unique solution s, the system1 — VI has a unique solution P(t) = P(t, ¥),
and Y is a step function obtained as in Theorem 6.

Proof. From Lemma 1, the sequences {a,} and {b,} are given by

_ Ap(n) Cr(n)
" BJn) ' Dfn)

nz0,

and

__Ln__lq).cr(n) n=>1.

b= Bm=1 D "=

Thus, since p < ¢q, r <sand p + r < g + s, we see that as n —» o0, b, - 0 and
a, — o, where « is finite. Thus, by Theorem 6, the continued fraction K(x) con-
verges and has the expansion

+ X

X — o ,~=1x—0t,~’

K(x) =

where 4, 20,i=0,1,2,---, Zl?‘;o A; converges, and o; — o as i —» co. Also the
polynomials {¢,} (and hence {Q,}) are orthogonal with respect to a unique
distribution function ¥ which is a step function with a jump of size 4; at a;,
i=1,2,---,and a jump of size 4, at a. Now, if the set {Q,} is orthogonal with
respect to a unique distribution function y, then the associated S.M.P. has a
unique solution given by ¥, and by Theorems 1 and 2, the system I-VI has a
unique solution given by P(t) = P(t,y). Q.E.D.

THEOREM 8. Let the sequences {\,}& and {u,}& of the b—d process be given by
A = A n)/B,n) and u, = C,(n)/Dn), n=0,1,2,---, where A,, B,, C, and D,
are polynomials as described above. Then in each of the following cases, the b—d
system 1 — VI has a unique solution P(t) = P(t, ), where s is given as in Theorem 5 :

1. p>gq, r=<s,

2. pP<q, r>s,

3. p>q, r>s, p—q#r-—s,

4. p>q, r>s, p—q=r—s but ad# bc.

(Recall that a, b, ¢, and d are the leading coefficients of A,, B,, C, and Dy, respectively).

Proof. Since a, = A, + p, and b, = A,_u,, the sequences {a,}y and {b,/
(a,a,_,)}7 are of order ("% + n"~*]and n? =9+ =9/[nP~4 4 ]2 respectively.
Thus in cases 1, 2 and 3 we immediately have a, » oo and b,/(a,a,-,) = 0 as
n — oo0. Hence, in these cases the hypotheses of Theorem 5 are true and the poly-
nomials {¢,} (and {Q,}) are orthogonal with respect to a distribution function y
givenasin Theorem 5. Asnoted in Theorem 5, this distribution function has support
on the interval [£, o0), where & = lim,_,  &,,, and &,,, is the first zero of Q,. Since
the polynomials {Q,} are known to be orthogonal over (0, «0) (Theorem 1), all
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zeros of these polynomials are on (0, o), and hence & = 0. Thus, since ¥ is an
extremal solution of the S.M.P., by Theorem 1, the matrix P(t) = P(t, ) satisfies
the b—d system I — VI. In order to show that this is the only solution of this system
we use Theorem 3. By the ratio test, in case 1, Z‘(’)“ n, = 00, and in case 2, Zg“
1/\,m,) = co. Thus in both these cases the solution P(t) = P(t,y) is unique.
The same result holds in case 3, where the ratio test shows thatifp — g > r — s,
then Y m, = oo, while if p — g < r — s, then ) 2 1/(A,n,) = co. Hence in case 3,
the solution is also unique.

In case 4, the situation is slightly more complicated. Clearly, a, — oo ; however
in this case we do not have b,/(a,a,_ ) — 0. Instead, since both b, and a,a,_
are of the order of n?~?**~9  the ratio b,/(a,a,_,) has the limit ((a/b)- (c/d))/
[(a/b) + (c/d)}?, where a, b, ¢ and d are the leading coefficients of 4,, B,, C, and
D, respectively. Also, since A, > 0 and u, > 0 for n > 0, we can assume without
loss of generality that a, b, ¢ and d are all positive. Therefore the inequality

@b)(c/d) 1

[(a/b) + (c/d))* 4
is true if and only if [(a/b) — (c/d)]* > 0. Equivalently, if ad # bc, then

lim b,  abcd < 1
n—w Gpd,_, [ad + bc)? 4
and hence Theorem 5 can again be used to describe a distribution function

which provides a solution P(t, ) of system I — VI. To show that this solution is
unique we note that

. T+t I Z“_ﬁ 1 Ap(n)/Bq(n) _ % _ g‘i
lim == = lim " = lim D) ~ ofd ~ b’

and similarly,

. AnTt, be
Iim ——— = —.
no@hyy My ad

Since ad # be, either ad/bc > 1 or bc/ad > 1, and thus by the ratio test, either
Y, =0 or Y l/(Amn,) = co. In either case, ) (m, + 1/(A,m,) = co, and by
Theorem 3 the solution P(t, y) is unique for system I - VI. Q.E.D.

As an immediate corollary of Theorem 7 we have the following result about
polynomial growth rates.

COROLLARY. Let A, = A,(n) and p, = C(n),n =0,1,2, --- , where A (x) and
C,(x) are polynomials of degree p and g, respectively, with leading coefficients.a and c,
respectively, and satisfying A, n) >0, C(n)>0, n=123,..., A4,0)>0,
C,0) = 0. Then,if p # rorif p=rand a # c, then the b—d system 1-V1 with birth
and death rates {\,}2 and {u,}, respectively, has a unique solution P(t, ) with y
given as in Theorem 5.

"~ Proof. This is Theorem 8 withq = s = 0and b =d = 1.
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4. Special cases, open questions and conjectures. Theorems 7 and 8 do not
include b-d processes with rational rates of growth in which either of the following
occurs (we use the notational conventions of § 3):

l. p>qr>s,p—q=r—s,and ad = bc.
2. p=gandr=s.

In case 1, a, = oo ; however, lim, ., , b,/(a,a,_,) = 1/4, and hence Theorem 5
cannot be used. In this setting, if p =r =1 and g = s = 0, then A, and pu, are
linearinn, sayA, = an + kand p, = cn + 1, and this is the situation considered in
detail by Karlin and McGregor in [3]. They have shown that, as predicted by
Theorem 8, for a # ¢, there is a unique distribution function y such that P(¢, )
solves the b-d system I- VI and ¢ has a discrete spectrum with no finite limit
points. In fact Karlin and McGregor recognized from the recurrence formula
for the polynomials {Q,}, that when a # c, these polynomials are essentially the
Meixner polynomials and thus a complete description of ¥ can be given. If a = ¢,
then Theorem 8 gives no information about ¥ ; however, Karlin and McGregor
recognized from the recurrence formula for the set {Q,} that these polynomials
are essentially the Laguerre polynomials and thus y is absolutely continuous and
dy(x) = e~ **x* for some « > 0. This linear case and general result about the
moment problem suggest the following.

CONJECTURE. If p =g + 1, r =5+ 1 and ad = bc, then there is a unique
solution to the system 1 — VI given by P(t,r), where y is absolutely continuous on
0,00). If p>q, r>s,p+r>s+q+2and ad = bc, then there are infinitely
many solutions of 1 — V1.

In case 2 above, both {A,} and {u,} (and hence {a,} and {b,}) have finite
nonzero limits. Thus neither Theorem 7 nor 8 applies. As a special case of this,
consider A4, = u, = 1/2 for all n = 0. Then b, =1/4 for n 2 1, and a, =1 for
n = 0. The recurrence formula (R) is then a translation of the formula for the
Chebyshev polynomials and hence the related distribution function is unique
and absolutely continuous on a bounded interval. This leads us to the following.

CONIECTURE. If p = q and r = s, then there is a unique solution P(t, ) for the
system 1 — V1, where \y is an absolutely continuous distribution function defined on a
bounded interval.
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ASYMPTOTICALLY VANISHING OSCILLATORY TRAJECTORIES
IN SECOND ORDER RETARDED EQUATIONS*

BHAGAT SINGH{#

Abstract. Conditions have been found on a(t), r(t) and f(t) to ensure that all oscillatory solutions
of (r(t)y'(t)) + a(t)y=(t—(t)) = f(¢) approach zero asymptotically where 0<a =1 and «a is a ratio of
odd integers.

1. Introduction. The literature is very scanty about the asymptotic nature of
the solutions of nonhomogeneous retarded equations. Usual techniques for
corresponding ordinary differential equations do not often carry over to retarded
equations. Recently Hammett [3] studied an equation of the type

(1) y' () +p()y(t) =£(1)

and showed via a theorem of Bhatia [1] that, if p(f) = k >0, and f(¢) is continuous
and integrable on some positive half-line, then all nonoscillatory solutions of (1)
approach zero asymptotically. This author and Dahiya [6] extended Hammett’s
results to equations of the type

) (r@®y'()) +a()y(t—7(1)) = f(1),

after observing an example due to Travis [7] in which Bhatia’s theorem and
consequently Hammett’s technique did not apply to (2). In fact the equation (see
Travis [7])

3) y(1) + =St

2—sinty<t_ﬂ)=0

has y =2 +sin ¢t as a nonoscillatory solution. But, by Bhatia’s theorem, all solu-
tions of the equation

sin t
2—sint

J'°° sin ¢
— =00
2—sint

Our purpose here is to find conditions on a(t), r(¢) and f(¢) to ensure that all
oscillatory solutions of (2) tend to zero asymptotically. As it stands, one of the
conditions is

“ y'(6)+

y()=0

are oscillatory since

* 1
J mdt<00,

* Received by the editors April 26, 1974, and in revised form January 8, 1975.
t Department of Mathematics, The University of Wisconsin Center, Manitowoc County, Man-
itowoc, Wisconsin 54220.
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where r(t)>0. This excludes a very important class of equations, namely,

) y' () +a(0)y(t—7(1) = f(1).

The latter part of this paper singles out a significant class of oscillatory solutions
not shared by (4) and (5).

In thoroughly searching the literature we find that very little has been said
about the asymptotic nature of oscillatory solutions of (2) and (5). The results of S.
Londen [5], T. Burton and R. Grimmer [2], R. S. Dahiya and B. Singh [6], R.
Terry [8] and other authors only seem to enhance asymptotic results about
nonoscillatory solutions of (1) and (2).

High speed mechanisms which are mathematically associated with retarded
equations, are very susceptible to oscillations caused by the delay term (see
Minorsky [4, p. 518]). Therefore, given the delay term, it is important to know
what additional controls are necessary to ensure that oscillations die out.

2. Definitions and assumptions. Throughout this paper it is assumed that R is
the real line; r(t), 7(¢), r'(t), a(t) and f(t) are continuous on R. In addition,
0=71=M, and r(t) >0 on some positive half-line [¢5, ), t5>0.

We call a function h(t) € C[t,, ] oscillatory if h(t) has arbitrarily large zeros
in [t5, 00]. Otherwise we call h(t) nonoscillatory.

The term “‘solution” below will apply only to continuously extendable
solutions of equations under consideration on some positive half-line.

3. Main results. Our first theorem gives conditions when oscillatory solutions
of (2) are bounded.

THEOREM 1. Suppose:

() [7[1/r(D] dt <o,
(i) [7]f(t)| dt <o,

(i) [*|a(®)| dt<co.

Then oscillatory solutions of (2) are bounded.

Remark 1. The condition I°°[1/ r(t)]dt<o is severe and eliminates
obvious cases of application, such as variable mass problems where r(t) is usually
bounded. This specialized case gives a set of preliminary results for unbounded
r(t), which we believe can be extended to a more practical situation where r(t) is
bounded. Section 4 presents a partial extension of a situation where r(t) is
bounded.

Proof. Let T=t; be sufficiently large that for t= T, r(t)>0. Let y(t) be an
oscillatory solution of (2). Let t,>¢,> T be two consecutive zeros of y(t) and,
without any loss of generality, suppose y(t)>0 in (¢, t,). We can also assume,
without any loss, that T is sufficiently large that

© | latwi<1,
) [Ciror<t,

(8) J: [1/r(0)] dt< -;-
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Let M, =max y(t), t€[t, t,]. Also, let tye (t,, t,) be such that
(9) M, = Y(to)-

Now M, = [ y'(t) dt, which implies that

(10) Moz "Iy dt
Also M,=—2 y'(t) dt so that

(11) Mogr ly'(0)] dt.
From (10) and (11),

(12) am,= [ Iy de

]

from which it follows that

(13) ZMéI TrOT L1y @] - |y (0 de.
Squaring (13) and applyin'g Schwarz’s inequality, we have

(14) AMZ= J *[1/r(0] dtr r(0)y'(t) - y'(6) dt.

Integrating the second integral by parts, we have from (14) that

(15) aMi= H (/e ar| - | YOOy () di],

since y(t;) = y(t,) = 0. Making use of (2) in (15), we have

-1

ani{ o] =" yoaye-aoa- [ yoro a

n n

= [ ylaly=r] de+ | yols0) de

This yields the inequality

Bl ), leolye=r@ldes ") a

since y(t) =M, for t€[t,, t,]. Let g > p be large enough consecutive zeros of y(t)
such that

(16)

p—M>T.
Suppose
(17) M, = max |y(t)|, te[T, ql.
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Now if y(t) is not bounded, then lim sup,..|y(#)]=00. Let r > q be the smallest
number such that

(18) ly(r)| =M, +1.

Let T, be the greatest zero of y(¢) less than r, and let T, be the smallest zero of y(t)
greater than r. Then

(19) q=T,<r<T,,

and T, < T, are consecutive zeros of y(t). Let M, =max|y(t)|,t€[T,, T»], and
M, = |y(tm,)|, tm, € [Ty, T>). We shall show that

M., =max [y(1)], te[T, T>].
To see this, let

L =|y(s)| =max|y(2)], te[T, T.].

By definition, M, =|y(t)|, t €[ T;, T»). In particular, r e[ T, T,], so that
M, z=|y(r)|=M,+1

>M, = t
g r[r;gfly( )|

=y, te[T, q].

Moreover, maxgr,|y(f)|=M,+1, for otherwise the definition of r would be
contradicted, since T;<r. Thus M,Zmaxrr,|y(t). But M,=|y(tm,)|, where
b, €[ Ty, T,)<[T, T>]. Thus M,=L.

In the inequality (16), we replace ¢, and t, by T, and T, respectively. We have
t—7(t)=t—M, since M= 7(t)=0. Thus, for t€[ T, T>], t — 7(t) [T, q] by virtue
of (17). Hence

(20) ly(t—7(t)| =M,

for te[T,, T,]. From (16) and (20) we obtain

4M,

. /T

M| lao) dir | irolar

Dividing (21) by M,, we have

(22) = J h la(t)] de +Ar [ Dlds Il{Z)ld{

4
Since M, >1, (6), (7) and (8) contradict (22). The proof is complete.
THEOREM 2. Suppose conditions (i)—(iii) of Theorem 1 hold. Let y(t) be an
oscillatory solution of (2). Then y(t)—>0 as t > oo.
Proof. Let T be the same as in the proof of Theorem 1. If lim,. y(¢) # 0, then

T

(23) lim inf ly(8)]=0,
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and
(24) lim sup |y(£)|>2d >0.
t->00

Owing to (5), (6) and the oscillatory nature of y(t), there exist arbitrarily large
consecutive zeros T3 and T, such that

(25) d < D =max |y(t)], te[Ts, T,], T5>T,
T, 1

26) NG
27 Jn la(lly(t—7(t)] dr<>

T, 2
and

T4 1

(28) L 0 dt<d.

We note that (27) is made possible by the boundedness of y(t) from Theorem 1
and condition (iii).
Replacing t; and t, by T; and T, respectively, and M, by D, we obtain

9) 2D = [ Mawilyu—rlart | ol a

=
mdt/r(t)  Jr,
Substituting in (29) from (26), (27) and (28), we have
4d_1 1
d=2 72
This contradiction proves the theorem.
Example 1. Consider the equation

30) (e'y'(t)) +e " "y(t—m)=—e sint+e ‘sint—3e " cost.

All the conditions of Theorem 1 are satisfied. In fact, (30) has y(f) = e *sint asa
solution that satisfies the conclusion of Theorem 2.

Remark 2. The following example shows that it may not be possible to
weaken the condition

~1
I mdt<00

if all other conditions of Theorem 1 are satisfied.
Example 2. Consider the equation

t>0.

>

_sin (log #) cos (log 1) sin (log t)
t2 4

, | N
(31) y (t)+;y(t)— e ;
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Here, all the conditions of Theorem 1 are satisfied except condition (i) on r(t).
Equation (31) has y =sin (log t) as an oscillatory solution that does not approach
zero. However, this solution is bounded. The next example shows that a solution
need not be bounded if the condition on r(t) is violated.

Example 3. Consider the equation

5 sin (log t)
4P

Except for the condition on r(t), all other conditions are satisfied. Equation (32)
has y = Vtsin (log ) as an unbounded solution.

Remark 3. The technique of the proof is applicable to a more general
equation.

THEOREM 3. Suppose conditions (ii) and (iii) of Theorem 1 hold. Let y(t) be an
oscillatory solution of

(33) (r()y' () +a(t)y*(t—7(1) = f(1),

where 0<a =1 and a is a ratio of odd integers. Then y(t)—>0 as t > 0.
Proof. We proceed as in the proof of Theorem 1. The inequality (16) becomes

Ja [1%)] dt= j,z'““)”y“‘f(f))l“ dt+j2|f(t)| dt.

Proceeding further as in the proof of Theorem 1, the inequality (21) becomes

(32) y”(t)+%y(t) = t>0.

(34)

aM,
65) @M |, lalae ]Il d.
which yields
4 (" ()] dt
(36) M [T/ r 0 de L, la(t)| dt+ M

Since @ =1, (36) gives the right contradiction, and the boundedness of y(t) is
proved.
From here on, the proof of Theorem 2 applies verbatim if we replace (27) by

T, 1
(37) || latly=roppai <5,

The proof is now complete.
The following example justifies Theorem 3.
Example 4. Consider the equation

(38)  (e'y' () +e O (y(t—m) =—e " sin® () +e ' sint—3e " cos ¢,

which has y(t)=e *sint as a solution. All the conditions of Theorem 3 are
satisfied.

4. On y"(t)+a()y“(t—7(t)) =f(2). In this section, we shall prove that as
long as the distances remain finite between consecutive zeros of an oscillatory
solution of
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(39 y'(t)+a)y(t—7(1)=f(0),
where 0<a =1 and a is a ratio of odd integers, then such a solution approaches
zero. Let y(f) be an oscillatory solution of (39). We define a set Z, by

Z, ={yo— xo|yo> xoand y, and x, are consecutive zeros of y(¢)}.

THEOREM 4. Let y(t) be an oscillatory solution of (39). Suppose conditions
(ii)—(iii) of Theorem 1 hold. Then y(t)->0 as t- 0 if the associated set Z, is
bounded.

Proof. We proceed as in Theorem 1. The inequality (16) becomes

(40) e j la(@lly(t— (@) di+ f o

Let K, = C for any K, € Z,. We now replace (6) and (7) by

* 1
<._
@ | lawi<g
and
@) [Ciror<
T c
Inequality (21) now yields
4 j ™ (@) dt
e = 1) dt+
43) ME = Ty=),, a0 M:
which gives
1 1 2
a—1 —15_+ S—.
(44) 4(M57'C) =ctasc=c

Since M,>1 and a <1, (44) gives a contradiction. The proof is now complete.
Remark 4. Returning to Example 3 and Example 4, the solutions

y =sin (log t) and y=«/—t sin (log t), respectively, are such that the distance

between their consecutive zeros tends to infinity. In fact, sin (log ¢) vanishes at

t, =exp (nw), n=0,1,2,---,
and
!'iglo [ti1—t,]=0c0.
Examples 3 and 4 justify Theorem 4 on the boundedness of the set Z,.
Example 5. Consider the equation
(45) y'(t)+e Ty(t—m)=—2e " cost—e > cos t.

All conditions of Theorem 4 are satisfied. Thus all oscillatory solutions of (45) of
which the associated sets Z, are bounded, approach zero. The solution y = e~ sin ¢
is one such solution satisfying the required conditions.
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CONTINUOUS PARAMETER DEPENDENCE
IN A CLASS OF VOLTERRA EQUATIONS*

KENNETH B. HANNSGENT

Abstract. Conditions are found under which the solution of the Volterra integral equation
x'(t)+J a(t—s, A)x(s)ds =k, x(0) = xo,
0

is continuous in A, uniformly in {0 = ¢ <0}, when a(t, A) is nonnegative, nonincreasing, and convex as a
function of ¢, for each A. The main theorem concerns the case where the kernel has a special piecewise
linear form and solutions are asymptotic (¢ - 0) to nondegenerate periodic functions. This is the case
excluded in similar earlier results of the author.

The significance of these results for certain related Volterra equations in Hilbert space is
summarized.

1. Introduction. Suppose

(H1) a(t) is nonnegative, nonincreasing and convex on (0, ), a(t)# a(),
0<a(0+)=co, and [ a(t) dt <o,

and consider the equation

t

(1.1) x'(t)+l[ a(t—s)x(s) ds =k, x(0) = x,,

0

('=d/dt), where k and x, are prescribed constants. In [1] we showed that
x(t)~>k/ jff a(t) dt (=0 if the integral is infinite) as - 00, except in the special
cases where

(H2) a(0)=a(0+)<oo and a(t) is piecewise linear with changes of slope only at
integral multiples of ¢, = 27r/x/(;(0).

If (H1) and (H2) hold, then

(1.2) xl(t)—»k/jwa(t) At (1>,
where x; = x — xo£); — k), with

(1.3) Q(t)=2y"" cos wt, Q,(t) =2(yw)™" sin wt,
(1.4) y=3—(a(®)/a0), ©=a(0).

In this paper, we permit a(t)=a(t, A) to depend on a real parameter A
e Ac R'. Then x(t)=x(t, A). It is clear from (1.2) that x,(-, A) belongs to the
Banach space BC of bounded, continuous functions on [0, c©) with supremum
norm. Our main result is the following.
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46 KENNETH B. HANNSGEN

THEOREM 1. For each A € A, suppose
(1.5) (H1) and (H2) hold for a(t) = a(t, ) and
(1.6) a(oo,A)=0.
Suppose in addition that

(1.7 AN = 1/ J a(t, A) dt is continuous on A and
[\)

(1.8) A->al(-,A)iscontinuous as a map from A to L'(0, R) foreach finite R > 0.
(1.9) Then the map A - x.(+, A) from A to BC is continuous.

The analogous result when (H2) does not hold is as follows.

THEOREM 2. For each A€ A, suppose (H1) and (1.6) hold, but not (H2).
Assume (1.7) and (1.8). Then the map A > x( -, A) from A to BC is continuous.

Theorem 2 differs from Theorem 4 of [2] only because the latter requires a’(¢)
to be continuous. The proof here is virtually the same (the necessary alteration is
indicated in [3]), so we shall prove Theorem 1 only.

We have not determined whether (1.6) is necessary in Theorems 1 and 2, or
whether it could be replaced by

(1.6a) a(o0, A) iscontinuous.

A simple modification of our proof below shows that (1.6a) is sufficient for
continuity at a point A = Ao, where a(0, A,) >0, and that (1.6a) is always sufficient
if k =0. For this reason we shall write vy, even though y =3 when (1.6) holds.
In § 2, we discuss a Volterra equation in Hilbert space, the study of which led
us to consider the parameter dependence of (1.1). We prove Theorem 1 in § 3.
The proof contains much in common with the proof of Theorem 4 of [2] and with
parts of [1]. In the remark at the end of § 3, we indicate a correction for [1].

2. Consequences for equations in Hilbert space. Consider the equation
x(t)+ J L(t—s)x(s) ds = tq+§,
0

where & and m are prescribed elements of a Hilbert space 3, and L is a densely
defined self-adjoint operator on ¥ with spectral decomposition

o= [ ([ atnr ] am

and the spectral family {E,} corresponds to a fixed self-adjoint operator L, with
spectrum A.

Assume (H1), (1.8), and (1.6) (A € A), and let A* and A, denote respectively
the subsets of A where (H2) does and does not hold.
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We write x = xou + kw, where u(t)[w(t)] is the solution of (1.1), with x,=1,
k =0[x,=0, k =1]. We showed in [3] that x(t) has the representation

o

x(0= | [u(t2) dE, £+ w(t \) dE, m]
provided a(t, A) satisfies a certain growth condition in A and

2.1 lu(t, A)|+|w(t, A)| =B <00, 0=t<00, AeA.

If, moreover, the conclusions of Theorems 1 and 2 above hold on A =A* and
A = A, respectively, we have (see note following the proof of Lemma 3.3 below)

(2.2) Ix() = ()]l >0, 1>,

where
Q)= I [Q.(t, A) dE, £+ Qu(t, A) dE, m]+L7'(c0) 7.

We gave sufficient conditions for (2.1) in [3]. Professor Robert E. L. Turner has
pointed out to the author that the conclusions of Theorems 1 and 2 are not
necessary for these Hilbert space results. In light of the boundedness theorems of
[3], one may simply apply Lebesgue’s dominated convergence theorem to

J [u(t, A)—Qi(, \)]dE, E+[w(t, A)—Q,(, A) = A(L)] dE, m

(Q;(t, \)=0if A € Ao) to obtain the following general result.

THEOREM 3. Suppose a(t) = a(t, A) satisfies (H1) for A € A. Assume (1.8), and
suppose there are positive numbers T and M such that j': a(t,A) dt=M(A € A). Then
with L(t) and €(t) as above, the function x(t) given by our representation formula
satisfies (2.2).

The case of (2.2) where A=A, is essentially the result of [2]; our present
results deal with a limiting case. To illustrate (2.2) with nonempty A*, we let

min 1)

with 8, >0, Y,_, 8, =47, Y, , k&, =c0. Then b(t) satisfies (H1) and (H2) with
to=1, and [; b(1) dt = 0. Set

b(1) = kf &(1 -

a(t, \) = Ab(/A1).
The hypotheses of Theorem 1 hold with a = a,, A=[1, ).
As a first example, let %, = L*(0, ), L, f(y)=f"(y), with boundary condi-
tions f(0) = f(ar) = 0. Then with a = a,, and (for simplicity) £ =0, we get
2 ©
Q) =Q'(1) =3 Y (sin ny)n, sin 2@rnt/27n,
n=1

where the 7, are the Fourier sine coefficients of v.
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For an example with continuous spectrum, take 9, = L*(1,0), L,f(y)
= yf(y). With a = a,, we get (2.2), with @ = Q? and

Q2(t) =2 cos 2V y)&(y) +sin Qatdy)n(y)/37y.

If a, were modified slightly so that the special condition (H2) held on a proper
subset A* of A(A* necessarily closed, by [3, Lemma 2.1]), the sum in ' would
include only those n with n*e A*. ©° would be multiplied by the characteristic
function ya«(y) of A* (which would make €°(t) zero as an element of L*(1, 0) if
A* were discrete).

Further discussion, examples, and references to related work on problems in
Hilbert space will be found in [2] and [3].

3. Proof of Theorem 1. The parameter dependence of a,y,w,t, and others
will often be suppressed in formulas below.

Fix A € A, and set u; = u—Q,, w, = w—,. In all statements below, € A is
understood. By superposition, it is enough to show that u,(t, w)— u(t, A) and
wi(t, )= wi(t, A) (> A) uniformly in {0 = ¢ <oo}.

We recall from [ 1] that when (H1) and (H2) hold, a(t, ) may be expressed

B min {1, kto(l‘«»)

(3.1) attw)= ¥ aulw) (1 i

where a.(n)Z0 and a(0, ) =Y., a(u)<oo.
We begin with the representation

w(p)—¢ o
+J ] Re {e™U,(ir, w)} dr,

w(p)+E
(valid for ¢t>0) which we developed in [1, p. 549]. Here U,(s) is the Laplace
transform of u,(¢), which one computes as

1 _ 2s
s+a(s) y(s®+w?)

(3.2)  mult, ) =lim..o [ j

0

(3.3) Ui(s)=

with d(s)=[y a(t) exp (—st) dt. a(s) is analytic in {Re s >0} and continuous in
{Re s=0, s #0} and

(3.4) s+a(s)#0, Res=0, s5# tiw.

The representation (3.2) follows from the complex inversion formula for Laplace
transforms and a contour shift.

Fix 8 >0. We shall find finite numbers A, T such that (3.2) may be decom-
posed as

(3.5) mu(t, w) = gt w) +3,-, fi(t, p),
where

(3.6) lg(t, w)|= 0, T=t<o0,
whenever

weN,=N(0)={lu—A|<A, weA},
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and
(3.7) fi(t, w) = fi(t, A)(w—>A) uniformly in {0" = ¢ < o0}.
Then choose 8 <A so that
(3.8) lus(t, w)—ui(t, 1) <6, 0=t=T,

and

i Ifi(t, w)—fi(t, M) <O if [u—A|<8.

((3.8) can be ensured: the uniform continuity in w of u; and w, on compact ¢
intervals follows from (1.8), by means of a standard argument for Volterra integral
equations.) Then 3|u(t, w)—u,(t,A)|<O(0=t<00, |u—A|<8, wmeA); and
@ = ui( -, w)is continuous at w = A as asserted, since 6 is arbitrary.

It will be convenient to develop conditions on A, T, and a third positive
number 7 (all three depend on 6) as we proceed. These conditions give positive a
priori upper bounds on A, n, and a lower bound on T. These conditions could be
taken in the following logical order:

(i) (3.12), (3.14), and

(3.9) w(d)—n>0.

(i) (3.25), (3.29), and (3.39) (n € N,).

(iii) (3.13), (3.15), (3.16) (n € N,), and (3.40). v
The following two convergence principles will be used in establishing (3.7).
LemmAa 3.1. Suppose 0=a =B =00 and

(3.10) h(-,u)>h(-,A) inL(a,B)asu—>A.

Iffi(t, ) = [% h(r, X) e"™ d (or if f, is the real or imaginary part of this integral), then
(3.7) holds.

Proof. [f;(t, w) = f;(&, DI =[h(-, W)= h(-, D).

LEMMA 3.2. Let 0sa=v=B<0, h(t, u) =0, and suppose

G) [P h(r, w)> [Eh(m, A) dr (u->2).

(ii) For 0<8<B—a, h(t,w)>h(7,A)(u—>A) uniformly on {a=7=8,

|r—v|=8}.

Then (3.10) holds.

If v = @, thisis Lemma 6.1 of [ 2]. The general proof is similar (and straightfor-
ward) and we omit it.

In the next lemma we collect several facts about a and @ and their depen-
dence on pu.

LemMA 3.3. (i) a(0), t,w,y, and a, (1 =k <0) are continuous functions of u
at w = A. (ii) a(ir, w) is continuous in u at w = A, uniformly on compact subsets of
{0< r<o0}. (iii) d(it, w) = O(17") (1> 00) uniformly for u € N,.
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Proof. By (H1), (H2), and (1.8),

1

min {a(0, u)/2, 7Va(0, w)} =4a(0, w) min {1, to(n)} = j a(t, p) dt

0

»J'l a(t, A) dt(n—A).

Then fto(n) =2/ \/5(0, w) is bounded away from zero near u = A, and it follows
easily from (1.8) that for |u —A|<A,, say, we have

(3.11) a0, u)<4a(0,A).
We require
(3.12) A<A,,

so that (3.11) holds in N,. Then to(w) > to(A)/2 (e € N,). It is then clear from (1.8)
(R =15(A)/2)and (H2) that a(0, w)—> a(0, A) (u > A). Using (1.4) and (1.6), we see
that t,, ® and vy are also continuous at u = A. A simple induction argument using
(1.8) now shows that a(kty(u), )= a(kto(A), A) (w—>A, k=1,2,---), fromwhich
we easily deduce the continuity of the a.. This proves (i).

The uniform continuity of d(it, u) in u follows from (H1), (1.6), and (1.8) by
taking real and imaginary parts, since, for instance,

km/T

‘Im a(it)— J:) a(t) sin 1t dt'

<

w/T
j a(t+km/7)sin 7t dt‘

0

=ma(kw/7)/7.

For more details, see [2, Lemma 6.2]. This proves (ii).

Finally, by (H1) and (3.11), [Im d(ir, w)|=4ma(0, A)/7(u € N,), and simi-
larly for Re d (i, u). This gives (iii) and completes the proof of Lemma 3.3.

Note. R. K. Miller (private communication) has kindly pointed out that in the
proof of Lemma 2.1 of [3], the assertion that {a,(0)} is bounded is not justified by
the argument given there. In proving Lemma 3.3 above, we began by showing that
a(0, p) is bounded near w =A. If (H2) is not assumed to hold at u = A, this
estimate still shows that a(0, i) is bounded in a deleted neighborhood of uw=A;
this argument suffices to close the cited gap in [3].

By Lemma 3.3, we can choose A so that

(3.13) o(A)—n/2<o(p)<w(r)+n/2,

y(r)  t(p)  w(w)
(3.14) 9T Ty eIl weN.

Let

o

fi(t, w) = J Re {e™ U,(it, w)} dt.

w(A)+n
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After a little calculation, (3.3), Lemma 3.3 and Lebesgue’s dominated con-
vergence theorem show that

Ui(ir, w)=[2y""(w) = 1]i/ 7+ Py(7, p),
where (3.10) holds with @ = w(A)+n, B =00, h = P,. Since

o

—J Re{e™i/1} dﬂr=j x "' sin x dx

wA)+n tlw(A)+n]

isbounded on {0 =t <oo} and y(u)~> y(A)>0 (> A), we conclude, with the help
of Lemma 3.1, that (3.7) holds, j=1.
Note that by (H1),

V2|it +a(ir)| = —7—Im a(ir) + Re a(ir)

v

/2T
—T+J a(t) cos 7t dt
[

/37
§~7+~j a(t) dt.
0

Choose 79, 0 <7o=w(A), such that
/37 1 1
—To+= > :
To 2L a(t, ) dt 4L a(t,A) dt
Then by (1.8), A may be chosen so that u € N, implies
1
(3.15) lir +al(ir, u)|>J a(t,A) di/10, 0<r=1,.
0

By (3.4) and Lemma 3.3,
lir+ d(ir, w)| ! = it +a(ir, M), m>A,

uniformly on {70 = 7 = w(A) — n}. Thus in choosing A, we may ensure that there is a
constant M, <0 such that

(3.16) D7\, w)=lit+d(ir, w)| ' =M,, 0<r=wA)—n.

Now it follows easily that

w(A)—n
J |Ui(ir, w)— Ui (iT, )| dT >0,  uw-—>A
0
Then

w(A)—n
folt, p)= I Re {e™ Ui(it, w)} dr
0
satisfies (3.7).
Taking transforms in (3.1), we see that
(1)2 1 e/ 1%

A =___+_ K _Sk‘n__l .
a(S) N S2 k§1 kt()(e )
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A little calculation shows that
it+a(it)=iy(t—w) —(t—w)’i[t'+ (1 +w)/7?]

3.17)
+77iS(t—w)— C(r—w)],

where

S(O’) = Z ak(Sin kt()O'_ kt()U')/kto,
k=1

C(O') = § ay (COS kt(,O'— 1)/kt0

k=1
It is clear that

(3.18) Clo,n)=C(~0, u)=Cloc+o(un), u)=0,

(3.19) oS(o, p)=—0S(—0, n)=0.
Term-by-term differentiation and (3.11) show that

+

aS J
(3.20) Bt |+ [ )| 212000, 0,
do Jdo
when u € N,, —00< g <00,
The following property is more difficult to prove.
LEMMA 3.4. Given € >0, there exist positive numbers n(€), A(g) such that

(3.21) IS(0, )| +|C(o, ul< e

if lu—A|<A(e), lo|=n(e).
Proof. By symmetry, we need only consider o >0. Let n(o) denote the
greatest integer such that on(o)=1. Then

ﬂ(eikt(,o_ 1— iktOO') =Z I+Zz.

(3.22) C((r)+i5(0)=[:§:+ ) ]kt()

= k=n(o)+1
Then by Taylor’s formula,

" ak 2kt 1 2 "
|Z‘ , = Z Et—(ktoa') e =e toor Z kak

=1 Klp =1
(3.23) ) )
2

=e'o
t()n(O')

ton(o)
J a(t) dt.
0

(The last inequality follows from (3.1), since

ton(a) ton(9) n(o) i t. kt, n(o)
J a(t) dtéj Y ak<1—~@9—{’—°}> dt=73 ackt/2.
0 0 k=1 kt, k=1

Term-by-term estimation of the summand shows that

(3.24) Ll ¥ [Qaskt)+oal=c(1+2/t) ¥ a.

k=n(o)+1 k=n(o)+1
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Given &, choose n(¢) so that |o| < n(e) implies
to(A)n (o) o
[2e““*)(to(/\)n(0))_lj a(t, A)dt+(1+2/t(A)) ¥ ak(/\)]<s/3.

k=n(o)+1

By continuity, we can find A(¢), so that this inequality holds with A replaced
by w, £/3 replaced by £/2 and |u — A| < A(e). Our result then follows from (3.23)
and (3.24).

Using Lemma 3.4, we shall select our numbers n and A so that

(3.25) IS(o, w)| +|Clo, w)| <o,  |ol=m,
when u € N,. Then we see also that
(3.26) o7 'S(o,n)»07'S(a,A), o 'Clo, u)»>0a 'Clo,A), u—>A,

in the L'-norm on {|o| = n}. This follows from (3.11), the continuity of a,(n) and
to(n) and the dominated convergence theorem.
Using (3.17), one finds after simplifying that

Re U,(it)=—C(t— w)(1— 0)*y?*/T[P(t— )+ Qi(7)],
where

(3.27) P(o, p)=v(n)o*+y*(u)o*(n)o’[C* (o, u)+ S*(o, n)]
+2y () A (n)o’S (o, 1),

and Q,(7, w) is a certain function continuous in u at w = A, and such that

(3.28) Ou(r, w)[T—w(w)]” isuniformly bounded on{w € N,, |7 —w(A)|=n}.

Lemma 3.4 and the continuity of y and w show that we may choose 77 and A in
such a way that

(3.29) W'y (M) =P(o, w)=20"Y' (),  |o|=m,
whenever u € N,. It follows that

(3.30) Re Ui(it) = —C(t— w)(1— 0)*y*/0*P(t— w) + Q,(7),
where

(3.31) Qx:, w)»Qy(+,A) inL'(w(A)—m, w(A)+m) asu—>A.
Similarly (with the formulas slightly more complicated),

(3.32) ImU(i1)=R(t—w)+C(1—0)(1—0)y/0*P(t—0)+ Os(7),
where

(3.33) R(a)=yoS(0)[yo +S(0)/w’]/w’P(0),

and (3.31) holds with Qs in place of Q..
By Lemma 3.1, (3.7) holds for

@(A)+m

[t w)= ,( [Q.(7, ) cos 7t — Qs(T, 1) sin 7t] d.

w(y)-n
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Set
(3.34) g(t, w)=—lim,, o+ J R(t—w(u), p) sin 7t dr,
I(p, €)

where I(w, e)=I(w)N{Tr—w(w)|=e} and I(u) is the largest subinterval of
[w(A)—m, @(A)+n] which is symmetric about w(u). Then

Mew=|  —R(r—w(w),wsindr

IA)NI()

clearly satisfies (3.7). To establish (3.6), we first develop some facts concerning
R(o). By (3.18), (3.19), and (3.27),

(3.35) R(o)=—-R(-0).
Next we show that there is a number M, <0 such that
(3.36) |o’R'(0)|+|oR(0)| = M,|S(0)/o| < M,, |o|=m, meN,.
In fact, using (3.14), (3.25) and (3.29) we see that
loR (0, w)|= B[y(M)+ 0 (W)@’ V)Y’ A)|o S (0, w).

Differentiating (3.33) and using similar estimates, we arrive at (3.36).
From (3.34) and (3.35) we see that

n(p)

(3.37) g(t, u)=—2 cos [tw(u)] J' R (o, p) sin ot do,
0
where 1(u) = half the length of I(w) =7/2. The integral exists, since [sin ot| = ot
and (3.36) holds. Clearly,
(3.38) g0+,u)=0, umeN,

The argument establishing (3.6) is essentially the same as thatin [1, p. 551].
Choose p >0 so that 2M, < p/6. Using Lemma 3.4, restrict n and A so that

(3.39) IS(o, w)/o|<6/6pM,,  |a|=m,
when u € N,. Finally, choose T so large that
(3.40) 2M,/nT<6/6 and 2p/T<n.

Then for ¢t = T, integration by parts and (3.36) show that

n(w)

n(p)
J R(o, n) sin ot do
p/t

= | IR, w0l + R G/t wl+ M, |

o/t

o’ da]

=2M,[p~ +(Tm)']<6/3,

while

P/t
J R(o, w) sin ot do’ =

0

P/t
j oR(o) o 'sin ot do-l
0

P/t
= tJ 0/6p do = /6.
0
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This proves (3.6).
Referring to (3.2), (3.30), and (3.22), we see that (3.5) holds with

w(p)—e w(A)+n
~fs(t, w) = lim “ +J’ ]{hl('r, W) cos 7t + hy(7, w) sin 7t} dr,
e->0" w(A)—-mn w(p)te

hy=Cr—w)(t—0)y*/0’P(1 - w), h,=h,C(t—w)/o’y(1— ).
Setting t = to(u) =27/ w(p) in (3.2), we find that

(3.41)  multol), m) = gltolw), w)+ 3 filtolpr). )

j=1

w(p)—e w(A)+7
—lim [J +I ] hi(7, u) cos Tto(w) dr

e»o"t w(A)—n w(p)+e

| it wysinlr— ()i dr

I(A)

since the last integrand is O(1) (7> w(u)) by (3.25) and (3.29). Since h, =0 and
cos Ty =3 near 7=w(u), we conclude that hi(r, u) (and hence also h,(t, n))

belongs to L'(I(A)) as a function of 7 (i € N,). Letting t > 0" in (3.2), and using
(3.38) and (3.7) (1=j=4), we see that

| dr=2y -1+ § 07w

Then by Lemma (3.2),

(3.42) (-, p)=>h(-,A) inL'(IQA)), m=> A
Since h./h, is uniformly bounded, we also have
(3.43) ha(+, p)=>hao(-,A) inL'(I(A)), m—> A

Thus (3.7) is true for j = 5. This completes our proof that u,(7, w) > u, (¢, A)( > A)
uniformly in {0 =t <o},
Set V(s)= Wi(s)— A/s, with

1 2 _Us)

MO rae) yere) s

A Laplace transform argument, similar to the one establishing (3.2) (cf.[2, Lemma
4.4]. The fact that V(s)=0(s"") (s >0, Re s =0) is used) shows that

@) lwtem-agi=tim [ [ K jm | Re e Vi, w ar

E,P-’0+

for t >0, where

J(p)=[w)—n, o(n)—p]U[w(u)+p, @(X)+7].

Here we again fix A and 6, and choose positive A, n, and T according to
appropriate restrictions. The proof that |w,(t, w)— wi(t, A)|= 6 for w € N, and all ¢,
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will be based on the decomposition

(3.45) alwilt, W= A= G, w)+ S fi(hw), 1207,

j=6
in place of (3.5).
It is clear that

0

fo(t, )= J Re {e™V(it)} dr

w(N\)+m

satisfies (3.7), as does

At m==Aw) |

1

Re {e™/it} dr.
)

From (3.30) and (3.32), we see that

(3.46) Re{e™W,(i7)}=w Ycos t[R(T—w)+ hy(t)]—sin 7t h(7)}
+ O4(t7 79 M)?
where Lemma 3.1 shows that

ftw=| Orwdr

I(A)

satisfies (3.7).
Let

folt, )= () j [hy(7, ) cos 7t — hy(7, w) sin 7¢] d.
I(A)
By (3.42) and (3.43) and Lemma 3.1, (3.7) holds, j =9.
Asin (3.34) and (3.37), we write

o '(n) J R(1—w, ) cos 7t = G(t, w)+ fio(7, ),

)

where (3.7) holds (j = 10) and

n(p)

Gt u)=—20""(n) sin [tw(r)] j R(o, u) sin ot do.

0

Then from our analysis of g(t, w), we conclude that suitable restrictions on 7, A,
and T will ensure that

(3.47) |G(t, w)| =0, t=T, wpeN,.
Moreover,
(3.48) GO+, u)=0.
Now write
1-Ad 2
Vis)= af(s) A

s(s+d(s) s+d(s) y(s*+w?)
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and set K =w(A)—m. Using Lemma 3.3 and (3.16) as with f,, we see that

lim JK Re {e™V(it, w)} dr = fi,(t, w) + fio(t, p),

e->0"

where

(3.49) L (F w1 —Ad(iT)
fro(t) = lim J Re {e iT(iT+d(iT))}

e->0"

and (3.7) holds with j = 11. We now have the decomposition (3.45), and we need
only show that f,, satisfies (3.7).
Taking real and imaginary parts in (3.49), we obtain

T “ () cos 7t _ ¥Re Q(7) cos 7t
fu(t)= 8111(1)1 J; 71_1)2(7) dr L —_Dz('r) dr
(3.50) . .
| "B fo(r) Re Q) - Wir)—m) Im Q)] d,
0 D ('T)

with Q(7)=1-Aa(ir), ¢ =Re d, y =—Im d, and D from (3.16).

The passage to the limit € =0 in the second and third integrals in (3.50) is
justified as follows. Clearly |Q(7)|=2. Since (3.16) holds, the second integral
exists. Now |77" sin 7¢| =, while ¢(7) and 7— (1) are, respectively, the real and
imaginary parts of it + d(it), so that (|¢(7)|+ |7 —¢(7)|)/D(7) = 2. Thus the third
integral exists as well.

(3.45) and (3.50) together are essentially the same as (4.9) of [2]. The fact that
piecewise linear kernels are excluded in [2] makes no difference in the rest of our
argument, which follows that running from (6.9) to the end of § 6 in [2].

By Lemmas 3.1 and 3.3 and (3.16), the second integral in (3.50) is continuous
in w at w = A, uniformly in 0" = ¢ <00,

Because of (H1), /() =0; thus the first term on the right in (3.50) may be
written as [; 7~'D(7)y(7) cos 7t dr, and the coefficient of cos 7t in the integrand
must belong to L'(0, K). Letting t > 0" in (3.45) and using (3.48), we see that

“y(r,p)dr_ [“Re Q(r,pu)dr 4
L TD*(1, 1) h L D*(7, n) ,gsfi(0+’ 2

Thus the left-hand side is continuous in u at u = A, and Lemmas 3.2 and 3.3 and
(3.16) show that

g(r,p)  Y(r,A)
D1, u) TD*(7, )

K
(3.51) J dr-0, w—> A
0

Thus the first integral in (3.50) is continuous in w at w = A, uniformly in ¢.
Finally, we sketch the treatment of the third integral in (3.50). See [2] for
specific estimates and more details.
Writing

o(1)= [Joﬂ/ZT+ r/; ] a(t) cos ttdr= @i(1) + @(7),

L7
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we decompose the third integrand in (3.50) as
®(7, w)7" sin 7t + E(1, w) sin ¢,

where ®(1)=[¢7' (1)— A]. Using Lemma 3.3 together with (3.51) and several
estimates involving ¢, ¢, ¢., ¢, and D, we find that

K
J |E(1, w)—E(1,A)| dT >0, w> A
0

Finally, we show that ®(7) | 0(r | 0); and a direct argument, using the second
law of the mean, shows that

K
J 77'®(1, w) sin Tt dr
0

is continuous in u at w = A, uniformly in {0 <t <<oo}. This proves that f;, satisfies
(3.7) and completes the proof of Theorem 1.

Remark. The formula at the bottom of page 551 in[1]is incorrect; the second
term on the right-hand side should have expression (3.46) as the integrand in place
of w'Re{:-}. The conclusion that this term is o(1) (t—>00) then follows,
because the coefficients of the trigonometric terms are known to be in L'(w
—m, w+ 1), except that R(7—w) cos 7t must be treated as shown above in this

paper.
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NEW IDENTITIES FOR LEGENDRE ASSOCIATED FUNCTIONS
OF INTEGRAL ORDER AND DEGREE. I*

S. R. SCHACH*Y

Abstract. The identities for Legendre associated functions P}(x) of nonintegral order v, known as
Dougall’s identities, are extended to give several new identities for Legendre associated functions
P7(x) of integral order and degree. Such identities are required in the simplification and evaluation of
expansions arising from the use of Green’s functions. The uniform convergence of each new identity
is considered in detail.

1. Introduction. In the solution of the boundary value problems of mathe-
matical physics in a separable 3-dimensional coordinate system, the shape of the
boundary of the space may be such that the Green’s function of the second order
differential operator can be expanded as an infinite series of orthogonal functions.
In many coordinate systems (such as the spherical, spheroidal and some cyclidal
systems), these expansions are given in terms of Legendre associated functions of
integral order and degree.

Starting with Dougall’s identities for Legendre associated functions of non-
integral degree [1, 3.10(6)(8)(9)], new identities for infinite series of Legendre
associated functions of integral degree are derived. Uniform convergence of each
new identity is investigated in detail, so that interchange of summation and integra-
tion may be performed when required.

This paper is the first in a projected series. In the second, the results and
techniques will be generalized, and a sufficient condition found under which a
generalized orthogonal function which satisfies Dougall’s identity will also satisfy
the new identity. This theorem will be applied to the Legendre associated function,
the generalized Legendre associated function [3] and to the Jacobi function.

2. The fundamental identities. In the course of deriving our identities, we
haveto differentiate infinite series term-by-term. We start therefore with two lemmas
on uniform convergence.

LEMMA 1. For all ve R ~ I, and for all me N, the series

) SO0 = Y (= 1Plcos OPPO){ /v — m) — (v + n + 1)}

n=m

is uniformly convergent for 0 < 0 < ir, and

@) S200) = i (= 1)"pnmPr(cos OPRO) {1/(v — n) — 1/(v + n + 1)}

* Received by the editors June 27, 1974, and in revised form February 19, 1975.
+ Department of Applied Mathematics, University of Cape Town, Rondebosch, C.P., South
Africa.
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is uniformly convergent for 0 < 0 < m, where 7y, ,, is defined by
G Yam =T = m + 1)/T(n + m + 1),

and P(0) is the derivative of Pi(x) at x = 0, i.e.,

@ Pro = | frre|
Proof. We know that
© P = (< 1P PR, 1 <x <,
and
©) P0) = (m + mP7 (0)

Further, a bound on Pj(cos 0) is given by [2, p. 303].
n~"Pr(cos 0) = (3nmsin 0)™ "2 cos {(n + $)0 — n/4 + mn} + O(n~3?),
(7)
O<e<l<m—¢, n>1, n>»m,
where O(n~3/?) depends on ¢. Combining these three results we deduce
VumP(cos B)P"(0) = Csin {3(n + m)r} cos {(n + 3)0 — n/4 — smn} + O(n™?),
O<e<b<m—e¢, n>1, n>m,

for large n, where C is a constant independent of ¢, and where O(n~ ') depends on ¢.
Now define u, and v, by

) u,(0) = (—1)"sin {3(n + m)n} cos {(n + )0 — n/4 — imn},
(10) v,=1/(v—n)—1/(v+n+1).
By summing the series we can show that
! . _ cos (@) {sin (& — 1Y) — (= )M sin (x — Y + My);
ngo(—l) sin (ny + a) = I T cosy ,

and hence obtain the bound

M-1

2 u(0)

n=0

<K if0<6<in.

(1)

From definition (10), we see that
(i) v, > 0 and decreases with n for all n > |v|,
(i) v, >0 asn— 0.

Then by Dirichlet’s test, S,(6) of (1) is uniformly convergent for 0 < 6 < =
as required.
Now consider S,(0). Using (5) and (7) we derive the result

(= D" ™, mPri(cos O)PTO) {1/(v — n) — 1/(v + n + D}| = K/n® + O(n™?),
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where O(n~?) depends on ¢, but where K is a constant independent of e.

Hence by Weierstrass” M-test, S,(0) is uniformly convergent for 0 < 0 < &
as stated.

LEMMA 2. Forallve R ~ I, me N and x€(0, 1),

(11)  PY(x) = P7(0)

n

(= 1" WPr)PO) {1/(v = 1) = 1/(v + n + 1)}

s

(12) = P’V"‘(O)i (= 1" ™ mPRPRO) {1/(v — 1) = 1/(v + n + 1)},

n=m

and both series are uniformly convergent over their range of validity.
Proof. Consider Dougall’s third identity [1, 3.10(9)],

PY(cos 0)P; ™(cos &) = {sin (vr)/n} i (= 1)"Py(cos O)P, ™(cos &)
(13) n=m
A =n) = (v + n+ 1)}, —t<0+¢<m.

Substitute for P, ™(cos &) and P, ™(cos &) from (5) into (13), and differentiate
with respect to ¢ set ¢ = $m. We obtain (writing x = cos )

PP COPT0) = {sin ()} 3 (= 1y

PP {1/ —n) — /v +n+ 1)}, O<x<l.

Validity of the term-by-term differentiation of (13) follows from the uniform
convergence of (14), which was proved in Lemma 1.
Using definition (3) and results [1, 3.4(20)(22)], namely

(15) P™0) = 2"n~ "2 cos {3(v + mn}T (% + 3v + dm)/T(1 + 3v — 3m),
(16) P™0)=2""'n""2sin {3(v + myr (1 + v+ dm)/TE + $v — im),
we find

(17) VymPVOPT(0) = (—1)" sin (v)/m.

(14)

We have used Legendre’s duplication formula for gamma functions,

(18) TQz) = 2%~ 1n~ 200z + 4).

Equation (11) is now obtained by multiplying both sides of (14) by P7(0)
and using (17). Similarly, if we multiply (13) by P/"(0) and set ¢ = in, a second
application of (17) leads immediately to (12).

Uniform convergence of both (11) and (12) follows from Lemma 1, giving the
required result.

We are now in a position to derive our basic new identities, which we do in
the following theorem.
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THEOREM 3. For allm,le N, 1 = m, and for all x € (0, 1),

PIO) S (= 1™y PTOOPTO) (1L = 1) — 1/ + n + 1))
19) "=
— {1+ (=PI,
PPO) S (= 17 nPRCOPRO) (1T = m) — 140 + 1 + 1)}
0) =
_ 41 = (= ) PR).

The convergence is uniform.
Proof. Consider (11). For some [ = m, we may write it in the form

PY(x) = (= )" "PYO)y, W PT)PO) {1/(v — 1) = 1/(v + 1+ 1)}
(1) o
+ PYO) X (= 1" mPR POV — 1) = /(v + n+ 1)}

n#l

We now wish to go to the limit v — [ € N. The only piece of (21) for which this
limit is not smooth is the first term of the dexter. Using (3), (15), (16) and (18),
we can show that

lim (— 1P OYy wPPCPMO)/(v — 1)

(22) = — (= D"*™msin? {31 + m)r}PP(x)
= {1 = (=1)""}PP(x),
whence taking the limit v - [ € N of (21), we see that limit exists, and gives
l 00
P(x) = 5{1 = (=1T™MPPx) + PPO) Y (=)™
73 n=m
(— ) n#l
- PROPO) {1/ = n) = /(I + n + 1)}
Rearrangement of (23) gives (19). Proof of its uniform convergence follows
similar lines to that of Lemma 1; we can allow v of Lemma | to be an integer !
because the term n = [ has been excluded from the summation in (19).

We turn now to (12). Again separate out the term for n = [, and take the limit
v — l e N. The nonsmooth term is (using (15) and (16) as before)

lvi_l:fll P0)(— 1) ™y, o PR(x)PT(O0)/(v — 1)
(24) = (—1)*"cos? (I + mn}PM(x)
=3{l + (=)™ P(x).

Substitute this limit into the term for n = [: equation (12) then gives identity
(20) as required.
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COROLLARY 4. From (15) and (16) we deduce that
P?0) =0 unless (m + n) is even
and
P"0) = 0 unless (m + n) is odd,
whence (19) and (20) become

PRO) Y nnPRCOPTO {1/~ )~ 10+ n 4 1)

Wl
(25) = —3{1 + (=)' PP(x),
P™0) i TamPn (PO {1/(1 — n) — 1/ + n + 1)}
nel

(26)
=31l - (-D)"*"MPI(x), O0<x<l.

63

COROLLARY 5. Equations (19), (20), (25) and (26) hold for 0 < x < 1. However,
if —1<x<0,then 0 < —x < 1, and (—x) may be substituted into these four

equations. Using
27) Pr(—x) = (—1)"*"P(x), 0<x<1,

we obtain for —1 < x < 0,

PP(0) i YamPa PO {1/ — n) — 1/ + n + D}

(28) n;';l
=31 + (=" PI(x),
Pi"(0) Y. yumPRCIPRO){1/(1 = n) — 1/0 + n + 1)}
(29) n#l
= —3{1 = (=1)""}PP(),
PP©O) X (=1 "pumPr)PTO{1/0 = ) — 1/0 + n + 1)}
(30) n#l
= —H1 + (=)™} PP(x),
P"(0) i (= 1" "y nPRCOPRO) {1/ — n) — 1/ + n + 1)}
31) nel

= 41— (— 1) P,

and the convergence is uniform.

Note that the dexters of (28)-(31) are opposite in sign to those of the corre-

sponding identities for 0 < x < 1.
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3. Extension of range of validity of identities to (—1,1). Having defined
identities uniformly, convergent for 0 < |x| < 1, we now investigate whether we
can extend our results to include the points x = 0, 1.

COROLLARY 6. Equations (19), (20), (25), (26) and (28}«31) cannot be extended
to include the points x = +1 unless m = 0, in which case they reduce to

P(0) i (=D)'PO{1/( —n) — 1/ +n+ 1)} =3{1 + (=D,

0

)
w0

(=D'PO{1/ —n) = 1/ +n+ D} =3{1 - (=1},

M8

Py(0)

)
Fyll
~O

(32)

M8

P©) 5 PO){1/l—n) —1/0+n+ D} =—=3{1+(=1)},

=S
8 Il
-0

Pi0) Y PO{IM —m) = 1/ +n+ D} =3{1 = (=D}

n#l

Proof. From the behavior of Legendre associated functions near the singular
points [1, 3.9.2], we deduce for m > 0,

Pr(x)—>0 asx—1,

and our identities become trivial at x = 1, while
(= D)™y umPr(x) = P, ™(x) by (5)

— 00 asx— —1,

and we cannot extend our identities to the point x = —1if m > 0.
If m = 0, we use

Pn(1)=l’ P"(—-])z(—l)"

to obtain (32); the validity of substituting x = +1, in this case, comes from the
fact that identities (32) can be derived starting from (13) using the methods of
Theorem 3.

COROLLARY 7. The sinisters of relations (19), (25), (28) and (30) are identically
zero, if we set x = 0.

Proof. From (15) and (16), we immediately obtain the identity

(33) P0)P,"(0) = 0.

This completes the proof.

Since by Corollary 7 the point x = 0 appears to be a point of discontinuity
of our identities, at this stage we recall the following theorem from the theory of
Laplace series for Legendre associated functions, which we label as Theorem §.
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THEOREM 8. The Laplace series

2 2n+1
n=0 47[

(where cosy = cos 0, cos 0, + sin 0, sin 0, cos {¢, — ¢,}) in which f(0,, $,) has
an absolutely convergent integral (Lebesgue) over the spherical surface, will converge
at (0,,¢,) to the value f(0,,,), if (0,, ;) is a point of continuity of the function
with respect to (0, @), or to the value

01, 00) + 001,60},

if the point (8, ¢,) is such that there passes through it a line of discontinuity such
that f1(6,, ¢,) and f,(0,, ¢,) are the limits of the function at the point taken from the
two sides of the line, provided that the function Y(y), which is the mean value of the
function f(0,, ¢,), for each fixed value of  over the small circle for which y has that
value, has bounded variation in the whole interval (0, ) of y.

Proof. See, for example, [2].

We are now in a position to combine all our above results for 2 identities valid
over the entire range (—1, 1). We do this in the following two theorems.

THEOREM 9. The series

P(0) i PnmPrCOPRO) {1/ — n) = 1/ + n + 1)

n#l
is uniformly convergent on the interval (—1,1) to
{1 = (=1)""PP(x), x>0,
0, x =0,
~H{1 = (=)'*™MP(x), x<0.
Proof. Define f(6,, ¢,) by
P7(cos 0,) cos (m¢ ),
(34) fO1,¢) = 0<0,=m2, 0=¢, =2n,

0, n2<6,<n, 0= ¢, £ 2m.

[ 6. [ dousin0. 102, 0Pcos

Choose 0, = 0, the line of discontinuity of f(6,, ¢,). Theorem 8 then gives

7{0 + P7(0) cos (m¢p,)} = ;0 Vam2(20 + 1)

1
: { [ ax P’:(x)P:‘(x)}P:."(O) cos (mehy),
0
whence we obtain

P(0) = y,nPIOPFO){1/Q — ) = 1/& + 1 + D}PT(0)
(35) 5
+ 2 VamPROPFO) {1/0. — n) = 1/ + n + DIPY0).

n=m
n#l
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We have used (6) as well as [1, 3.12(1)], namely,
b
=Ny +r+ l)f dz M7 (z2)M(z)

(36) = [2(v = MMT(2M7(2) + (A + mMT ()M (2)
= (v + mMY,  (2IM7(2)];.
(M?3(z) and M’%(z) are any two solutions of Legendre’s equation.)

Taking lim,_,,.y of (35) we obtain

Pi™(0) i VnmPn(OPFO) {1/1 = n) = 1/ + n + 1)}

(37) n;l
= 3{1 = (=1)"™}P}0) (by (24)
=0 (by (15)).

Define S,,,(x) and F(x) by
Sim(x) = P™(0) Z YamPn (PR {1/(1 = n) — 1/l + n + 1)},

and
W= (=D)"™Prx), x>0,
F(x) = 0, x =0,
—Hl = (=1)!*"™Pr(x), x<O.
By Corollaries 4 and 5, §,,(x) is uniformly convergent to F(x) on (0, 1) and

(—1,0), respectively. From (37) we see that S,,(0) = F(0). Further from (15)
it is clear that

lim F(x) = lim F(x) = F(0) = 0.
x—0* x—0~

Hence S,,,(x) is uniformly convergent to F(x) on (—1, 1).
THEOREM 10. The series

PRO) 3. nPRCOPTO (10— ) = 10 4+ 0 + 1)

n=m
n#l

converges on the interval (— 1, 1) to
=31 + (=1)""Pl(x), x>0,
0, x=0,
HlL+ (-D)PR(x), x <O.
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The convergence is uniform on any interval which excludes the origin.
Proof. Define T,,(x) and G(x) by

Tin(x) = P1(0) i PamPn (PO {1/ — n) — 1/ + n + 1)}
n#l

and
—H1 + (=1)""Pl(x), x>0,
G(x) = 0, x =0,
Hl+ (=) Pr(x), x <O.
Uniform convergence of T, (x) to G(x) on (—1, 0) U (0, 1) was proved in
Corollaries 4 and 5. From Corollary 7 we see that
T,.(0) = 0 = G(0),

since each term of T,,, is zero.
However, for (I + m) even, using (15) we deduce the limits

lim G(x) = —P["(0) #£0
x—=0*

and

lim G(x) = PJ'(0) # 0

x—=0"

(for (I + m) odd both sides are identically zero).
Hence no uniform convergence is possible in any neighborhood of the origin.

4. Summary of results. We can express the results of Theorems 9 and 10 in a
compact form, if we define ¢(x) by

+1, x>0,
(38) g(x) = 0, x=0,
-1, x<0.

Then Theorems 9 and 10 become

PIO) 3 70nPRCIPFO) 1/ = n) = 1/ 4 n 4 1)}

n=m

(39) n#l
= —H1 + (= 1)*Pr(x)e(x), —1<x<I,
and
P0) S 3P PR {1/ — n) — 1/ + n + 1)}
(40) o
=H1 — (=)™ Pr(x)e(x), —1<x<l1.
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A third, related, identity is found by differentiating (40) with respect to x, giving

Pi™(0) i PamPn QPG {1/ — n) — 1/ + n + 1)}

41) n#l
=41 — (=DM PM(x)e(x), —1<x<I.

That this step is a valid one follows from the uniform convergence of (41) in
(—1,0) U (0, 1), which is proved analogously to Lemma 1 and Corollary 5. The
series vanishes at x = 0, as can be seen from Corollary 7. Setting x = —x in
(39) and (40) gives

Py(0) i (=" mPRCOPO {1/ = 1) = 1/ + n + 1]

(42) n#l
= HI + (= 1D)*Prxe(x), —1<x<l1.

PIO) Y (= )P ™, PRCIPTO) (10 = ) — 10+ n + 1)}

(43) n#l
=41 — (= 1)™Pr(x)e(x), —1<x<Il.

A similar result can be derived from (41).

In many applications we are required to evaluate ) * rather than ) .
n#l
To do this we merely reinsert the n = [ term which we have evaluated, using limits

(22) and (24). We obtain

Py(0) i PamPn PO {1/ — n) — 1/ + n + 1)}

O P — M1 — (1P, —1<x <,
PPO) Y. 30nPRIPEON10 = 1) = 10+ 1 + 1)

O P + 0+ C BT, T <x< )

and setting x = —x,
PEO) 3, (= 11" 3, PHPRON10 = 1) = 10+ n + 1)

O PR £ 4L — (B, 1 <x <L,
PPO) Y, (=115 WPEOPEON10 = 1) = 1+ n 4 D)

O o mPrRt) £ 1+ (- B, 1 <x <L,

Similar identities follow from (41).
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Uniform convergence for equations (39)—(47) is the same as that of the res-
pective parent equation from which each is derived.

5. Applications. The author has applied these identities to certain boundary
value problems of mathematical physics.

Suppose we are working in an orthogonal curvilinear system of coordinates
(u',u%,u%, in which Laplace’s equation V*J(u',u? u®) = 0 is separable [4].
The solution can be expressed in the form

'/’(ul’ u?, u’) = v 1(“1)l/’2(“2)‘p3(“3)~

If at least one of the functions (i) is a Legendre associated function Py(x,),
x, being a function of u* alone, then our identities are applicable to bodies bounded
by two surfaces, one of which is given by x, = 0, and the other is defined in-
dependently of x; .

Consider the half space z = 0. In spherical polar coordinates (where the
solution to Laplace’s equation takes the form r"Pj(cos 0) cos {m¢}), the bounding
surface z = 0 is given by x, = cos 0 = cos {3n} = 0, the other surface being the
hemisphere at infinity; the identities have been applied successfully, thereby
providing a solution which could not otherwise be obtained formally.

Another example which has been dealt with is the interior of the prolate
hemispheroid, where the solution to Laplace’s equation is given in prolate spher-
oidal coordinates (&, , ¢) in the form

i B,.PrmQn(&) cos {(m¢}, B, constant.

nm=0

Here the plane surface of the hemispheroid is given by x; = n = 0; the curved
surface is defined by & = a > 1. The explicit verification of an identity obeyed by
the Dirichlet Green’s function of the interior of the prolate hemispheroid has
been accomplished using these new identities [5].

These applications may also be regarded as alternative proofs (of special cases)
of Theorem 3.

Acknowledgment. I should like to thank Prof. G. B. Brundrit for his helpful
criticism and constant encouragement.
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NONLINEAR PERTURBATIONS OF THE ORR-SOMMERFELD
EQUATION—ASYMPTOTIC EXPANSION OF THE
LOGARITHMIC PHASE SHIFT ACROSS THE
CRITICAL LAYER*

RICHARD HABERMANTYt

Abstract. The equation governing the connection formulas across the critical layer is solved in the
case in which the viscous effects asymptotically dominate the nonlinear effects in the critical layer. The
dependence of the logarithmic phase shift across the critical layer on the amplitude of a wave
disturbance to a parallel flow is calculated to the first order that includes nonlinear effects. The
resulting asymptotic expansion of the phase shift agrees with a previous numerical calculation even
when the viscous effects are only mildly more important than the nonlinear effects.

1. Introduction. Linearized disturbances to a parallel flow &(y) satisfy the
Orr-Sommerfeld equation. For an inviscid fluid, the order of the differential
equation is reduced. For large Reynolds number (corresponding to a nearly
inviscid fluid), the resulting singular perturbation problem is more difficult than
usual, since the inviscid equation (called the Rayleigh equation) has a singular
point for neutrally stable waves at any critical point where the phase velocity of the
wave ¢ equals the mean parallel flow &(y.) = c. For an excellent account of the
solution of the Rayleigh and Orr-Sommerfeld equations the reader is referred to
Lin [11], [12]. More recently the method of matched asymptotic expansions has
been utilized to obtain equivalent results (Eagles [6] and Reid [16]). One
well-known result is that the inviscid solution, obtained by the method of
Frobenius, contains a logarithmic singularity log (y — y.) at the critical point. In
order to calculate the neutral stability curve, connection formulas relating the
solution above the critical point to the solution below must be determined. By
reintroducing the viscous terms in a small region near the critical point (called the
critical layer), Lin [11], [12] and others have shown that terms with log (y — y.)
should be analyzed as log |y — y.|+ i¢ below the critical layer, where ¢ = —. ¢ is
called the logarithmic phase shift.

Benney and Bergeron [2] and Davis [5] independently observed that the
Rayleigh equation is the result of two limiting processes not one. The Reynolds
number R is large, but the fluid dynamical equations (Navier-Stokes) are
linearized and hence the amplitude of the disturbance ¢ is small. They suggested
that the inviscid singularity could be resolved by including the nonlinear terms
near the critical point rather than including the viscous terms. One result of this
nonlinear critical layer theory was that the logarithmic phase shift vanished in
contrast to the viscous theory in which ¢ = —.

These two theories were connected by Haberman [9], who extended Benney
and Bergeron’s [2] analysis to allow for the dynamical balance in the critical layer
between both the viscous and the nonlinear terms. It was shown that the

* Received by the editors June 25, 1974, and in revised form January 14, 1975.
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parameter of importance was A, the inverse of the local vertical Reynolds number,
'ulll/z

(1.1) =W,

where « is the wave number of the neutrally stable finite amplitude wave,
u.= du/dy evaluated at y = y,, and £B is the amplitude of the stream function of
the disturbance evaluated at y = y, using the Frobenius solution valid away from
the critical layer. The logarithmic phase shift depends only on A, its functional
relationship being determined by a numerical solution of the asymptotic problem
formulated in § 2. In order for the viscous theory to be a valid approximation, the
amplitude of the perturbation cannot be too large; in particular, the condition
A > 1 must be satisfied, in which case ¢ > —m. As A -0, the theory of the
nonlinear critical layer applies and ¢ - 0. Analytic results were obtained for the
logarithmic phase shift in the case in which A is small.

In this paper, the effect of nonlinear perturbations are considered. For A
large, that is, for values of A such that the viscous critical layer theory is nearly
valid, the logarithmic phase shift across the critical layer is shown to be given by
the following asymptotic formula:

(1.2) o=-m+Z(3) T (T ron),

where I'(x) is the Gamma function. It is shown that this formula agrees with
numerically obtained values even when A is not very large. By methods described
in [9], formula (1.2) can be used to determine an analytic formula for the
amplitude dependence of the asymptotic behavior of the upper branch of the
neutral stability curve for nearly linear, long wave perturbations.

The connection formulas relating quantities above and below the critical
layer are determined by the solution of a partial differential equation with
subsidiary conditions provided by the method of matched asymptotic expansions.
In § 2 a perturbation expansion in the case of A being large is introduced to solve
this problem. The first few ordered terms are most simply represented as
quasi-Fourier integrals as derived in Appendix A. The logarithmic phase shift
across the critical layer is then determined by using formulas derived in Appendix
B for the asymptotic expansions of the necessary types of integrals.

2. Formulation and asymptotic solution for A large. The logarithmic phase
shift across the critical layer,

(2.1) 6=C,—C,

need not always equal —m. Haberman [9] showed that it is determined by solving
the following linear partial differential equation valid in the critical layer:

(2.2) YW.vy +sin xWyyy =AW yyyy,

with asymptotic conditions provided by the method of matched asymptotic
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expansions
Y? 1
(2.3a) ‘I'=—6—+ Y log|Y| cosx+0<?) as Y > +0o,
Y3
\P=?+(H~—H+)Y2+ Y log|Y|cos x+(A_—A,)Y cos x
(2.3b) +(C.—C,)Ysinx

. 1
+(B;i/2_ gi/z) COS X +(D? /2“D§1/2) sin x + O(;) as Y »—00,

Y is the stretched vertical coordinate in the critical layer based on the scaling
developed for the nonlinear critical layer theory by Benney and Bergeron [2],

sB)”2
Y.
|u

2.4) y =Y. =sgn (uQ)(

The difference between + and — expressions represent unknown jump or
connection formulas. Equations (2.2) and (2.3) are derived by considering
weakly nonlinear perturbations to the Navier-Stokes equations. The diffusive
term A'¥,yyy represents the linear viscous effect in the critical layer, where ¥ is a
higher order stream function which incorporates part of the mean flow. The terms
YV, vy and sin xWyyy are also present in the linear theory, but in that theory the
termsin x W yyy is simplified as ¥y is only due to the parallel flow contribution to
¥, i.e., ¥=Y’/6. These terms represent the interaction between the known
parallel flow and the neutrally stable periodic wave perturbation. In the nonlinear
theory, the term Wyyy arises not only from Y?/6, but also from the rest of the
terms in (2.3). It is due to the additional weak nonlinear interaction between the
linearized wave and itself, no longer ignored as in the linearized procedure. The
notation is that used by Haberman [9], to which the reader is referred for details of
this nonlinear stability theory.

For a solution to this problem, the following relationships among the jumps
were shown to exist for all A [9]:

H.—H,=(C.—C,)/(4)),
(2.5) B3 .= B3, ,=—-2(H-—H.)=—(C.—C,)/(2),
D;,kA/z - D;i/z =().

Thus the only independent jump conditions remaining unknown are A, — A_ and
C.—C_. They are functions of A and must be determined such that (2.2) is
satisfied along with matching conditions (2.3).

In this paper, solutions are sought to this problem for A large. In the viscous
critical layer theory, A -0, the viscous term AWyyyy is of the same order of
magnitude as the inertial term YW,,y. For large A this suggests the scaling

(2.6) Y=A"n,
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in which case (2.2) becomes
(2.7) NV in = Wonn = —A P sinx ¥,

Equation (2.7) expresses the fact that for large A the term representing nonlinear
wave interactions, sin x'V,,.., is small in an asymptotic sense. The thickness of this
viscous critical layer is determined by letting n = O(1) and yields the well-known
result

(2.8) y =Y. = O{(autR)™""}.

We thus will calculate the weakly nonlinear corrections to the viscous theory.
Equation (2.7) can also be derived from the Navier-Stokes equations by
directly considering the critical layer dynamics based on (2.8) with A » 1 and the
method of matched asymptotic expansions. However, the derivation is lengthy
and the result is mathematically equivalent to the viscous limit (A » 1) of (2.2) and
(2.3).
It is concluded that the expansions for large A of the jump conditions across

the critical layer are
2.9) —p=C.~Co= G AP CHAA G Cot -
' A=A = AgtA7PA AP AN A -

since these quantities are functions of A and since A ' is the small parameter of
(2.7) (furthermore the asymptotic conditions also suggest an expansion in powers
of A7*?). From the viscous theory, A - 00, it is well known that C,= 7 and A,= 0.
Expansions (2.9) are based on this fact, but in this paper these values of the leading
order jump conditions will be rederived; in particular, the nonlinear corrections to
these values are desired.

The scaling (2.6) when applied to (2.2) and (2.3) imply that ¥ has the
asymptotic expansion

3
(2.10) \If~/\%+%(/\ logA\)ncosx +A'?
'(\Ifl+/\‘2/3\I}2+A_4/3\y3+/\‘6/3\1,4+ ° ') aS/\—>00.
The asymptotic behavior as - +00 for each W, is as follows:

{nlog|n|cosx+0(1/n) as n - +00,
1 1 log |n| cos x + Cym sin x + Agn cos x + O(1/n) as n>—00,

O(1/7) as n >+,
2.11) W¥,=

Com?/4+Amcosx+Cimsinx+O(1/7) as n->—0o0,

O(1/7) as 1 > +00,
(hz=3) v, ={ .

C,on*/4+ A, mcos x+C,msin x—C, s(cos x)/2+ O(1/7)

as n-> —0.

The equations for V¥, are
(2.12a) nv,,, ¥, . =-sinx,
(2.12b) V., —V¥, =—sinxV¥,.,  (n=2).
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It is easily shown that all solutions which are periodic in x of the related
homogeneous equation,

nq’xvm - \l’nnvm =0,

are exponentially growing either as n - +00 or n » —0 (except for certain cubic
polynomial solutions in m). Therefore it follows that solutions to the
nonhomogeneous equation (if they exist) are unique. Clearly from (2.12a) and
(2.11),

W, = a,(n) cos x + B1(n) sin x.

Since the equation for ¥, is forced by —sin x¥,
term and a second harmonic,

W, = ap(n) + az(n) cos 2x + Ba(n) sin 2x,

W, will consist of only a mean

mm’

in other words, only even harmonics. By continuing this argument it is seen that ¥,
for n odd will contain only odd harmonics, while ¥, for n even will contain only
even harmonics. Consequently, without an explicit solution, it is concluded from
the asymptotic behavior of ¥, as m— oo that A, = C, =0 for n odd. Thus although
the expansion of ¥ involves powers of A "/?, the jump conditions across the critical
layer are expanded in powers of A ™/,

_'(b = C__C+: C()+/\_4/3C2+/\_8/3C4+ ety

(2.13)
A__A+=A()+/\_4/3A2+/\_8/3A4+ D

To determine the jump conditions, ¥, will be first calculated. Although
Lommel functions can be used as the representation of the solution of (2.12a),
they are not the most convenient. Instead, an integral representation of the
solution exists:

o

(2.14) V. =—Im (e""J'

0

—i 43
e Me 3 dt),

as derived in Appendix A. An integration of (2.14) yields

. © —inl_l 3
(2.15) ¥, =-Im (e"‘ J ¢ o e’ dt) +fi(x),
0 -

where f,(x) is the “constant’ of integration equal to ¥,,, at n = 0. The asymptotic
expansion for large m of this integral will be sufficient to determine A, and C, and
will verify that A, =0 and C,= 7. Appendix B developes the asymptotic expan-
sion of integrals of the kind in (2.15), which are related to Fourier type integrals.
Applying these results yields

(2.16) Y, =cos x(log || +J)—g(sgn M) sin x + f,(x) + O(%)

as m > +00, where

1 n>0,

ng’:{—l n<0
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and where

o —13/3 _ 1

J=J’ € TS = (log 3+2y)
0 t 3

(y being Euler’s constant).' In order to satisfy the asymptotic conditions given by

(2.11), both as n - +0c0 and as n - —00, it follows that

fi(x)+J cos x ——gsin x=0,

fi(x)+J cos x +gsin x = Cysin x + A, COs x.
Consequently, by eliminating f;(x), the well-known viscous critical layer results
are rederived, Cy =7 and A,=0.
The perturbation expansion (2.10) must be calculated at least through the V¥,
term in order to determine the nonlinear corrections to this essentially viscous
result. Using (2.14), the equation for ¥, becomes

1__ 2ix foo ) 5
(2.17) ‘T]‘Ifzxm—‘p2mm=lm< 2‘3 J te‘”"e"“dt).
0

An integral representation of the solution to (2.17) is obtained by again using the
results of Appendix A, namely,

® g1 2ix [ee]
(2.18) xpzwz_lf _S'_'L’L‘e-.s/zdt_lm<e J e;in,e_,a,ﬁj
0 0 (

“13/6
5 ; 1 Te dr dt) + g2,

)
where integration by parts has been used and where g, is an arbitrary constant
corresponding to the cubic polynomial in  solution. It can be verified that g, can
be determined in order to satisfy the asymptotic conditions on W¥,.

The solution of the linear partial differential equation for ¥, (following from

(2.12b)) has an integral representation obtained by again using the results of
Appendix A:

(1T 3
Vi =1Im [e“ (Z J e ™Mte " dt
+

| —
P
8

(3

t T
‘iﬂ'e—'3/3 J TeT3/6J Te—-r3/6 dT det)
0 0

8
1 () s 0 R
(219) +e"ix<ZJ e‘inTeT /3 dT[ eAZt /3 dt
+1J e—in'el’/BJ' e—2T3/3 det)
4 0 o

e3ix

24

o t T
j e“"'e-”/"j Te‘TJ/‘SI Te_’3/6d7det].
0 0 0

' Equation (2.16) can also be obtained directly from the asymptotics of integrals of Lommel
functions (see Luke [13]).
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The arbitrary constant from the quadratic mean term of V¥, is ignored since
¥, >0 as n > =+00. The third harmonic term, e**, is not necessary in order to
determine the jump relationships at the order of magnitude of interest. Integrat-
ing with respect to n introduces an arbitrary function of x, f;(x), and transforms

terms of the form
e—inw

in (2.19) into

e ™ —1

—iw

Using the asymptotic expansion developed in Appendix B (equation (B.7)) yields

i _3 3 T .3
e* (e P Te™ fyre ™ drdT
3W=Im - P
0

8i
+e™™ (sgn u j e 2T dTI S
2 0 0 t

oL J“’ e [y e dT+e ™ [l e dT dt) ]
4iJy t

dt

(2.20)

1
+f3(x) + O(—) as n - +00,

n
The terms involving sgn n again clearly indicate differences in the asymptotic
expansions as 1 - +00. Comparing this asymptotic behavior of ¥, as n—=+00
with (2.11) implies that

(2.21) A, cos x + C,sin x =Im [e"‘xj e 2T/ dTJ S—l?-tdt],
() 0

and consequently,

A,=0,

Co=-| emrar| My
@

) 0

(2.22)

Explicitly evaluating both integrals yields

1/3
(2.23) C = ——27 @) T(4/3).
Thus it is concluded that
1/3
(2.24) —-¢p=C_—-C,= w—%(%) T'(4/3)A**+ O\ *?)

and

(2.25) A —A, =00\



THE ORR-SOMMERFELD EQUATION 77

Based on numerical calculations, it has been hypothesized (Haberman [9])
that A_= A, for all A. This has not yet been proved. In this paper it has been
shown that it is O(A ™) for large A. Presumably further calculations could show
that A_— A, = O(A™") for arbitrarily large n.

Values of the logarithmic phase shift were computed based on numerical
solutions of (2.2) and (2.3) and extrapolated as a smooth curve (Haberman [8],
[9]). The calculation of the phase shift by (2.24) compares quite well with the
computer values even for A not very large as illustrated in Table 1.

TABLE 1
Logarithmic phase shift ¢
¢

A

from (2.24) computer [8]
10 -3.067 -3.07

~2.954 -2.96
2 -2.504 -2.63
1.5 -2.206 -2.45
1 -1.536 -2.12

Appendix A. An integral representation of a certain class of nonhomogene-
ous problems. Equations (2.12) have the form of the following nonhomogeneous
linear partial differential equation:

(Al) nq,xnn _q,nnnn = h(x’ 77)'

In this appendix an integral representation of the solution will be obtained which
is convenient for determining its asymptotic behavior for large n. The periodicity
requirement in x suggests Fourier series techniques in x. The boundedness as
1 - £ of the x-dependent part of ¥, suggests Fourier transform techniques in
7 for the x-dependent Fourier coefficients.

To indicate the simplicity of the solution, first assume

(A.2) h(x,n)=e“"e™™,

where t is a parameter (the Fourier transform in n variable). Thus by letting
(A.3) V., =e“"S(n; 1),

it follows that

(A.4) ianS—S,,=e ™.

Equation (A.4) must be solved for all values of . Using a linear operator notation
(A.5) L(S)=e™™,

where

2

(A.6) = fiam,
an

2
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it is seen that
(A.7) L(*S—aS.—e ™)=0.

Since there are no nontrivial bounded solutions of the homogeneous equation
L(S)=0, then S must solve the first order differential equation in ¢:

(A.8) aS,—t’S=—e "™
Consequently
613/30 t ) s 5
(A.9) S(n; t)=— J e e P dr+S(n; 0) e
(¢4 0

However, the solution corresponding to t = 0, S(n; 0), can be obtained by solving
(A.10) iomS—S,,=1.

Furthermore, the solution to this equation is directly needed in § 2. (A.10) can be
related to a nonhomogeneous Airy equation which has been frequently studied.
Solutions are called for example Lommel functions (Nayfeh [14]), related Airy
functions (Abramowitz and Stegun [1]), or Scorer’s function (Olver [15]).
Nonhomogeneous solutions can be obtained by variation of parameters (Watson
[18], Lin [11], [12], Holstein [10]), but an integral representation will be advan-
tageous. An integral representation is known for a similar equation (Nayfeh [14],
Tumarkin [17], Olver [15]) and can be applied to (A.10) yielding

1 °© - 3
(A.11) S(m; 0)=——J e e g 3lal g
|| Jo
as can be verified by substitution. Consequently, from (A.9),
e'3/3°’ h —inT  ~73/3a
e e T dr, a>0,
(A.12) S(n; 1) = !
ezJ/3a t ) s
- J' e e P dr, a<O.
a )

Formula (A.12) is used frequently in § 2. It is convenient for obtaining asymptotic
expansions as - £00. An alternate form of this result is

e 3/3a

S((sgn a)n; (sgn a)t) =|—|— J e" e el dr.
a '
In summary, (A.1) has a simple integral representation since the h(x, t) of
interest in § 2 have a Fourier series in x which can be Fourier transformed in 7.
The solution to

MW=V = 3 e[ fla e

a=—00 —

)

v, = fl e"“‘J' fla, )S(n; 1) at,

a=—00 —
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where this formula must be modified in a straightforward manner for a =0.
Asymptotic expansions for large n of these expressions are calculated by first
integrating by parts. Solving for ¥, by direct integration yields quasi-Fourier
integrals, such that the results of Appendix B are needed.

Appendix B. Asymptotic expansion of some quasi-Fourier integrals. Inte-
grals of the form

oo

B.1) 1= Rt

—int
e —

dt

appear frequently in the analysis of § 2. In this appendix, asymptotic expansions of
this type of integral will be calculated. It is assumed that (B.1) is a convergent
integral, that is, F(¢)/t is integrable for large ¢. Furthermore, although it is more
restrictive than necessary, F(t) will be assumed regular for 0=t <0 since the
functions of interest in § 2 have this property. Integrals of a slightly different kind
have been asymptotically evaluated by Benney and Saffman [3] and Benney and
Newell [4].
Before evaluating (B.1), the well-known asymptotic result for ordinary

Fourier integrals derived by repeated integration by parts is noted:

© N-1
(B.2) J e MF(t)dt=—Y i"'F”0)(=in)""+o(n™") as - £00

0 n=0
(see, for example, Erdélyi[7] or Olver [15]). Itis only assumed that F(t) is N times
continuously differentiable for 0=¢<o and F™(t)»0 as t->00 for n=0,

1,--+, N—1 and provided F"(¢) is integrable over 0 < ¢ <00.
Integrating (indefinitely) this integral with respect to n yields
® e ™1 No O FT0)
(B.3) J F(t) oy dt=—F(0)log|n|+ Y. i" n( )(—m)"' +d.
0 n=1
+o(n™") asmn->=+00,

where d. are constants of integration (possibly different constants as n - +00 and
n - —00). Thus the entire asymptotic expansion of (B.1) is determined except for
the values of the two constants d.. and d-. In fact the matching problems discussed
in § 2 depend in an important manner on the difference between d. and d_.

Unfortunately the integration by parts technique used to derive (B.2) cannot
be extended to (B.1). Instead d.. are determined in the following way. First it is
noted that

oo —inx__l o . F —F
j F(1)% dt:j -mFO-FO)
0 t o {

B.4 w B
(B.4) N J F(0) cos nt — F(t) "

dt— iF(0) j Sin !
o t

o !
The Fourier integral asymptotic formula can be directly applied to the first
integral on the right-hand side since

dr F(t)—F(O)I _F"(0)
dt" t =0 n+1 7
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It is this term which yields all the terms of (B.3) which asymptotically tend to zero
as n - +00. Thus applying the well-known integration formulas

* t—cos ¢
j cos nt—cos dt=—log n),
0 t
Tsinmt w
L 5 dt 5 sen (n),

yields

(B.5) iF(0)log|n|—id. = iF(0) log |n| —iF(O)%T sgn (n)+ rwda

d. and d_ are thus determined as

* F(0) cos t — F(t) dt

(B.6) ~id.=~iZ F(0) sgn (1) + j h

or
—i(d,—d-)=—imwF(0).

In summary, it has been shown that as n -» 00

—int _

@ 1
L F() -~ di=—iF(0) log In|+ T F(0) sgn ()

(B.7) © F(0 _
_H,J’ (0) cos t—F(t) dt+O<l>,
0 t n
where the complete asymptotic expansion (if needed), represented by the expres-
sion O(1/7), is contained in (B.3).
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THE BESSEL POLYNOMIALS AND THE STUDENT ¢ DISTRIBUTION*

MOURAD E. H. ISMAILt anp DOUGLAS H. KELKER#
Abstract. The quotient

WFol=n+1,n;—-1/24%) _ P, (V%)
VaFo(=nn+1;—;-1/24%  P,(x)

arose in connection with the problem of the infinite divisibility of the Student ¢ distribution. It is shown
that P,_,(vx)/P,(Vx)is completely monotonic in [0, o) for n =4, 5 and 6. This implies that the Student
t distribution is infinitely divisible for 9, 11 and 13 degrees of freedom. We show that certain power
sums of the zeros of the simple Bessel polynomials are zero. This is then used to show that for every
n=0,1,2,---, there exists a 6, >0 such that the inverse Laplace transform of P,._,(\/,_v)/P,,(\/,_v) is
nonnegative in [6,, 00). This supports our conjecture that P,._,(s/;)/ P, (\/;c) is completely monotonic in
(0, o) for all n, and that the Student ¢ distribution is infinitely divisible for odd degrees of freedom.

1. Introduction. Theorems related to random variables and probability
distributions are often proved by examining the Fourier transform of the distribu-
tion. The Fourier transform of the Student ¢ distribution involves the simple
Bessel polynomials. These polynomials, in Luke’s [12, p. 194] notation, are
defined by

(1.1) Q.(1,z)=z"%Fo(—n,n+1;—;-1/z), n=0,1,---
Krall and Frink [9] define them as
(1.2) yu(2) =2Fo(—n, n+1; —; —2z/2), n=0,1,---.
We shall study the polynomials

n + ' n—k
(1.3) P.(z)= 3, R 2 n=0,1,--,

o (n=k)! 24k

which are related to Q,(1, z), y.(z), and the modified Bessel function K,.q,2(z)
by

1 2
Pn(z) = Zﬂ)h.(;) = 2——"On(1a 22) = \/;;ezzn+(l/2)Kn+(l/2)(z)'

Using the above notation, the problem of showing that the Student ¢ distribution is
infinitely divisible reduces to showing that the quotient P,,-l(x/;) /P, (\/}) is com-
pletely monotonic in (0, 00); that is, its inverse Laplace transform is nonnegative
there. We conjecture that this is true for all n. Kelker [8] proved it forn =1, 2, 3.
We show that for every n=0,1,2,-- -, the abovementioned inverse Laplace
transform is nonnegative in [ 6,, c©) for some 6, >0, and we give an estimate for 0,.
Therefore for a given n, the computer may be used to prove the result for
x €[0, 6,]. In particular, we prove the result for n =4, 5, 6.

* Received by the editors June 7, 1974, and in revised form January 25, 1975. This work was
supported by the National Research Council of Canada and the University of Alberta.
‘+ Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1.
} Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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In the course of our investigation, we prove that certain power sums of the
zeros of the simple Bessel polynomials y,(z) are zero.

We note that quotients of hypergeometric polynomials similar to
Pn——l(\/;)/P,.(\/;) have been used in Padé approximations (VanRossum [ 16]).

2. Notation. We shall use (o); to denote the ascending factorials

0 if j=0,
(0);= .
olo+1l)---(oc+j—-1) ifj=1,2,---.

The hypergeometric series ,F,(a, b; c; x) is defined by

2Fi(a,b;c;x)= i Ml’x’,
=0 (¢);j!

while ,Fo(a, b; —; x) is defined by

2Fo(a, b; =3 x)= X (@) b, s
=0 J!

The only ,F; and ,F, that are used in this paper are terminating ones; that is,
one of the parameters a or b is a negative integer and the defining series reduce to
polynomials; hence are defined for all x.

For other definitions and notation, the reader is referred to Feller [6],
Rainville [14] and Widder [18].

3. The Bessel polynomials. It is known (see Grosswald [7], Luke [12, p. 194]
and Olver [13]) that the zeros of the simple Bessel polynomials, in either notation,
are distinct, they all lie in the left half-plane, and there is only one real zero for
odd-degree polynomials and none for even-degree polynomials. The smallest
absolute value of any of the zeros of Q,(1, z) is asymptotically equal to 1.32548n.
The zeros of the first fifteen Bessel polynomials Q,(1, z) are given in Krylov and
Skoblya (10, pp. 52-55].

From the orthogonality of the Bessel polynomials we get the difference
equation

(3.1) P.(z)=02n—1)P, (2)+2°P, ,(2), n=234,---.

This equation can be obtained from the recurrence relations for the Bessel
functions as found in Watson [17], as can the relationship

3.2) 4 e ‘P, (z)=—ze *P,_(2).
dz

For more properties of the Bessel polynomials, the reader is referred to
Al-Salam [1], [2], Al-Salam and Carlitz [3] and Rainville [14, p. 293].

LEMMA. Leta,;, j=1,2, -+, n, be the roots of P,(z). Then the partial fraction
decomposition of P._,(z)/P.(z) is

3 Letny(an =)™
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Proof. Let P, ,(z)/P.(z) =), A.,;/(an;—2). Then
(@ —2)Pui(z) e _ 1

Puorlz) _ oy L0 =
P.(z) e Pu(z) e’ U
by virtue of ’Hopital’s rule and (3. 2)

THEOREM 1. Leta,;, j=1,2, -, n, be the zeros of P,(z), (which of course are
also the zeros of K,.u,2(z)), with n =2. Then the sums

A,,‘I‘ = llm (a,.,,« - Z)
zay,

(3.3) Suk =2 au)

vanish fork =3,5,---,2n—1.

Proof. Let

n I(Z) =

P (Z) jgl n;/(anj )
Since P,(0)#0, P,_,(z)/P.(z) will have a power series expansion in a neighbor-
hood of the origin. The coefficient of z* in the Maclaurin series of P,_,(z)/P.(z)
will therefore be ), A,,e."". From the above lemma A,; = a,;, so that the
coefficient of z* will be S, ;..

We now proceed, using induction on n. The relation (1+x)™' =Y,_, (—x)%,
|x| <1, will be used repeatedly. For n =2 we have

Pi(z)  1+z _l{ z? }"

= =—{1+
Py(z) 3+43z+z* 3 3(1+z)

(34) 1 [ Z4 2
A LI
3 3 kz() ( Z 9 kg() ( Z)
Since S, is the coefficient of z in the power series expansion of P,_,(z)/P,(z), we

conclude that S,;=0.
Now assume S, , =0 for k=3,4,---,2n—1. Using (3.1), we get

(3.5)

Pn—l(Z)_ 1 I ZZanz(Z) -1 ~ o j
b h @] LS

Clearly S,.=1/(2n—1), and the induction hypothesis is S,,=0 for
j=3,5+,2n—1and S,;..: #0. Therefore

P2) 1 2Pi(2) |7
P,.+,(z)_2n+1{1+(2n+1)P,,(z)} ’

(3.6)

that is,

@ ) 1 z? z* <°° .)2 }
3.7 Sn+ i+ I= 1- n,j+ +— Snj+2z’) — 1.
BT L Semz! =5 T 175,11 2 Z Snna? G B, Shaa?

Note that the first nonzero coefficient of an odd power of z in the right-hand side
of (3.7) is the coefficient of z*"*'. Thus S,,,;=0 for j=3,5,---,2n+1. This
completes the proof.
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CoroLLARY. The simple Bessel polynomials Q,(1, z) with zeros B.,,
j=1,2,--+,n, and the Krall and Frink Bessel polynomials y.(z) with zeros vy,
j=1,2,- -, n, have the property that

Bni=0 and Y yk;=0 fork=3,5---,2n—1.
j=1 j=1
This follows since 8,,= 2a,;and y,;=1/a,,
THEOREM 2. Let . be as in Theorem 1. Then for n =2, we have

(3.8) Spans1=(=1)"/{3-5---2n-1}
and
(3.9) Swanss=(=D"/Qn—-1{3-5---2n-1D}.

Proof of (3.8). We shall use induction on n. For n =2, the coefficient of z* in
the power series expansion of P,(z)/P,(z) is S.s. Relation (3.4) implies that this
coefficient is 1/9. Thus S,s=1/3%

Now assume that (3.8) holds for some n. Using (3.6) and (3.7), we see that the

2n+3

coefficient of z>"* in the power series expansion of P,(z)/P,.1(z) is — S,2n:1/(2n
+1)%; that is

Sn+1,2n+3 = —-Sn.2n+]/(2n + 1)2’

and (3.8) is proved.
Proof of (3.9). The proof is very similar to that of (3.8). The coefficient of z° in
the power series expansion of P,(z)/P.(z) is, by (3.4), 3G —3). Thus S,,=1/3".
Now assume the result for an n>2. Equating coefficients of z*>"*> in both
sides of (3.7), we get

1 2
- w3t n2n+19n
(Zn + 1)2 Sn,2n 3 (2}‘1 + 1)3S ,2 1 ,2

B (__l)n+l {
T @2rn+1)@2n-D{3-5---2n+ P
B (__1)n+1
Rn+1){3-5---2n+ 1}
by the induction hypothesis. This completes the proof.

As an immediate corollary we have the following.
CoroLLARY. The zeros B.;, j=1,- - -, n, of the Bessel polynomials Q,(1, z)

Sn+1,2n+5 =

2n+1)-2}

and the zeros ¥.;, j =1, -+, n, of the Bessel polynomials y,(z) satisfy
L (—1)"( n! )2
(2n+]) —
,‘S’] Bri 2 \2n)t/
i —aney __ (ZD" ( n! )2
P 82n—-1)\2n)!) >

n ! \?2
in_+l= _1 n22n< * ) ,
jgl Y (=1 2n)!
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and

& ane3 _ (_l)nzn __i :
PRE —(2n~1)<(2n)!) ‘

Remark. The properties of the zeros of the simple Bessel polynomials
indicated in Theorem 1 do not hold for the generalized Bessel Polynomials of
Al-Salam [1].

We shall postpone the proof of the next theorem until the end of § 4.

THEOREM 3. The simple Bessel polynomials Q.(1, x) have the property that
Q. (1, \/;)/Q,,(l, \/;c) is completely monotonic in (0,0) for 0=k <n,1=n=6.

4. The Student ¢ distribution. The information on infinitely divisible dis-
tributions that we use can be found in Feller [6, pp. 425-428]. A variance mixture
of the normal distribution has the form [ (e"*"/** /v/27u) dG(u), where G is the
mixing distribution. This mixture is infinitely divisible if G is infinitely divisible. G
is infinitely divisible if and only if the Laplace transform of G is of the form e™"*
with h(0) =0 and the derivative h'(x) completely monotonic on (0, ).

The probability density function for the Student ¢ distribution with k degrees
of freedom can be written as

F((k + 1)/2) xz —(k+1)/2 (k/z)k/Z © e—x2/2u ~ B
s 7 1+____ — (k+2)/2 k/2u d .
Vil (k/2) ( k) V27T (k/2) L Ju " ¢ !

For odd degrees of freedom, say n =2k +1, the Laplace transform of the mixing
distribution is given by, say,

(4.1

k! * (k+r)! (nt)*""? - 2kk! .
P (—\/;t)(Zk)! Lk 2T ('M)("zk_)!Pk(ﬁ’) =

To show that h(t) has a completely monotonic derivative it is sufficient to
show that —log (e VP, («/_t)) has a completely monotonic derviative. We shall give a
general procedure for showing this, with the details worked out for k =4, 5 and 6.
For the cases k = 1, 2 and 3, the complete monotonicity was established by Kelker
[8] using direct differentiation.

Using relation (3.2), we get

P,
2P,(Vp

d
—(~log (e "P.(V1) =
dt

Recall that the partial fraction decomposition of P,._l(\/;c)/ P,.(\/;c) is given by

Po(Vx)_ o 1
G F =y
Pn( x) j=1 an‘j(an,j - x)
To show that a function is completely monotonic on (0, 00), it suffices to show that

the inverse Laplace transform of the function is nonnegative on (0, ). This
follows from Bernstein’s theorem (see Widder [18, p. 161]). The inverse Laplace
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transform of P,_,(vx)/P,(¥x) is (see [5, p. 233])

] 1
(42) —;E:l I:exp (a i-i X) erfc (—an'j\/;) * \/—7_1;(an.j] '

The object is to show that the expression (4.2) is nonnegative for all
nonnegative x. Applying the method of integration by parts (Copson [4, pp.

13-14]) to the error function integral, we obtain the following asymptotic
expansion:

-Hm"3-5-7- (Zm—l)}

e erfc (a {1+
(@)~ ar Z 2ma®"

’

with the remainder after k terms, say R, being given by

k—1 _1 ,
05O [ o ot

With the asymptotic series of k terms with the remainder R,, the expression (4.2)
becomes

Ri(a)=

1 &1 (=1)"3-5---2m—1) "
(4.3) — ¥ Spzmii+ Y Ru(—Vxa,,).
b 2mxm+l/2

j=1

Let Re (a) denote the real part of @ and remember that Re (a,;) <0. It is easily
shown that

00
'2”_) J u-—(2k+2) e4u2 du
\/;X j

j=1

—(k+3/2)

é X Z |an.j|_(2k+2)/lze (——an.j)'
2 j=1
Now let k=n+1 in expression (4.3). From the lemma, S,,..;=0 for
m=1,2,---,n—1. Hence, the expression (4.3) is positive if
,3:5--(2n-1) 3:5-- (2n+1) -
4.4) (1 2 Snan+t BT ¥ a7 /Re ().

j=1
Applying Theorem 2 and simplifying, we get
Zn +1

(4.5) x>— B35 2n=1)) Y |, [*?/Re ().
j=1
Inequality (4.5) gives a very reasonable lower bound on x for small values of
n, but we shall show that as n increases, the lower bound for x approaches + co.
Since little is known about the behavior of Re (w, ;) for large n, we will use another
approximation for the remainder integral:

n [ce)
Y exp (xal) J U= o gy
j=1

—Vxap,

él/;’jx—(k+l) i |a"‘j|~(2k+2).

j=1



88 MOURAD E. H. ISMAIL AND DOUGLAS H. KELKER

Inequality (4.5) is now

(4.6) NGt

2

35 - 2n=1)) Y |, [*?.
i=1

Since P,(x) = Q.(1, 2x), the smallest of the norms of the roots of P,(x) is asymp-
totically equal to (1.32548/2)n. Replace |a,,| in (4.6) by the asymptotic value;
then the term on the right becomes

1.32548 )*M)
——~  —h

Jm .
Tan+ 1G5+ 2n-1n( =2

(2n)!>2 n

:2‘/7’(2"“)( (1.32548n)"%"

n!

On using Stirling’s formula to approximate the factorials, we find that (4\/1—7(2;1
+1)/(1.32548)%)(4/1.32548e)*". Thus the right side of (4.6) approaches — as n
approaches c0. We were unable to find a better approximation for the remainder
integral than the one used.

For n =4, 5.and 6 we computed the roots of P,(x) to twelve significant digits.
For n =4, inequality (4.5) becomes

.5.7) 4
x> 265D Y Jea;| "/ Re (as,).
2 i

We get =Y, |aa ;| "°/Re (au,) =.155769 X 107. Solving, we see that the inequal-
ity is satisfied if x>.78. For n=5, we get —Y _, |as;|"*/Re(as;)
=.144177 %< 107°. Inequality (4.5) with n = 5 is now satisfied if x >.71. For n =6,
we have —Z;;, |as,; |7/ Re (@) =.965467 x 1077, and inequality (4.5) becomes
x> .68.

For n =4, 5 and 6 the computer was used to evaluate expression (4.2) over
the interval (0, 1), and it was found to be positive and decreasing over the interval.

Since we can explicitly evaluate the first two nonzero terms of the asymptotic
series, we can set up an inequality using the first two terms and the remainder. But
the bounds for x given above are smaller than the bounds obtained using the first
two terms and the remainder. However, for large n, let k =n+2 in expression
(4.3); apply Theorem 2, the second approximation for the remainder integral, and
Stirling’s formula; then expression (4.3) becomes

sn_ 2ntl x1/2>4\/;(2n+1)(2n+3)< 4 )2"
22n=1) n(1.32548)"  \1.32548¢

For large n this inequality will give a smaller lower bound for x than the bound
obtained using the first term and remainder of the asymptotic series.

Therefore for n =4, 5 and 6, we have that expression (4.2) is positive for all
positive x, and this implies that P,._,(«/;)/Pn( x) is completely monotonic in
(0, 00), which implies that the mixing distribution in (4.1) is infinitely divisible, and
this implies that the Student ¢ distribution with 2n+1 degrees of freedom is
infinitely divisible. Adding the known cases, we now have the following result.
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THEOREM 4. The Student t distribution is infinitely divisible for 1,3,5,7,9, 11
and 13 degrees of freedom.

For any odd number of degrees of freedom, the method of attack used above
should work for showing whether or not the Student ¢ distribution is infinitely
divisible; but a different approach appears to be necessary for the general case.

THEOREM 5. Let xi be a chi-square variable with k degrees of freedom. Let
Y. =(x%)". Then Y, is infinitely divisible for k=1,3,5,7,9,11 and 13.

Proof. For any positive integer k, the probability density function of
((1/k)xD ™" is (k/2)°’T'(k/2)'x %" ¢7?* and this is the infinitely divisible
mixing distribution of the Student ¢ distribution for k =1, 3,5,7,9, 11 and 13.

We are now ready to prove Theorem 3. Ql, Vo=1. 0,(1,vx)
=(1+(«/;c/2))", which is completely monotonic in (0, 00). To prove that the
Student ¢ distribution is infinitely divisible, in the cases considered here and in the
cases considered in Kelker [8], it was shown that P,_,(v'x)/P,(vx) is completely
monotonic. Thus

Qui(1,Vx) _Pui(x/2)
0.(1,vx  P.(x/2)

is completely monotonic forn =2,3,4,5and 6. Now for 0=k <n, 1=n=6, we
have that

Q1% _0(1.Vy) 0u(.Vn) Q1Y)
0.(1.vx)  0.(1.Vx) O(1,Vy  OQua(l,Vn)'

Each factor on the right is completely monotonic, so the product is completely
monotonic. The conclusions of Theorem 3 are obviously still true if Vxis replaced
by x* with 0<s = 3.

5. Concluding remarks and a conjecture. As we have seen in the previous
sections, we have very strong reasons to believe that

P i) _ Kian(V)
P.Vx)  VxKoua(¥x)

is completely monotonicon (0, 00) forn =1, 2, - - - . Asa matter of fact, we believe
the following conjecture is true.

Conjecture. The quotient K,,(\/;)/\/;KV—H(\/;) is completely monotonic on
(0, 00) for v =0.

Note that the conjecture will be false if Jxis replaced by x. Indeed, the second
derivative of

Ks/(x)

)CKs/z(X)

changes sign on (0, c0).
One might be tempted to prove the conjecture by trying to show
KV(\/;)/KV“(\/;) is completely monotonic on (0, ), as is x~"/?; hence the result.
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This is the wrong approach. It is known that K, (x)/K,(x) is continuous, increasing
and positive on (0, o) for 0 =v<u. This is Theorem 3 of Lorch [11].

Recently Trlifaj [15] computed the asymptotic expansion of K, (x)/xK,+:1(x)
for v >0and x =0 as x - 00. This particular quotient of Bessel functions appeared
in solving Schrddinger’s equation with a rectangular potential well. The same
quotient also occurred in the nuclear model of K-harmonics. For references see
Trlifaj [15].

We will conclude with an alternative proof of Theorem 1. From (1.3) it is
clear that

2n)!
2"(n '),nl( o

P.(x)= 1[I (x —an) =
j=1
Taking the logarithm of the right side we get

2n)! = x“

(5.1 log P.(x) =log —— >"(n)) kgl S,.‘k?
and

(52 l0g Po(—x) =log oL § (-1
Subtract (5.1) from (5.2) to obtain

l n, +
°87p (x ) F 5. Sua 2k+1

which is equivalent to

P.(~x)=P, (x)exp{Z Y SenypgT X }

2k+1
Since S,; = —1, the above formula becomes
x2k+1
(5.3) e”P,(—x) = P,(x) exp {2 Y Sn2k+12k+1}

Let [];, and [],, be the coefficients of x’ in e**P,(—x) and P,(x), respectively. The
coefficients depend on n also, but we suppress this dependence for ease in
printing. The crux of the proof is to show that [[,, =[], for 0=j=2n.

Observe that for 0=j=2n, [[,, is the same as the coefficient of x’ in

{Zf"o (2x) l/l'}P( x):

L2 @n=DI(=1) 22!
W= 2 o=~ ()

since p!/(p—D!=(=1)'(—p), for p,1=0,1,2,- - -. Using Gauss’ theorem in the

ZFI(—j’ -n;—2n; 1),
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form,F,(—j, b;c; 1)=(c—b);/(c);,j=0,1,- - -, (see Rainville [14, p. 69]) we get

[, =2-Cmien),_ ) jin—j)!
MO nlji(=2n);

forO0=j=n,

0 forn<j=2n.

Therefore [[,, =[1,,, j=0,1,---,2n.

On the other hand, (5.3) implies that exp{2 Y,_, Snzes:1(x***'/(2k +1))}
does not contribute to the coefficient of x/, j=1,2,---,2n in
P.(x) exp{2 Yr_, Suais1(x***'/(2k +1))}. This can only happen if the coefficients
of x*,x° -+, x> " in the power series expansion of exp {2Y,-, Snaes1(x>""/
(2k + 1))} vanish. The coefficient of x* in this series is (1/3)S,;. Therefore S,; = 0.
By very easy induction we get S,;=0,j=3,5,---,2n—1. This completes the
proof.

Remark. The power Sums S, .+1, S.2n+3 can also be evaluated from (5.3). This
follows from equating coefficients of x>**' and x*>"" in both sides of (5.3).

Acknowledgment. The above alternative proof was communicated to us by
L. Carlitz of Duke University.
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CONSTRUCTION OF A FAMILY OF POSITIVE
KERNELS FROM JACOBI POLYNOMIALS*

M. RAHMAN+

Abstract. Starting with the Jacobi polynomials ,F,(—n, n +a+B+vy+8—1; a+; x) over [0, 1]
with @, § >0 and B, y >3, a symmettic, positive definite square-integrable kernel is constructed. For
1=B<y, this kernel is also found to be continuous. Special limiting kernels are obtained by
considering the limits, « > 0%, § > 0", y > 00 and § - 0. All these kernels are shown to have stochastic
properties. As a by-product, some bilinear formulas are obtained with the Jacobi and Laguerre
polynomials.

1. Introduction. Recently we adopted a method of differential and integral
ladder operators (also known as shift operators) to obtain some bilinear formulas
involving associated Laguerre and Jacobi polynomials and their discrete counter-
parts, namely, the Meixner and Hahn polynomials (Cooper, Hoare and Rahman
[10]]). However, the class of operators considered in that paper was allowed to
shift one parameter at a time, for example, the Laguerre polynomial L;(x) was
allowed to shift to Li*'(x). Likewise, for the Jacobi polynomials

(C)n

n!’

1—x
F,(—n,n+a;c;——>,

Py O(x) = 5

only the parameter ¢ was seen to jump by +1 or —1 in one operation without
changing n or a. The idea of one-parameter ladder operators for second order
Sturm-Liouville problems is quite an old one (see, for example, Morse and
Feshbach [29]), and the method is intimately connected with the factorizability of
Sturm-Liouville operators (for references in this area see [10]). It would seem
natural to extend this method to multiparameter ladder operators, but, to our
knowledge, no serious attempts seem to have been made in this direction. For one
thing, the relative simplicity of the one-parameter case changes abruptly when
one tries a two-parameter ladder operator; secondly, it seems rather difficult to
treat a family of multiparameter ladder operators in any general way. Needless to
say, we did have a serious look at this problem, but failing to obtain any concrete
result generally, we felt it is worth reporting, nevertheless, a rather interesting set
of special results involving the Jacobi and Laguerre polynomials.

Starting with the Jacobi polynomials J,(a+B+vy+6—1, a+B; u/E)
=,Fi(—nn+a+B+y+6—1; a+B; u/E), where a, B, v, 8, E are strictly
positive parameters and 0 = u = E, we first construct a fairly complicated positive
kernel, study its properties, obtain a whole set of positive-valued special kernels
by considering special limiting values of the parameters, and finally exploit
well-known theorems in Jacobi series to obtain some bilinear formulas. The

* Received by the editors August 5, 1974, and in revised form March 11, 1975.

T Department of Mathematics, Carleton University, Ottawa, Canada. This work was supported in
part by the National Research Council (Canada) operating Grant no. A6197 and in part by a Science
Research Council (U.K.) travel grant.
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reason for using a rather nonstandard definition of the Jacobi polynomials is that
we make heavy use of the hypergeometric functions, and it seems more con-
venient to work on the interval [0, 1] rather than the usual interval [—1, 1] for
P{?(x). Needless to say, our results can be translated in terms of standard
notations and definitions through obvious transformations.

It should be stressed that our search for an extension of the ladder-operator
method did not ‘“‘accidentally” lead us to the discovery of the general kernel
Ke(u, v; @, B, v, 8). This kernel and most of its special forms that we have
discussed here have, in fact, been known through the works of Hoare [18],
Hoare and Thiele [19], Cooper and Hoare [11] and Cooper [12] on a class of
stochastic models. We wish to make this acknowledgment more specific in a
special note at the end of this paper. Our work simply gives an alternative
mathematical approach of reproducing this family of kernels starting from their
eigenfunctions.

It appears that after about 30 years of relative quiet, there has been a sudden
burst of active interest in Jacobi polynomials and Jacobi series, thanks largely to
the works of R. Askey, [2]-[5], G. Gasper [4], [14]-{17], T. H. Koornwinder
[22]-27] and others. We would like to thank Professor Askey for drawing our
attention to this rather substantial volume of recent literature. A survey of this
work is available in Orthogonal Polynomials and Special Functions by R. Askey.
This monograph will be volume 21 in the SIAM series of Regional Conference
Lectures.

However, the problem and approach of this paper are somewhat different
from those of Askey-Gasper—Koornwinder, although there is an underlying
common interest in the positivity of the kernels and the corresponding bilinear
sums. Our approach seems to be more akin to that of Popov[30], who also derived
some bilinear sums for Jacobi polynomials by first showing that these polynomials
are the eigenfunctions of a certain kernel. Our method is quite elementary, based
on a few well-known properties of the Gaussian and generalized hypergeometric
functions (see, for example, Bateman Manuscript Project [9], Slater [32], Bailey

[6].
2. The general kernel. Let us consider the Jacobi polynomials

@ 1)],.(a+[3+y+6—1,a+B;x)=2F.(—-n,n+a+B+y+5—l;a+B;x),
' n=0,1,2--.

We have deliberately introduced four parameters a, 3, v, 8, so that special results
can be obtained for their special values. For the moment, the only assumption that
we are making is that they are all positive. The polynomials J.(a +B+vy+é
—1,a+B; x) are known to be orthogonal with respect to the weight function
x*"*7(1—x)"**"", and they form a complete orthogonal system on L,(0, 1). (See,
for example, Morse and Feshbach [29].)

Let us perform the following operations: multiply ,Fi(—n,n+a+B8+vy+46
—1;a+B;y) by (y—z,)° '(z2—y)”"" and integrate over y from z, to z,, where
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0=z,<z,=1. We get

j dy (y— 2P (22— y)" SFi(=m n+a+B+y+8—1;a+B;y)

2z

1
=(z,—z,)*""! J dyy*'(1—y)" LF(—n,n+a+B+y+é—1;a
)

C

+B; z1+(z2—z1)y)

or(=n)n+a+B+y+é-—-1), ¢ (s) s
— _ B+y~—1
(Zz Zl) sg() (a+B)ss! m{:() m 222,
(2.2) i
.J dyym+[3—l(1_y)s—m+y-—]
0
L& (n)(nta+tBt+y+s—1),
— _ B+y—1
(=270 L (a+B)s!
. ZS: (:1) Bm+B,s—m+vy)zi""z5,
m=0
where

B(a, b)=T(a)l'(b)/T(a+b)
is the beta function.

Note that the integral in (2.2) diverges as z, > z,, unless B +y—1=0. As we
shall see later, this fact has important bearing on the square-integrability of the
kernel that we are about to derive.

Our aim is to perform a series of operationson J,(a +B+vy+86—1,a+8; y),
so that the end result is J,(a + B+vy+86—1, @+ B; x). Since the weight function
associated with J,(a+B8+y+86—1,a+B;x)is x**7'(1—x)"**"", the next obvi-
ous step is to divide (2.2) by (z,—z,)*""", multiply by (1 —2z,)° '(z.—x)""', and
integrate over z, from x to 1. Thus

1 1_ -1 _ y—1 zy
J dz.' (22)_2(')2:”_)?) J dy (y—2)* (z2—y)""
x 2 1 z

1

SFi(-n,n+ta+B+y+5-1;a+8;y)

& (=n)(nta+B+y+s—1), & (s B _
_sgt) (a+pB)s! Zo<m)B(m+B,S m+'y)zl

m=

(2.3) 1
. ‘[ dz,z5(1—2,)° ' (za—x)"""

et (En)(nta+ By +E—1),
=-x) E‘n (a+p)s!

(m)B(m+B, s—m+y)zi™™

s s
mz=()

f (Z')B(k +y,m—k+8)x" "k
k=0
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The final step is to multiply this by z¢™'(x — z,)?"", and integrate over z, from 0 to
x. We have

(1=2z2)* Y(z,—x)""

x 1
J dzlzi'“'(x—z.)ﬂ"J dz,
0 x

(22—Zl)ﬁ+y_l
(2.4) . Jzz dy(y—z)! (zo—y) LFi(-n,n+a+B+y+86—1;a+B;y)
=x""P (1= x)" T ML (x),

say, where

n (—n)(n+a+B+y+8-—1)

Mix)=2 (a+B)s!

s

(2.5) mgu (m>B(m+B,s—m+y)B(s -m+a, B)

. i (m>B(k +y, m—k+8)x~
k=0 k
The operations on the left-hand side of (2.4) can be seen as

1
J dy.Fi(-n,n+a+B+y+5—-1,a+pB;y)
0

: Jl dz, j] dz, 26 =2) (=2 (2 x) " (2 y) T (- 2)
0 ) (22_21)B+7—l

“H(x—z,)H(y —z))H(z,—x)H(z.—y)

2.6 !
20 =J dy Fi(-n,nta+B+y+6—1;a+B;y)
(4]
min(x,y)
. j det* ' (x—t)"(y—1)*!
0
.Jrl dz (I_Z):S—l(z_x)y——l(z_y)y—l
max(x,y) (Z - t)B*Wﬁl ’
where
H(r) = {() if <0,
1 ife>0.

Hence if we denote

‘ B x—a—ﬂ+1(1 _x)—‘Y*'s*'l
KxyiaBv8)= 5 5 B v)B(y.3)

min(x,y)
(2.7) : J dee ' (x— 1) (y— )
0
1 5—1 -1 -1
(1-2)"(z=x)"(z—y)"
. dz ’
J’max(x‘y) (Z - t)B+y~l
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then it follows from (2.4) that

1
f dy K(x,y; 0,8, 7, 8)J.(at+B+y+é—1,a+B;y)
0

2.8
(25 M, (x)

" B(a, B)B(B. v)B(. )

It is obvious from (2.5) that M, (x) is a polynomial of degree n. What we shall
now prove is that M, (x) is a multiple of J,(a +B+y+85—1, a +B; x) itself.

For a nonnegative integer p such that 0 = p = n, the coefficient of x” in M, (x)
is, clearly,

Z:: (=n)s(n+a+p+y+s-—1), i (s

)(s r_np)B(m +B,s—m+vy)

s=p (a+B).s! ms—p \M
(2.9) B(s—m+a,B)B(s—p+y,m—s+p+0)
— 6—-1),
S YD e o, B)B(B. VB, 518 (s ),
where
S(n: p) = 1 "P(—nt+tph(ntatBty+d+p—1)
P Bla, BIB(B, 7)B(7.8) (a+B+phlp+1),
(2.10) P Nk +1
-E()(iil)( l+)B(k+I+B,p—k+'y)B(p—k+a,B)

‘B(l+v, k+38).

After some simplifications, this reduces to

p! & (@) k(B)i(y)p-r(O)

S =553, By (@t By a(y+ 8 (p— )IK!
(2.11) . —n+p, nta+B+y+d+p—1,8+ky 1]
! 3[01+B+p, B+vy+p, yro+k o b
where
a,bc,d — 1_ <& (a)(b)(c)(d), '
(2.12) 4F3[ efg t:l_,go (e)(f).(g) r!

is a generalized hypergeometric function.
If we set p=0in (2.11), we obtain
-m,n+ta+B+y+6—1,8,y 1]
atB Bty,y+s T

We show in the Appendix that S(n; p) is, indeed, independent of p, and therefore
equal to S(n; 0).

(2.13) S(n;0)=4F3[
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Thus from (2.8) and (2.9) it follows that

1
JdyKudume%SHAa+B+v+5—La+B;w
(2.14) J,
=S(n; 0, (a+B+y+6—1,a+8;x).
This proves that for each nonnegative integer n, J.(a +B+y+86—1,a +B;x) is
an eigenfunction of the integral equation

2.1 A= | K(x.y:aB.7.8)6(y) dy.
0
and the corresponding eigenvalue is given by
(2.16) A=A,=8(n;0).
If we write
(2.17) wx)=x"P(1—x)"",
then the kernel (2.7) can be “symmetrized” as
2.18 w(x
(2-18) m&wmﬁ%&=VJJmem&%®‘
w(y)

The corresponding integral equation,

1

(.19 W= [ Gl yia B 7.0 () dy

C

then has the same eigenvalue (2.17) for each n with the eigenfunction
(2.20) fo(x)=N~Vw(x) Fi(-n,n+ta+B+y+6—1;a+8;x),
where N, is a normalizing constant given by

N:={2n+a+B+y+5-Dl(a+B+n)l(n+a+B+y+8—1)}/
(2.21) {n!l(a+B)I(n+vy+8)}

It is well known that (see [29])

(2.22) J fn(x) fu(x) dx = 8.

Before passing to the next section, we note that a transformation
(2.23) x->u/E, y->v/E

transforms the integral equation (2.15) to

E

(2.24) Ab(u) = j Ke(u, v; a, B, 7, 8)$(v) dv,



98 M. RAHMAN

where

Ke(u, v; a, B, v, 8)=[B(a, B)B(B, v)B(v, 8) 'u™* " (E—u)™""

min(u,v)
(2.25) . J det* "(u—t)! ' (v—1)P!
0
. J L E=2 7w =)
max() (Z —t)B+'y—l
and
(2.26) $(w)=2Fi(~n,n+a+B+y+s—1;a+B;u/E).

Note that the eigenvalues of K remain the same as in (2.16). Also note that if
¢(u) is an eigenfunction of (2.24) with eigenvalue A, then ¢(E—u) is an
eigenfunction of (2.24) with u, v, a, B, v, 6 replaced by E—u, E—v, §, v, B, «,
respectively.

3. Special cases.

Case 1. a—> 0", B, vy, 6>0. The double integral in Kx(u, v) diverges as a > 07,
but when it is divided by B(«, B), the limit exists. Using the integral representation
of the hypergeometric function (see, e.g., [7])

1
B(b,c—b),Fi(a, b;c;z)= J dtt* "1 =0 (1—tz)7,
)

3.1) (
Re c>Re b >0,

it can be shown that

min(u,v)

[B(a, B)]" [ dt 1 (= 1P (o — 1)
: J f BT e o)

max(u,v) (Z_t)B+7_l
(3.2) =[min (u, v)]*"*'[max (u, v)]*" E (Bk— 1)
‘ [_ min (u, v)]“ I'k+a)'(k+B)
max (u, v)] I'a)'(k+a+pB)
: JE PGk Al M C Al V1
max(u,v) V4
: 2F1(3+y—1, k+a,k+a +B,ml—n£u’—v))

Now
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Also

_min (u, v))

llr(l;le1<B+'y*1,a;B+a, =l.

Hence

Ke(u,v;0,8, v, 6)= lir(r)l+ Ke(u, v; a, B, 7, 6)

pP!

(3.3) =B, )BO, " (5

.JE s (E-=2)(z=uw)'(z—v)""
max(u,v) ZB*W_l

The eigenfunctions of this limiting kernel are the Jacobi polynomials
Fi(-=n,n+B+y+6—-1;8;u/E),
and the corresponding eigenvalues are

-n,n+B+y+6—-1;B8;y 1]
B.B+y. v+ ’
(3.4) -n,n+P+y+s—-1,y
=3F2[ B+vy,yto : 1]

A= 4F3[

By using the Saalschutzian theorem (Slater [32]), this can be evaluated.
We may evaluate it directly by considering the integral representation of
3F5(1) (Slater [32]). Thus

_Ty+o)
" T(y)I(3)
_T(y+8) T(B+YI(NI(E+n)I(B+n)

F(Y)T(@) T(B+y+mI(B)I(y+5+n)

—_ B gaieman 9. p. 398, 2)].

(B+Y)u(y+9),

1
J ' A=0" S Fi(—nn+B+y+86—1;B+y; 1) dt
0

(3.5)

Case I11. 50", a, B, ¥ >0. Let us first determine the limit of

[B(y, 5)]~| JE dz (E—z)ﬁﬂ(z__u)y-l(z_v)y_l

max(u,v) (Z - t)ﬁ+y—l

as 8§ >0".
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After making use of two obvious transformations and a binomial expansion,
this integral reduces to

[E—max (u, v)]"*°'[E —min (u, 0)]'[E—t]* " § (y— 1)
B(y, 6) o\ k
.[_E—max (u, v)]"
E —min (u, v)

! E—max (u,v) ]# !
. dz 2<% Y(1 - v—l[l_ - =7 ]
L zz (1-2) E—

As in Case I, only the k =0 term survives as § > 0" and the integral divided by
B(Y, 6) approaches 1. Hence

KE(uv v, q, B’ Ys 0) = llm KE(“? v« B’ s 6)
5->0"
(E—v)!

atp—1

(3.6) =[B(e, B)B(B, VI ;
) Jmin(u,v} d ta—l(u _ t)B—l(v _ t)ﬁ-l
0 (E - t)BHAl
The eigenfunctions are again basically the same, namely, ,F,(—n,n+a+
+y-—1; a+B; u/E), while the eigenvalues are given by

A= F[—n,n+a+B+y—1,B,y ) 1]
n 413 a+B,B+’Y,‘y )
(3.7) _ F[—n,n+a+B+y—1,B ) 1]
‘ v at+B,B+y ’
_ (@
(a+B)u(B+Yy)

Case I1I. a, B, y>0, E, 6 > o such that E/& = const. There is obviously no

loss of generality in assuming that this constant ratio is equal to 1. In this case,
(E-z)*"! _ L(y+8)(6—-2)" 1 I'(y+9) (1—2z/8)>"
B(y, )(E-u)™" T(yI(&)(6—u)""" T(y) T(8)8" (1—-u/8)"""

As 8 - 00, this approaches the limit e *™*/I'(ry).

Therefore

Kw(uv v, 39 Y> w) = llm KE(“? v «a, B’ Ys 6)
E—oc0

8->00
E/6=1

(3.8) =[B(a, B)B(B, y)T(y)] 'e"u "'

min(u,v)
. J dtt* " u—0P"(v—1)P"!
0

0 e W =y
max(u,v) (Z - t)B-*y;l
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The eigenfunctions of this kernel are

lim,Fi(-n,n+a+B+y+8—1;a+B;u/8)=Fi(—n;a+B;u)

§—>00

(39) _ n! L(OH'B*U( )
T(a+p),

where L$#7P(u) is the associated Laguerre polynomial (see, for example,
Bateman [7] and [8]). The eigenvalue corresponding to a given integer n is

[—n,a+B+'y+8—1,B, Y 1]
atB,Bty,yto '
- —hn, B’ Y . ]
3Fz[a+B, B+y ’ i
The ;F,[1] in (3.10) is neither Saalschutzian nor well-poised (Slater [32]). It
therefore does not seem possible to express it in finite terms as in (3.5) or (3.7).

Case IV. a»0", E=8-»>0, B, y>0. Combining Cases I and III, we now
obtain

A,. = llm 4F3

8->00

(3.10)

Keo(u, v;0,8,v,0)=lim lim Kg(u, v;a, B, 7, )

a->0" 800

E—>0c0
(3.11) vt
© -z —qpy)?! )71
“[BB T e | T
max(u,v)

The eigenfunctions are simply (n!/(8).(L¥™"(u), while the eigenvalues take
a simpler form,

_ -nBy ]
An llm3F2[0+B,B+’Y |

(3.12) =:Fi(=n,y; B+v;'1)

__(B)a
(B+)n

a=0"

Case V.8->0", y=E -0, a, B>0.Setting y = E in (3.6) and passing to the
limit y - 00, we obtain, in a manner similar to Case 111, the kernel

Ko(u, v; a, 8,0,0)=lim Kg(u, v; a, B, v, 6)
80"
(3.13) E-eo

y—>00
E/v=1

v

e min(u,v) »
~[Bla BB i j dtet™ (u— 1P (o — 1"
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The eigenfunctions are the same as in (3.9), but the eigenvalues reduce to

L (@)n(Y)n
=l BB+ ),
(3.14) ().
(a+B)

Case VI.a - 0%,8 - 07, B, y>0. Finally, combining Cases I and I, we obtain
the degenerate kernel

Ke(u, 030, B, ,0) = lim lim Kx(u, v; &, B, 7, 8)
a>o0 &>

(3.15) WP NE-p)
~ B(B,y)EPTT

There is only one eigenvalue and one eigenfunction, and both are equal to 1.

4. Properties of the kernel K(x, y; a, B, v, 8). In this section, we shall first
list a number of interesting properties of the kernel K(x, y; a, B, 7y, 8) which are,
more or less, evident from the manner in which the kernel has been constructed.

Property 1. For0=x=1, 0=sy=1,a,B,y,6>0,

4.1) K(x,y;a,B,7v, 86)=0.

This is obvious from (2.7).
Property 2. For n=0, J,(a+B+y+8—1,a+B;z)=1= A, Hence

1
4.2) J K(x,y;a, B, v, 6)dy = 1.
0

Property 3. We shall prove in Theorem 1 that K(x, y; «, B, 7y, 8) is continuous
and therefore bounded on the unit square in the parameter-range a, >0,

B vzl
Property 4. The kernel has the “detailed-balance” property

(4.3) w(x)K(x, y; a, B, v,8)=w(y)K(y, x; a, B, v, 8).

Property 5. The symmetric kernel G(x, y; a, B, v, 8) is square-integrable for
all a, >0, B, ¥ >3. This is proved in Theorem 1 below. However, if we make use
of the property that the set of functions {f.(x)}s-o (see (2.20)) constitutes a
complete orthonormal basis for L,(0, 1), then the square-integrability of the
kernel G also follows from the fact that }._, AZ< 00, which we have proved in the
Appendix, and the known relation (Tricomi [33])

O
2
An
=0

1 1
(4.4) j j dx dy G*(x, y; a, B, v, 8) =
0 0 n
Property 6. The kernel G(x, y; a, B, v, 8) is positive definite over L,(0, 1).
This follows from the fact that the eigenvalues of G are all positive, which has
been shown in the Appendix.
Property 7. Properties 1-4 enable us to interpret K(x,y;a,f,7v,8) as a
stochastic kernel. For a,6>0, B, y=1, it can be regarded as the transition



CONSTRUCTION OF A FAMILY OF POSITIVE KERNELS 103

probability for a Markovian stochastic process [12]. Now we shall prove the
statements of Properties 3 and 5 in the following theorem.
THEOREM 1.
Part A. Let a, B, v, 8 be four real parameters such that

(4.5) a>0, §>0, B>3 y>i
Then the kernel
G(x,y; a, B, v, 8)=[B(a, B)B(B, v)B(y, )] ' (xy) “"*"?[(1-x)
(L=y)er

min(x,y)
(4.6) : j det N (x =0 (y—0)f

0

e (1=2)"(z=x)"(z—y)"
J‘ma)&(x,y) dz (z— t)ﬁﬂ_l

has singularities on the line y = x, but is square-integrable over (0, 1) if
(i) 2<B=y<l or (i) 3<y<B<y+s
(4.7) or (iii) 3<B<1, y=1 or (iv) 1S8=1.

Part B. If @, 6 >0 and 1=B<v, then G(x, y; a, B, v, 8) is continuous and
bounded in the closed square 0=x=1,0=y=1.

Proof of Part A. To fix ideas, let us suppose that 0=x =y =1. By obvious
transformations, the kernel G can be expressed as

X\ a+8-1/2
G(-x, ysa, B, Y, 8)= [B(Cl, B)B(ﬁ’ Y)B(% 6)]-1(_;)

(48) 1__ (y+8-—-1)/2
(227" T R@ v 8%, 9)

—X
where

1

R(x,y;a,B,v,6)= j det* ' (1—1)P ' (y —xt)?™!

0
(4.9) . J" 27 (1=2) [y-x+(1-y)z]""

o Chy—x+(I-nx+(1-y)zP "

It is clear that with the parameters «, B, 7,8 restricted by (4.5),
R(x,y; a, B, v, 8) is well-behaved in the open region

0<x<y<l.

Hence, for the purpose of square-integrability of G, it is sufficient to investigate
the behavior of R as x>0, y~>1 and y —x - 0. First of all,

! 1 y=1(1 _ \6-1
R(0,y;a,B,7,8) =y J dre ' (1-1)P! J' dzz__(l_z)_
0 p

o [y+(d—y)z)
=B(a, B)B(y, 8)y* ' 2Fi(B, 8; y+6; 1—y).

(4.10)
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Then
(4.11) R(x,1;a,B8,v, 8)=B(a, B)B(y, 8)(1—x)" 1Fi(y, a; a +B; x).
Aslongasy #0and x # 1,both R(0, y) and R(x, 1) are bounded and, indeed,
(4.12) R(0,1; a, B, v, 8) = B(a, B)B(, 6).
However, if y> 3, then
R(0, y)~y @® as y—>0,
and
R(x, 1)~(1—x)""" asx->1.

In deriving these order relations, we have used the following well-known proper-
ties of the hypergeometric function:

2Fu(a, by ey z)=(1—-2) 7", Fi(c—a,c—b;c; z),

(4.13) - _I(@I'(c=a—-b)
S )

(See, for example, [7]).
On the other hand, if B8 >, then

R(0, y)~y " as y -0,

Re(c—a—b)>0, Rec>0.

and
Rx,D)~(1—-x)"" asx—>1.

However, if;<B <1and3<vy <1, B # v, there exist singularities at the endpoints
(0,0) and (1, 1), but R(x, y), and therefore G(x, y), remain square-integrable
over (0, 1). If 5< B =y <1, then there is an additional logarithmic singularity at
both ends, but this also does not affect the square-integrability of G(x, y).

Toinvestigate the behavior of R(x, y) at other points of the diagonal, we note
that in the region of integration and for 8>3, y>3,

[y—x+(I=0x+(1=-y)z] *7 " =[y—x+(1=y)z] .

Hence
R(x, y;a, B, v, 8)§J1 dtt*'(1—1)#"!
(4.14) 'Jl dzz77'(1-2)° " [y—-x (1—y)z]™*
= B(a, B)B(y, 8)R'(x, y),
where

(4.15) R’(x,y)=y8_1(1—x)—Ban(1—ﬁ»01;a"‘B;x/y)zFl(B’&7"'5;':_;3:)-
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If x#0,1,y#0,1and y> g >3, then R'(x, y) has no singularity on the diagonal
or anywhere else. However, if y <, then we can write, by using the first of the
relations (4.13),

R'(x,y)=y*'(1-x)"(y—x)"*,F\(1-B, a; a+B; x/y)
1_
: 2F1<7+5-B,v; Y +6;——>.
1—x
There appear singularities all along the line y = x, but R'(x, y) and hence G(x, y),
nevertheless, remains L,(0, 1) if

20B—y)<1, ie., B<y+i

In the event B =1y, the singularity on the diagonal is logarithmic and hence
square-integrable on (0, 1).
Now, if <8 <1, y=1, then

R(0,y)~y " ® asy~>0,

and

R(x, D)~(1—x)""" asx—->1,

but there are no singularities elsewhere.

Finally, if 1 = = v, there is a singularity of the type log (y — x). However, if
a, 6 =1 and 1 = B = v, then this logarithmic singularity remains only at the corners
(0, 0) and (1, 1). For, in this case,

1 » 1 dz
Rix.y: . By, 8’=L di (y = xt)” J [y—xt+(1—y)zP°
—x)log(y—x)—y]l

w1 x(l_y)[(y x)log(y—x)—ylogy

= —(1=x)log (1-x)] ifp=1,
y ul#l
[ | ey

it B>1.

Use of L’Hépital’s rule will confirm the above statement.

Proof of Part B. When =1 and y =1, equations (4.10) and (4.11) show that
there are no singularities at (0, 0) and (1, 1). Further, if y> 8, equation (4.15)
shows that there are no singularities anywhere else. Hence G(x, y; , B, v, 8) is
continuous on the closed unit square.

It may be remarked that K(x,y;ea B, v, 8) is bounded whenever
G(x,y; a, B, v, 8) is. Even when G has logarithmic singularities at the points (0, 0)
and (1, 1), K(x, y; a, B, v, 8) is bounded provided a +3>1 and y+6>1 for

4.17)  K(x, x;a,B, 7y, 8)=x"“"*"2(1—x)""*2G(x, x; a, B, v, ).



106 M. RAHMAN

5. Properties of the limiting kernels. The limiting kernels that we derived in
§ 3 all share Properties 1, 2, 3 and 4, and the positive definiteness of the general
kernel K(x, y; a, B, v, 6).

According to Theorem 1, the square-integrability and boundedness of the
symmetric kernel G(x, y; a, B, v, 8) depend mostly on the relative values of 8 and
v. Since the limiting kernels are obtained by taking different limiting values of «
and 6, it is expected that the conclusions of Theorem 1 will apply, roughly
speaking, also to the limiting kernels. However, it is possible to find better bounds
for the limiting kernels, being simpler in form. Besides, in the limit E = § - 00 or
v=E 00, we are no longer in the L,(0, 1) space, rather in L,(0, o). For these
reasons we wish to take up each of the limiting kernels and briefly discuss their
special properties in various parameter-ranges.

Kernel K(x,y;0, B, v, 8). By setting E=1 in (3.3) and multiplying by an
obvious symmetrizing factor, we obtain the limiting (a - 0") symmetric kernel

» (xy)(B—l)/Z
G(xv )’§ O’ B9 Ys 8) = [B(B’ 'Y)B('Y, 8)] [(1 ___x)(l _ y)](y+6—l)/2
(5.1) ! (1-2)°"'(z=x)""'z—y)"
. me(x'y) dz e .

ForO0=x=y=1, we get

1 —_ y)('y+8—l)/2

G(x,y;0,8,v,8)=[B(B,v)B(y, 5)]"(xy)"3‘”/2(1 -

(5.2) 'rd 27 (1 =2 [y—x+(1—-y)z]"
0 [y+(1—y)z]*" '

On the diagonal y = x,
G(x, x50, 8, v,8)=[B(B, v)B(v, )] 'x*'(1-x)""

. Jl dzz7'(1-2)" " [1—=(1—x)z]®*P
(5.3) 0
=[B(B, v)B(y, ) 'B(8,2y—Dx*'(1—x)""

2Fi(B+y—1,8;2y+6—-1;1—x).

For §>0 and ;<B<vy<1, this is continuous except at (0,0) and (1, 1),
where the singularities are of the type x ™ and (1—x)"""” respectively, and
hence G(x, y; 0, B, v, 8) is L,(0, 1). If B = v, there appears, in addition, a logarith-
mic singularity at (0, 0). If <8 <1 and y =1, the only singularity is at (0, 0)
and is of type x ™. On the other hand, if ; <y <1, then singularities of type
x " and (1—x)""" occur at both (0, 0) and (1, 1). Finally, if 3=1, y=1, the
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only possible singularity is at (0, 0) which is (i) logarithmic if 8 = v; (ii) nonexistent
if B#.

Hence we conclude that G(x, y; 0, vy, §) is

(i) L,0,1)if §>0and B, y>3;

(ii) continuousin 0=x=1,0=y=1ifB,y=1and B# Y.

Kernel K(x,y;a,B,v,0). The properties of the symmetrized kernel
G(x, y; a, B, v, 0) are, indeed, identical to those of G(x, y; 0, B, v, §) with the
interchange of B and vy and the condition 8 >0 replaced by a >0.

Kernel K(x, y; a, B, v, ©). The symmetrized kernel in this case reduces, for
Osx=sy<o,to

- 2 X (a+p—1)/2
G(x,y: @, B, 7.%0) = Bla HBE. INT e
(5.4)
N Q(x’ )’, a, B’ ’Y, w)?
where
1
Qx, y: o B, 7,20) = | det (1= 1)y —xt
5.5 ’
( ) J»ood e—zzy—l(y_x+z)y~1
0 z (y—xt+z)P!
Note that
1 . o 227—'2 e—x(lvt)z
. — 71 oa— _ 4\B+y—2 £~ &«
Qx, x5, B, y,0)=x L dtt*7'(1—-1) L dz 11z
(5.6) i
=I‘(2'y—1)x“""[ dtt* ' (1=t 2
0
URy—-1,y=B+1;x(1-1)),
where
1 [s¢]
(5.7) U(a,b;z):———J' et (1)t Re a>0,
I'(a) Jo

is a confluent hypergeometric function having a singularity at the origin (see, for
example, [1]).

If there are any singularities of G(x, y; a, 3, v, ®©), one should be able to spot
themin Q(x, x; a, B, v, ) alone. Since for large y, Q(x, y; «, B, ¥, ©) decreases at
least like 1/y, the behavior of G at o is controlled by the exponential term e ™.

Now the necessary conditions for the convergence of the integral in
Q(x, x; a, B, v, %) are

(5.8) a>0, B+y>1, y>i

When these inequalities are satisfied, the only possible singularity remains at
x=0. For small x and 0<¢<1,
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URy—-1,y—-B+1;x(1-1)

Fo B xa=op - oqx1 -1, y-p>1,

I'(y-B) - _ a_

T2y 1) (=0 7+ Olog x(1-0), y=p=1,

T'y=B) B — B

F2y— [x(l neE+0(1), 6<y-B<1,
(5.9 = l—ng(—l)+O([x(1—t)logx(1—t)] v=4,

F@2y-1)

TB-y y _

FB+y—1) Ox1=01™), 0<p=y<I,

1

ﬁz—)+0([x(l—t logx(1=1)], B—vy=1,

I'(B~v) 3 3

Byt Olx-0). B=y>1.

(See [1, p. 508].)
Hence Q(x, x; a, B, v, °) has a singularity at x = 0 of the type x ™ or x "™ if
3<B #vy=1, and a logarithmic singularity at x =0 if 8 =y whether or not they
are less than, equal to or greater than 1. The singularity at the origin disappears if
B#yandB=1,vy=1.

Therefore the kernel G(x, y; a, B, y, ) is bounded in any closed interval
O=sx=¢0=sysg é<oif B=1, y=1andB#y.

Kernel Ko(x, y; 0, B, 7y, ). For this case we have

G(x,y;0,B,v,0)=[B(B, y)I(y)] " e* z(xy)""‘“/ ’
.J‘” PR CInlS (z—y)”
max(x,y)

S BTyl

(5.10)

For0=sx=y=o0,

B—1)/2
(.11 Glx.y: 0.8 3 =[BE NI (%) 00k, 50, .. o)

where

oo

(5‘]2) Q(x’ y; (), B’ v, OO) = j dz Pad e‘”(y—x +yz)v~1(1 +z)—(B+v—1).
[

)

In particular,

(5.13) O(x,x;0,B,7,0)=TRy—-1x"'UQRy—1,y=B+1;x).

For large x, O ~ x 7, and for small x, itis O(x* ) if y=ZB+1or0<y<B+1;
of theorder O(x* ) if B=y+1or0<B=+vy+1,and O(log x) if B = y. Hence our
conclusions remain the same as in the previous case.
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Kernel Ko(x, y; a, 3,0, 0). Here we have
G(x, y;a, B, 0, 0)
(5.14)

min(x,y)

=[B(a, B)L(B)] " e > (xy) «#7072 J dre't” '(x—1)*'(y —1)*"

0
and for 0=x =y <o,

G(x,y; a, B,0,0)
(5.15)

~(a+p-1)/2 (1
=[B(a, B)I'(B)]’ e'(”y’/2(§>( o [ dte*t* " (1—1)"(y —xt)* ",

It can be easily seen, by arguments similar to the previous cases, that
G(x, y; a, B, 9, 0) is square-integrable in L,(0, ) if « >0, 8 >3, and is bounded
everywhere except x =0 if B<1. For a>0, =1, G is in L,(0, 00) as well as
bounded everywhere.

6. Bilinear formulas. Now that we have completed the discussion of the
square-integrability and continuity of the symmetric kernel G(x, y; «, B, v, 8) and
its various limiting forms, we may write down a number of bilinear formulas
involving the Jacobi and Laguerre polynomials.

Formula 1.

[B(a, B)B(B, v)B(y, 8)] '(xy) (1 —x)(1—y)] """

min(x,y)
J dit N(x—0)F ' (y—0)F!
1)

(6.1) dz

max(x,y) (Z - t)ﬂ+7kl

_J‘ (=2 (z=x)""(z—y)"
= L A

where A, is given by (2.13) and (2.16) and f,(x) is defined by (2.20) and (2.21).

Since the kernel on the left-hand side is continuous on the closed square
O=x=1,0=sy=1fore,6>0,1=B<ry,byTheorem 1, the infinite series on the
right is uniformly and absolutely convergent for all x, y in this parameter-domain,
according to Mercer’s theorem (Tricomi [33]). For other parameter-values for
which the kernel is square-integrable, the convergence of (6.1) has to be under-
stood as convergence in the mean.

However, even if the kernel is continuous in a restricted region & =x
=l—¢,&>0and e;,=y=1-¢,, £>0 (see Theorem 1), and has a piecewise
continuous derivative in each variable, expansion formula (6.1) remains valid in
this restricted region, following a result of Rau [31]. It can be shown that in the
cases @, 6 >0, 5<B<y<lor;<B<1,y=1or 1=8=1, conditions of Rau’s
theorem are satisfied.
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Formula 11.
[B(B, v)B(v, 8)]*'[(1 —x)(1— y)]—(y+5—1)
(62) . Jrl dz (1—2) A(Z';fxy)j‘_ (Z—-y)"
max(x,y) V4
_5 (B)a(8)n  Cn+B+y+8—-DI(n+B(n+B+y+8-1)
w0 (B+Y)aly +8)n I*(B)I'(n+y+38)n!

SF(—n,n+B+y+86-1;B;x)Fi(—n,n+B+y+8—1;B;y).

If >0, B# vy and B, y =1, this formula is valid for all x, y in [0, 1]. If B =y
or B, ¥ >3 but one of them is less than 1, then by Rau’s theorem, (6.2) applies in
the restricted region 0<x <1 and 0<y <1.

Formula 111.
[B(e, B)B(B, YT ¥ (xy) "

min(x,y)
J ditee '(x—t)* " (y—0)P"

0

(6.3) ' J’°° dz e (z—x)"(z—y)"
max(x,y) (Z _I)B%Fl

o -n, B,y n! - _
- 3 R | L L ),
L lavppry Cla+B+n) “ V)

If «a>0,B=1, y=1 and B # v, then (6.3) is valid for every x, y such that
0=Sx=§(0=y=¢ €<, If B=yand/or;<B, y<1, then the convergence is in
the mean, but if we exclude the point x = 0, then the infinite series can be shown to
be uniformly and absolutely convergent in any region &, =x <00, g, =y <00,
€1, €2 > 0

Formula 1V.

I e (z—x)"(z—y)"
e | e EEOERY)
max(x,y)

(6.4) = nl
S T(B+y+n)

L )Ly (y).

The regions of validity of this formula are the same as for Formula III.
When 8 =1, y = 1, thisformula reduces to Koschmeider’s formula [28], [34].
Formula V.
min(x,y)
e[ drer -0 - 0P

0

(6.5) — (xy)=! i n!l'(a+n)

R ST (a+B+n)
For @ >0, B >1, this formula is valid for all x, y such that &, =x <0, g, =y <0,
€1, €,>0.For a >0and B = 1, this is valid even at the origin (0, 0). This formula is
essentially the same as obtained by Erdélyi [13].

L("a+a—1)(x)L(na+p—1)(y).
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7. Note on previous work. As was indicated in the Introduction, the kernel
(2.7), and some of the limiting kernels, have been known for some years in the
theory of certain processes in statistical mechanics. In this context, they arise
naturally from a class of ‘“urn-models” for model stochastic processes, whose
transition probabilities depend on particularly simple combinations of random
variables. In most cases, their eigenvalue problems have been solved, and the
consequent bilinear formulas are thus known as spectral resolutions of the
appropriate transition kernels. Specifically, the kernel Kuo(x, y; 0, B, v, ©) was
derived from statistical considerations by Hoare [18], who solved the eigenvalue
problem for Ku(x, y; 0, 1, 1,00). Later Hoare and Thiele [19] derived the kernel
Ke(u, v; 0,1, 1, 8) and showed its eigenfunctions to be Jacobi polynomials. Still
later Hoare and Cooper [11], [12] solved the eigenvalue problem for
Ko(x, y; 0, B, v, ©), obtaining the bilinear formula (6.4), and have since extended
their results to the kernel K(x, y; 0, B, v, §), obtaining the eigenfunctions (2.1)
and the spectral resolution (6.2) [12]. These authors have derived the full kernel
Ke(u, v; o, B, v, 8) and obtained its eigenvalues but, at the time of writing, do not
appear to have obtained the eigenfunctions (2.1) [20]. In all this work, the
parameters a, 3, 7, 6 arise as positive integers representing stochastic ‘“degrees of
freedom”, and the starting point has invariably been the integral operator and its
eigenvalue problem, rather than the reverse construction considered in this paper.
For a full account of the probabilistic implications of this class of kernels, see [21].

Appendix A.
THEOREM A.1. For a positive integer n and an integer p such that 0=p=n,

p! i (@)p-k(B)e(¥)p-k(8)x
(B"'Y)p k=0 (a +B)p—k('Y+5)k(P‘k)!k!
) F[—n+p,n+a+B+y+6+p—1,B+k,y ] 1]
o a+B+p,B+y+p y+8+k ’

S(n;p)=

is independent of p and is equal to

—nonta+Bry+rs—1
)\"=S(n;0)=4F3[ matatBry+ts-lpy 1].

atB,B+y,yt+td

Proof. The theorem is proved very easily if we make use of the following two
known results for Saalschutzian series:

(A1) N AT | B ECL

c,1+a+b—c—m )m(c—a—>b),’

where m is a positive integer, and
(A.2)

F[x,y,z,—p ) 1]=(v—z),,(w—z),,F[ Uu—Xx,u—Yy,z,—p ) 1]
Ol wow (v),(w), s l-v+z—p,l-wt+z—pu
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where p is, again, a positive integer and
(A.3) utv+w=x+y+z—-p+1

(see Bailey [6]).
By using the identity

(A.4) (@)n-n=(=1)"(a)n/(1=a—N),,
where N = n and both are positive integers, we may write S(n; p) in the form

R (—n+phn+a+B+y+6+p—1(B)(y)
(AS) S(n,P) Ig() (a+B+p)l(B+'y+p),(’y+6)ll!

APJ’

with
(@), 2 ph(I=a=B—ph(B+Di(d)
P @+ B)(BHY)y S0 (I—a—pl(1—y—pl(y+8+1)k!

(A-6) _ (@), [l—a—ﬁ—p,a,ﬂﬂ,—p _1]
(@+B),B+y), " "LUt+y+8,1-a~p,1-y=p = I

Note that the parameters of this ,F; satisfy the Saalschutzian condition (A.3).
By (A.2), we have the transformation

(a)p(y),(1—a—B _p—l)p(l -8B _'Y—p—l)p

A =
" (@t B)(B+y)(1—a—p),(1-y=p),
ptl+ta+B+y+o-1,y+L B+l —p ]
PV ok ;1
(A7) F[ at+B+LB+y+Ly+s+1

(a+B+D,(B+y+]), F[p+l+a+B+y+8—1,B+l,'y+l,—p '1]
T (a+B)Bty), a+B+LB+y+Ly+8+1 o r
In deriving the last expression for A,,, we have also made use of (A.4).

Now
(a+B+1), _ (a+B)p+i _ 1 ete
(a+B)(a+B+p) (a+Bl(a+B)pu (a+B) ’
Hence
S(n; p)

(—n+ph(nta+B+y+d+p—DuBl(¥)(l+p+a+B+y
g i +6—1)(B+Di(y+D(—p

=ok=0 (a+B)u(B+Di(y+8)i(a+B+D(B+y+Di(y+8+1) k!

(—n+ph(nta+B+y+8+p—Di(—ph(Bli(Vnulp+a+B
+'Y+5_1)k+1

1=0 k=0 (p +a+ B + ‘y+ é— 1),(01 +B)k+l(B + 'y)k+1('y+ 3)k+,l'k'
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Let us make the transformation

(A.9) k+l=m, l=m—k.
Then m runs from O to n, while k goes from 0 to m.
Hence

“ (P+a+3+7+5_1)m(3)m(‘)’)m
A.10 :p)=
(A-10) S P = L BBt P (vt O)n

Bn,m’

where
_ & (—n+p)ms(nta+B+y+8+p—1)i(—p
k=0 (p+a+B+‘y+3-1)m_k(m—k)'k'
_(ntatBty+d+p—1Dn(=n+p)m
(pta+B+y+6—-1),.m!
o (mmu(—ph(-p—a—B-y—5-m)
(A.11) izo(l+n—p-m)2-n—-a—-B—y—8—p—m)k!
_(ntpuntatBty+s+p—1).
(ptra+B+y+6-—-1),m!
-p,2—p—a—B—-y—8—m,—m .
-, F, ;1.
l+n-p-m2-n—a—B-—y-8-p-m

Bn,m

The ;F, series in (A.11) is of the form (A.1) and, therefore, we obtain
_(=n+p)u(nta+B+y+d+p—1)n

B (pta+B+y+s—1)m!
(1+n-m)p,(n+ta+B+y+5—1).
(A.12) (I+n—-p-m),(nta+B+y+é+tp—1).
_(=n)m(ntat+B+y+5—1),
T (prat+Bry+s—1),m!
Finally, then,
S(n'p)= i (—n')'n(n+a+B+y+8—1)M(B)M(7)m
’ m=0 (@+B)m(B+Y)m(y+8).m!

—nnta+Bty+d—
=4F3[ nntatB+y+d 1,3,7;1]‘

a+B,B+y, v+
THEOREM A.2. If a, B, v, 6 >0, then
(A.13) 0<A.=1.
If, in addition, B >3, y >3, then

(A.14) Y ar<owo,  p=z1.

n=0
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Proof. From Theorem A.1 it follows that
~nnta+tB+y+s-1,8,v 1]
a+B,B+y,y+s ’
n! d (a)n—k(B)k(‘y)n*k(a)k
B+ V) iZo(@+B)us(y+8)u(n—k)k!

For a, B, v, 6 >0, all the terms in the finite sum are positive, and hence A, >0.
Also,

(A.15) A"=4F3[

@ax _ O _

—_— s =1, 0=k=n.
(@ +B)n (y+8) "

Hence

n! L (Y)ne k(B)k_ (Y)n & (=B

A =
(B+'Y)nk¢)(n k)'k' (B+y)nk=0(1_y_n)kk!

Il/\

To prove (A.14), let us consider the sum Y., c.x", 0=x < 1, where

i n k(y)n k (B)k(s)k
P (,(a+B),, «(n—k)! ('y+6)kk!'

From the convolution nature of this sum it is obvious that

(A.16)

Yoex"=| Y >

X Tl X
n=0 n=0 (a +B)nn! n=0 (7+6) n"
=2Fi(a, y; a+B; x)Fi(B, 8; v+ 65 x),

whenever the infinite sums converge. For 0= x <1, the infinite sum on the left
obviously does converge, but we are here interested in the limit x > 1—.
Suppose y>B>0. Then

5 2 (@)nn [ S (B)ald)n
(A.17) [ ][ ]

‘ r ' (y—

But ,Fi(a, v; @ +B; x) diverges like

(1 _x)‘(‘Y*B) - czo:

n=0

Y =B .
n X

Hence for large n we can say

~(y—B)/n'.

Tl =B
)‘"‘O[mﬁ)n |- ot

We conclude, then, Y., A, <oco if 8>3, Similarly, if B>, Yo, A, <0 if y>3.
Finally, let 8 = . Then both the hypergeometric functions diverge as x > 1 —, but

Therefore
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they diverge like log (1—x). Since

flog (1-x)= £ (% 75 )+

a1 o1 k(n—k)
it follows that
n 1 221 2logn
Zlk(n k_n;k no

Hence

A= Ol:(2nB!),. 105 n] - O["Zi"]'

For 8>3, Y, A is again convergent. It follows trivially that Y _  A%2<co for
p>1, hence the theorem.
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MODULI OF MONOTONICITY WITH APPLICATIONS TO
MONOTONE POLYNOMIAL APPROXIMATION*

VASANT A. UBHAYAY

Abstract. This article introduces new concepts called the moduli of monotonicity of a real function
defined on an interval. They are a one-sided analogue of the well-known modulus of continuity, and are
a measure of the extent by which a given function fails to be monotone. It is shown that they naturally
arise in the process of approximating a real function by nondecreasing polynomials. Upper and lower
bounds on the “degree of approximation’ by monotone polynomials are derived in terms of these
moduli.

1. Introduction. The main purpose of this article is to introduce certain new
concepts called the moduli of monotonicity of a function and indicate their
applications to approximation theory. Roughly speaking, the decreasing and
increasing moduli of monotonicity are a one-sided analogue of the well-known
modulus of continuity and are a measure of the extent by which a given real
function defined on an interval fails to be monotone. It is shown that they arise
naturally in the process of approximating a continuous function by monotone
polynomials on an interval. Bounds on the ‘“‘degree of approximation” by mono-
tone polynomials are derived by making use of the Friedrichs mollifier functions
(Morrey [9]) and the moduli mentioned above. It is a well-known fact (Lorentz [5],
Meinardus [8]) that the modulus of continuity plays an important role in the
theory of approximation of a continuous function by polynomials (not necessarily
monotone); however, it will be seen from the results of this article that moduli of
monotonicity, and not the modulus of continuity, appear predominantly in the
analysis of the problem of approximation by monotone polynomials.

To introduce the relevant concepts, let B denote the set of all bounded real-
valued functions on a closed real interval I = [a, b] of length / = b — a. For any f
in B, define
(I.1) w(d) = o(f,9) = :S|uP | 6If(Y) /I, 6ef0,1.

x,yel, |x—y| £
The nonnegative bounded function w( f, - ), defined on [0, 1], for f fixed, is known
as the modulus of continuity of f. Analogously, for any f'in B, we define on [0, []
two nonnegative bounded functions u(f, ) and ja(f, -) by

(1.2) (o) = u(f.0) = sup  (f) —S(x),  6€[0,1],

x,yel,0Sy—x<4

(1.3) o) = il 0) = sup  (f(x) —f0), d€[0,1].

x,yel,0Sy—x<9d

The functions u(f,-) and fi(f, -) are called the moduli of monotonicity, decreasing
and increasing respectively, of the function f. As was observed before, it is easily

* Received by the editors May 28, 1974, and in revised form February 20, 1975.
+ Department of Operations Research, Case Western Reserve University, Cleveland, Ohio 44106.
This research was supported in part by the National Science Foundation under Grant GK-32712.
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seen that p(f, 6) (@i(f, 0)) is a measure of the extent by which the function f'in B
fails to be nonincreasing (nondecreasing) on an interval of length . It is also
obvious that w = max (g, ). Thus p and j give a decomposition of w in this
sense.

Let P, denote the class of all nondecreasing polynomials on I of degree at
most n. Given a continuous function f defined on I, not necessarily nondecreasing,
the problem of monotone polynomial approximation is to find a ¢, in P, such

that || f — g,|| minimizes | f — p,| for all p, in P,, where | - || is the uniform or
supremum norm. The number E,(f) defined by
(1.4) E(N) =1/ —qll = mi‘I] If = pul

Pn€ln

is known as the “degree of approximation” of f by the polynomials of the class P,.
The existence of such a minimizing ¢, can be easily demonstrated by using standard
compactness arguments applied to finite-dimensional spaces.

In § 2, we examine briefly the properties of 4 and /i which are similar to those
of w. In § 3, we investigate the existence of a continuous function f defined on I
such that its moduli of monotonicity u(f,-), i(f,-) equal respectively two given
functions on [0, /] having properties of a modulus of continuity. This investigation
parallels a similar well-known question concerning the existence of a continuous
function f on I, whose modulus of continuity w(f,-) equals a given modulus of
continuity 7 defined on [0, []. The existence of such a function f is trivially estab-
lished by setting f(x) = 7(x — a) for all x e I, howeves, the issues raised in §3 are
more difficult to answer. The applications part, §4, is devoted to the analysis
necessary to establish upper and lower bounds on E,( f), the degree of approxima-
tion by monotone polynomials. It will be shown that the moduli of monotonicity
play a prime role in these bounds. This situation again corresponds to the one en-
countered in determining bounds on the degree of approximation by polynomials,
not necessarily nondecreasing, wherein the modulus of continuity plays an
important part. (See Jackson [3], Lorentz [5], Meinardus [8].) Lorentz and Zeller
[7] have obtained bounds on E,(f) when f itself is continuous and nondecreasing.
Shisha [11] and Roulier [10] consider the problem of approximating a continuous
function by polynomials p, of degree at most n satisfying p®(x) = 0 for all x e I,
for a fixed k = 1, and obtain bounds on the degree of approximation from this
class of polynomials under various differentiability and other conditions on f.
We examine the case when fis continuous but not nondecreasing, and obtain both
upper and lower bounds on E,(f), without imposing any additional restrictions
on f. Thus our results complement those of Lorentz and Zeller. Roughly speaking,
we show that for a fixed continuous f which is not nondecreasing and any fixed
k = 1, E,(f), which is bounded below by (1/2)i(f, ), converges to (1/2)i(f,[) as
n — oo at least as fast as

k=1

(1.5) ( [Th+1 —j))_1 min {c,(n + 1 — k)~ cou(f, ln + 1 — k)™ H},

j=1

where ¢, and ¢, are independent of n. Here the empty product means unity. The
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values of the constants ¢, and ¢, are given in Theorems 2 and 3 of §4. There we
compare several known bounds with (1.5).

2. Properties of the moduli of monotonicity. The properties of p and ji are
similar to those of w. They are stated in this section with brief proofs. Some of
these proofs are similar to those used to establish the properties of w. See, e.g.,
Lorentz [5].

PROPOSITION 1. Let f,f,,f, € B and p denote p or fi.

(i) p is nonnegative, bounded and p(0) = 0.

(ii) u is nondecreasing.

(ill) p is subadditive, that is, if 0 < d,, 0, £, + 5, < I, then w6, + J,)
S Woy) + wd,).

(iv) u(f,-) = 0< f'is nonincreasing on [a, b].
i f,+) = 0 < fis nondecreasing on [a, b].

(v) (£, 8) = max {u(f. 6). (£, 3)} .

(Vi) plofs 0) = op(f;6) if o 2 0.
lof, ) = —ofi(f,0) if « < 0.

(vii) p(fy + f2,90) = 1(f1,0) + ulf3,9).

Proof. We establish (iii). Others follow directly from the definitions of u or ji.
To prove (iii), suppose u=ji. If0 <y — x < J, + J,, then there exists z € [a, b]
suchthat 0 £z—x<d6,and0 =y — z £ J,. Since

fO) =) =) = @) + f(2) — f(x) £ &f. 62) + [(f. 64),

the result follows for ji. The proof for u is similar.
PROPOSITION 2. Let u denote p or ji.
(i) Iffis continuous on [a, b], then
(2.1) lim w(d) = 0.
sl0

(ii) Properties (ii) and (iii) of Proposition 1 and (2.1) imply that u is continuous
on [0,1].

(iii) fis continuous on [a, b] <> both y and fi are continuous on [0, [].

(iv) Properties (ii) and (iii) of Proposition 1 = ifo. > 0, then p(ad) < (o) + 1)u(9),
where () is the largest integer less than .

(v) Let fe Band 0 < 6, < 8, £ I. Then u(6,) > 0< u(6,) > 0.

Proof. (i) This follows at once from the continuity of f.

(i) Let 0 <6, £6 < J, + 0 <. Using (ii) and (iii) of Proposition I, we
may easily show that |u(é + 6,) — u(d)l < u(d,). The continuity of u follows now
from (2.1).

(iif) If both u and j are continuous, then from (v) of Proposition 1,  is
continuous, and it follows that f is continuous. The converse follows from (i)
and (ii).

(iv) Let n be a nonnegative integer such that n < « < n + 1. Then by (ii) of
Proposition 1, we have w(ad) < wu((n + 1)0). Again, by a successive application
of (iii) of Proposition 1, we have u((n + 1)) < (n + 1)u(9).

(v) Let « = ,/6, > 0. Then using (iv), we have 0 < u(d,) = (@) + DHu(d,),
which gives the required result.
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3. The p-function. It was shown in § 2 that the moduli of monotonicity of
continuous functions had, among others, the properties (i), (ii), (iii) of Proposition
1 and (2.1). A function having these properties is called a p-function. Thus a p-
function is a real function y defined on [0, /] which is nonnegative, nondecreasing,
subadditive and satisfies lim;, , () = u(0) = 0. Note that a u-function is continu-
ous by Proposition 2 (ii). The modulus of continuity w of a continuous function
is also a p-function.

Given a p-function, it is easy to determine continuous functions f,, f,, f3
defined on [a, b] such that w(fy,-) = p(f,-) = i(fs,) = p(-). One simply lets
fi1(x) = f5(x) = p(x — a) and f5(x) = —u(x — a) for all xe[a,b]. In this case,
i f2,-) = p(f3,-) = 0. Now one may ask the following question: Given two
u-functions u, and u,, does there exist a continuous function f on [a, b] such that
A f,-) = py(-)and u(f,-) = py(-) hold simultaneously? In this section we seek an
answer to this question.

Let u be a u-function, and let

sup (1) = sup u(9).

0sos!

Also let
0*(w) = inf{6:0 < & < I, u(6) = sup (w)}.

Since u is continuous, we have sup (u) = u(6*(n)). We now state and prove the
following.

THEOREM 1. Given two u-functions p, and u,, in order that there exist a con-
tinuous function f on [a, b] such that i(f,-) = u,(-), p(f,-) = pa(-), it is necessary
that at least one of the following conditions (a), (b), (c) is satisfied :

(a) 8%(uy) + *(uy) < 1,

(b) 0*(pty) < 6*(u,) and sup (u;) < sup (,),

(©) 6*(up) < 6*(ny) and sup (uy) < sup(uy).

Further, condition (a) is sufficient for such an f to exist.

Proof. Necessity. Suppose that f is continuous, u(f,-) = u,(-) and
A(f,+) = 1, (+). Assume first that both 6*(u,) and 6*(u,) > 0. Then clearly both
sup (u,) and sup (1,) > 0. Let

Xi={x,»ia<x=<y<by—x=68w)} i=1,2,

where (x,y) denotes an ordered pair. Obviously, X; are not empty. Suppose

(x1,y)€e Xy, (x2,y2)€ X5, with  f(x)—f(y)=sup(x) and f(y,)—f(x2)
=sup(u,). Then a < x;, <y, =b and a < x, <y, < b. Several cases arise.
These are listed below:

Masx =x,<y, =y, b,

(()asx,=x;, <y, 2y, <b,
({)asx <y, £x,<y,<bh,
(i) a S x; <y, Sx; <y, £b,
(i) a = x, <x;<y, <y, b,
({Yasx,<x;, <y, <y, £b.
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The cases (i), (ii'), (iil') are obtained by interchanging subscripts 1 and 2 in the
cases (1), (ii), (iii) respectively. We first treat the cases (i), (ii) and (iii).

(i) Note that f(x,) — f(y,) =sup(u;) and f(y,) — f(x;) = sup (u;). We
assert that x, < x, < y, < y,. Suppose, on the contrary, that x; = x,. Then we
have f(y,) = f(y1) =f(v2) = f(x2) + f(x,) — f(y1) = sup(u,) + sup(u,) > sup(,),
and 0 <y, — y, <y, — x; = 6%(u,). These contradictions to the definitions of
sup (¢,) and 6*(u,) show that x; < x,. The case when y, = y, may be treated
similarly. This establishes the validity of our assertion, and it follows that
0*(uy) < 0*(u,). We further assert that

(3.1) f) <f(x) <f(x,) forallx,x; <x<y,.

Suppose, on the contrary, that f(x) < f(y,) for some x such that x; < x < y,.
Then we must have

fx) = f(x) 2 f0xy) = f(y1) = sup (uy).

But since x — x; < §*(u,), a contradiction is reached. The other case, when
f(x) = f(x,) for some x such that x; < x < y,, may be similarly treated. This
establishes (3.1), and we conclude that f(y,) < f(x,) < f(y,) < f(x,). Hence

sup () = f(v3) — f(x3) < f(x,) = (1) = sup (,), and condition (¢) holds.
(i1) In this case, we have

=b—azy, —x;)+ (y, — x3) = %) + 6*(u,),

and thus condition (a) holds.

(iii) We show that this case cannot occur. By arguments similar to those used
in case (i) to establish (3.1), it may be shown that f(x,) < f(x) < f(y,) holds for
all x such that x, < x < y,. Hence f(x,) < f(y,) < f(y2). Then we must have

Jx) = f(x2) > fxy) = f(yy) = sup (),

and also 0 < x, — x; <y, — x; = 6*(u,), which are contradictions.

The proofs for cases (i), (ii') and (iii’) are similar to those for (i), (ii) and (iii).
Specifically, (i') = (b), (ii') = (a) and (iii') cannot occur.

Since 6*(y;) = 0 if and only if i; = 0, it follows that in the case 0*(y;) = 0 for
some i, the necessary conditions are satisfied trivially. Thus the necessity is estab-
lished in all the cases.

Sufficiency of condition (a). In this case, 6%(u,) + 0*(uy) < 1= (b — a).
Define a continuous function f on [a, b] by

—uy(x — a), a=<x=<a+ 0%y,
f(x) = § —sup(u), a+ 0*(u,) = x £b — %),
—sup () + po(x — b + 0*(wa)), b —0*(uy) = x = b.

It is easy to verify that a(f,-) = u,(-)and u(f;-) = u,(-). The proof of the theorem
is now complete.
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4. Applications of moduli of monotonicity to approximation by monotone
polynomials. In this section, we consider the monotone polynomial approximation
problem described in § 1, and, making use of the moduli of monotonicity, obtain
bounds on E,(f), the degree of approximation, defined by (1.4).

We have already introduced the notation/ = b — a, B, P,, w, p and i in § 1.
In addition, we let K = B denote the set of real nondecreasing functions on [a, b]
and C, C” denote, respectively, the set of continuous functions and the set of
infinitely differentiable functions defined on [a, b]. The kth derivative of a function
fin Bata point x in [a, b], if it exists, is designated by f ¥(x). The norm notation | - |
is used throughout to indicate the uniform norm defined by || /|| = sup,cy,.5 ./ (X,
where fe B.

Immediately below, we give references to the relevant literature concerning
the degree of approximation by monotone polynomials. Let f(x) be continuous
on [0, 1], and b,(f, x) be its Bernstein polynomial defined by

i = 51 lj) (n)xk(‘ 0k 0sxsl
k=0 \P k
It is known that (Meinardus [8])
@ Jmax, 1f(x) = b(f,x)| < cof,n™ 113,

where ¢ is an absolute constant. The greatest lower bound of all numbers ¢ such
that (4.1) holds for all continuous functions fon [0, 1] and all integers n is shown by
Sikkema [12] (see also Meinardus [8]) to be equal to

4.2) K = (4306 + 837\/6)/5832 = 1.0898873 ---.

It is further known that if f is nondecreasing on [0, 1], then b,(f, x) is also non-
decreasing (Lorentz [4]). By Proposition 1 (iv), (v), if f is nondecreasing, then
o(f,-) = u(f,-). These observations and simple arguments then allow us to
transform (4.1) to a relation giving a bound on E,(f) for a function f defined on
an arbitrary interval [a, b] as follows. If fe K N C, then

(4.3) E(f) < xu(f,In™"),

where x is given by (4.2) and [ = b — a. A substantial improvement of this bound
is due to Lorentz and Zeller [7]. Using simple arguments, it may be deduced from
their Theorem 2 thatif fe K N C, then

(4.4) E,(f) £ cou(f, 2n)™1),

where ¢, is an absolute constant. (For an expository article on manotone approxi-
mation, see Lorentz [6]). Since bounds on E,(f) are available when fe K N C
(expression (4.4)), we restrict our attention to the case where fe C — K, and
establish upper and lower bounds on E,(f). But before we state our results, we
need to introduce a class of functions called the mollifier functions, which are used
extensively in the analysis presented in the sequel.

A real-valued function ¢, defined on the real line, is called a Friedrichs
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mollifier function if (i) ¢(x) = 0 for all x € (— o0, o0), (i1) ¢ is infinitely differentiable
on (— 00, 00), (iii) it vanishes outside [0, 1], that is, has support in [0, 1], and (iv)
[o ¢(x)dx = 1. As an example of a mollifier function, we may take

A lexp((x(x = 1)7Y), 0<x<1,

0 otherwise,

d(x) = {

where A = [§exp((x(x — 1))”')dx. Mollifier functions find considerable appli-
cations in the calculus of variations (see Morrey [9, p. 20]). The definition of a
mollifier function, which we have given, is slightly different from the one usually
employed. Generally it is assumed that the support of ¢ is contained in [—1, 1].
We find that this modification of the definition is convenient for the purpose of
application to our problem. This fact will be verified by the reader in the proofs
of Theorems 2, 3 and the subsequent remarks. In the proofs, the mollifier functions
will be used to generate infinitely differentiable functions from continuous func-
tions as follows. Let u be a continuous real function defined on the real line.
Let 0 < p < o0, and define

up(x)=f UWOGHE — X)dE. xe(—w. ),

where

(4.5) PH& =p"'P(p™'8), Ee(—o0, ).
It is easily seen that u,(x) is an infinitely differentiable function with its kth deriva-

tive u(x) given by

u(x) = (= 1) r+pu(€)¢§“"(§ —x)d¢,  xe(—o0,0),

forallk = 1,2, ---. The function u,(x) is called the ¢-mollified function of u.
We now state our results.
THEOREM 2. Let fe C — K. Then for every positive integer k and for all n = k,

0 < (12)a(f.) = Ef) = (/1. D)

(4.6) - » |
+ V(f,l‘k)(lj[ (n+1 —j)) E(ﬁm)s
where
4\ [=\* .
4.7) WS L k) = 2(1 + ;) (H) ;Ieldf) fo |p®A(&) dE.,

® is the class of all the Friedrichs mollifier functions ¢ and
4.8) A =sup{de0,:w(f,d) = a(f,)} > 0.

(Empty product in (4.6) means 1.)
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THEOREM 3. Let fe C — K. Then for every positive integer k and for all n = k,

49 0<(/2af, ) = ELf) = (/Di(f, ) + 0(f,l,k)(]j[ (n+1 *j))_ ,

where
{ . al\ k! . 1 o
(4.10)  O(f,1,k) = ;(Ilfll + (1/2)ia( f, l))(ﬁ) 41)2({) fo lp* T (&) de,

® and A are as in the statement of Theorem 2.

The prime role of moduli of monotonicity is clearly demonstrated by (4.4).
(4.6), (4.8) and (4.9). The validity of (1.5) can now be easily verified by combining
the results of both the above theorems. Clearly, ¢, = 0(f, [, k) and ¢, = y(f, |, k).
Compare (1.5) with (4.4). The values of inf, g [§ [¢*(&)| d¢ for all k and several
other related results are obtained in Ubhaya [15]. They enable one to determine
the values of constants y and 6 given by (4.7) and (4.10) respectively. We state here
two simple results only.

inf [ 19() de

¢e® J g

=kN2* 1 k=1,2,3,
< (2k) forallk =1,2,---.

Before we proceed to the proofs of Theorems 2 and 3, we establish some
preliminary results.
LeEMMA 1. Let fe C — K. Then the set

(4.11) A(f) = {6€[0,0:0(f,0) = A(f. D)}

is not empty. Moreover, if 1 = sup A(f), then 1 > 0.

Proof. Since fe C — K, by Proposition 1, (iv), we conclude that j(f,[) > 0.
Also, o(f, 1) = a(f,1) by Proposition 1, (v). If w(f,]) = a(f, 1), then le A(f), and
A =1>0.Ifw(f,]) > a(f,1), thensince w(f, -) is continuous and lim;  , w(f, ) = 0,
it follows again that A(f) # ¢ and A > 0.

The following lemma also follows from the results in Ubhaya [14, part I].

LeEMMA 2. Let f € C and define

(4.12) h(x)=m[aX]f(Z)—(l/2)ﬂ(f,l), x€(a,b],
(4.13) k(x) = min f(z) + (1/2)a(f. D), x¢€la,b].

Then h, ke K N C, h(x) £ k(x) for all xe[a,b], and
@.14) (1/2)a(f,)) = min || f — gl = min | f — gl = I/ — hl = I/ — kI
gekK geKnC
Proof. Let ge K, x, ye[a,b] and x < y. Since g(x) < g(y), we have

f)=f0) = (f(x) — gx) = (fy) — gD = 211 — zll-

Hence by (1.3), the inequality (1/2)i(f,]) < | f — g|l holds for all ge K. Since
feC, it may be easily shown that h, ke C. Clearly h, ke K. We now show that
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(1/2)a(f. 1) = | f — h||. The proof for k is similar. By (4.12), we have h(x) = f(x)
— (1/2)a(f, ). Again by the continuity of f, h(x) = f(y) — (1/2)a(f, 1) holds for
some y € [a, x]. Since y < x, using (1.3), we conclude that f(y) — f(x) < a(f. ).
Hence

h(x) = () = (A/2a(f, ) £ f&x) + (/DS D),

and thus (1/2)a(f,!) = || f — h||. But since h € K, the reverse inequality holds, and
therefore (1/2)a(f,1) = || f — h|. If u,v e [a,b] and u < v, then again by (1.3),

S — (/a(f. ) = f) + (1/2)alf. D),

and it follows that h < k.
ProposITION 3. Let fe C — K, and h be as given by (4.12). Define a function
h, on the real line by

h(x) if xe[a,b],
4.15) hi(x) =< h(a) ifxe(—o0,a),
h(b) if xe(b, ).
Let \ = sup (Af), where A(f) is given by (4.11) A > 0 by Lemma 1). For each
p,0 < p < A, define a function h(x) on [a, b] by
(4.16) h,(x) =fx+p h(&e;(& — x)d¢,  xela,b],

where ¢* is given by (4.5) and ¢ is any mollifier function. Then h,€ K (1 C* and
(4.17) (A2af; ) =min | f — gl = min |f—gl=1/f—h,l.
gekK geKnC®

Proof. It is easy to verify from (4.16) and (4.5) that

4.18) hy(x) = f hix + pOE dE,  xela.bl.
0

We first show that h,e K. Suppose x, y € [a,b], x < y. Then

1

h) — h(x) = f (v + p&) — h(x + pENP(E) dE.

0

Since hisin K, (4.15) shows that h, is nondecreasing, and consequently, h,(y + p¢)
= hi(x + pé) for all £, 0 < ¢ < 1. Using nonnegativity of ¢, we conclude that
hy(y) Z h,(x). Thus h,e K. From the discussion on the mollifier functions pre-
ceding the statement of Theorem 2, it follows that h, e C*. We now show that

(4.19) h(x) £ h(x +A) £ k(x) forall xela,b].

The first inequality is obviously true. Now by (4.12), (4.13), (4.15) and the continuity
of f, there exist y € [a, x + A] N [a, b] and t € [x, b] such that

hi(x +X) = f(y) = (1/2)a(f.])
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and

k(x) = f(@0) + (1/2)a(f. D).

Suppose y < t. Then by (1.3), we have f(y) — f(¢) < a(f. 1), and thus h(x + A)
< k(x). On the other hand, if y > t,then x £t < y < x + A, and it follows from
the definition of A that

L) = O £ o(f, M) = a(f,]),
which gives
hix +2) =f(y) = (1/2af, ) = O + (1/2alf. 1) = k(x).
Thus (4.19) is established, and since h, is nondecreasing, we conclude that
(4.20) h(x) = h(x) S h(x + o) < h(x+A) < k(x)

for all xe[a,b] foralla, 0 < o < A. Hence if 0 < p < A, then

1 1 1
@21) fo P& dé < fo hi(x + pOME) dE < fo Kx)B(E) de

holds for all x € [a, b]. By (4.18) and the fact that [ 5 $(£) d€ = 1, wehave h(x) < h,(x)
< k(x) for all x €[a, b]. Thus

If = h,ll = max {|f = hll, | f — kl},

and from (4.14), we conclude that (1/2)i(f.1) = || f — h,||. The proof of the pro-
position is now complete.

PROPOSITION 4. Let h,,, 0 < p < A, be as defined by (4.16). Then

@) 1kl = IS + (1/2)a(f 1),

i) (B < p™ UL + (A/2)a(L D) ([ 19M(E)] dE),

(iii) p(h,,0) < w(£,0),0 =0 <,

(iv) w(h®,5) < p~*u(£.0)([41$™()] d&).0 < 6 < I

Proof. By (4.12) we verify that

(4.22) IRl = 1A+ (1/2)a(f ).

By (4.15) and (4.18) we have, for all x € [a, b],

()| < (sup [h () j $(E)dE = .
0

xela,b]

Hence [h,| < [|h], and this together with (4.22) establishes (i). Using (4.5) and
differentiating (4.16), we obtain

HO(x) = (= 1 f T @O — x)de
(4.23) *

1
—(=p)* f hi(x + pE)PPE) de.
0
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It follows, for all x €[4, b], that
90| < p~H sup [h(x f 6] de
xela,b)
Thus

1A < oA f W) de.
0

This inequality together with (4.22) gives (ii).
To prove (iii) and (iv), we first show that
(4.24) uh. ) < p(f. ).

Letx,ye[a,bland0 < y — x < 4. Since h e K, we have h(y) = h(x). If h(y) = h(x),
then clearly h(y) — h(x) = u(f, 5). Now suppose that h(y) > h(x). Then, using (4.12),
we may write

h(y) = max (h(x), max f( ) — (1/2)a(f, 1)

zelx,y

= max f(Z) - (1/2)#(f ).

By continuity of f, there exists t € (x, y] such that h(y) = f(t) — (1/2)a(f, ). Also
by (4.12), h(x) = f(x) — (1/2)a(f, ]). Since 0 < t — x < 9, we conclude, using (1.2),
that

0 < h(y) — h(x) < f(t) — f(x) = p(f, 0),

and (4.24) follows.
To show (iii), again let x, ye [a,b]and 0 £ y — x < §. Then by (4.15), (4.18),
(1.2) and the fact that h, is nondecreasing, we have

h(y) — h(x f (hi(y + p&) — hy(x + pENG(E) de

S<max{(h0)—h@):afugv=b+p,0Zv—usg 5}f1 P(&)dé
0

< u(h.9).

It follows that p(h,, d) < p(h, 6). This together with (4.24) establishes (iii).
To verify (iv), let x, y € [a, b] be chosen as before. Then since h, is nondecreas-
ing, we have, using (4.23),

1
Ih9() — W) = p* f (v + p&) — hy(x + pENYY(E) dé‘
0

< p*max {(h,(v) —hw):aSuLv<b+p,0S0—usgd)

: f 1)) de

1
< p~*u(h, 5) f )] de.
0
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Hence we conclude that

(b, 8) < p~*u(h. 5) f 169 de.
(0]

The above inequality together with (4.24) proves (iv).

The proof of the proposition is now complete.

We now make some remarks. It was pointed out in the beginning of this section
that, as far as our problem was concerned, there was a definite advantage in letting
the support of a mollifier function be contained in [0, 1] rather than in [—1, 1],
as is conventionally done. It will be easily verified by the reader that this modifi-
cation of the definition enables us to establish (4.21) from (4.20), and subsequently
various properties of h,. Obviously h, is defined using h. Symmetrically can we,
using k given by (4.13), define a function k, in K (1 C* having properties similar
to h,? This indeed can be done. But for this purpose we need to alter the definition
of the mollifier function as shown below. Let i be a real-valued, nonnegative,
infinitely differentiable function defined on the real line, having support in [— 1, 0]
satisfying {2, (&) d¢ = 1. Then, analogous to (4.15) and (4.16), we may define

k(x) if xel[a,b],
kix)=<k(a) if xe(—o0,a),
k(b) if xe(b, 0),

and

k= [ k@i - 0de, xelab,
where

YR =p Wlp™'E),  Ee(—o0, ).

It is easy to establish the results for k which are similar in nature to those given by
Propositions 3 and 4 for h,. However, it will be seen in the sequel that our bounds
on the degree of approximation are independent of the choice of h, or k, made to
establish the intermediate results. For approximation and optimization problems
on partially or totally ordered sets and their duality implications, the reader is
referred to Ubhaya [13], [14] and other references stated there.

To prove Theorems 2 and 3, we make use of two results by Shisha [11], which
we quote below for the convenience of the reader. Shisha obtained these results
by following methods of Jackson [3] and making use of investigations by Farvad
[2] and Ahiezer and Krein [1].

(1) Letrand kbeintegers, 1 < r £ k,and let areal function fsatisfy throughout
la, b],f"(x) = 0,]f®(x)] £ M, M being a constant. Then for every integer n = k,
there exists a real polynomial g,(x) of degree at most n such that g”(x) = 0 for all
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x €[a, b], and

k—1 -1
If = aqll =201 + n/4)(7r/4)"”l"(r! [T(rh+1 —j)) o(f®,H(n + 1 = k).
(4.25) j=r

(Empty product means 1).

(i) Letr and k be integers 1 < r < k, and let a real function f'satisfy through-
out [a, b], f(x) = 0 and

(4.26) |fOC) = fRW) = Alx = yl,

A being a constant. Then for every integer n = k, there exists a real polynomial
q,(x) of degree at most n such that ¢"(x) = 0 for all x € [, b], and

(4.27) If = qal = 2/\(71/4)""’“1"“(r! ﬁ (n+1 —j))_l.

j=r

Proof of Theorem 2. Since fe C — K, by Proposition 1 (iv), a(f,l) > 0.
Consider h, as defined by (4.16), with p = A > 0,and let ¢ be any mollifier function.
Since h; e K N C*, we have h{"(x) = 0 for all xe[a,b]. Lettingr = 1 and f = h;,
in (4.25), we have for every positive integer k and all n = k,

E,(hy) < 201 + n/4)(n/4)~ 'I* f[ (n+1-— j))_la)(h‘,{", lin+ 1 — k).

i=1

Substituting from Proposition 4: (iv) in the above relation, we have

e =2+ 2) (B ([ ovena [T oe 1 =) ol 5=
(4.28)
If p, € P, and satisfies E,(h;) = ||h; — p,l|l, then by (4.17),

If = hll = gTKiRC If =gl = ELf) = IS = pall = IS = hall + lh; = pall.

Again by (4.17), ||f — h,|l = (1/2)a(f,]) > 0, and we obtain from the above
expression

(/2.1 2 E(f) = (1/2)a(f, ) + E,(hy).

Substituting from (4.28) for E,(h;) and taking the infimum of [} |¢p* ()| d& over
®, we get (4.6).
Proof of Theorem 3. Since f € C — K, j(f, 1) > 0. Let h, be as defined by (4.16)
with p = A > 0 and x, y € [a, b]. Then
hB(x) — hP(y) = K¢ (z)(x — y) for some z € [x, y].
Hence
(W) — KW < 1AVl x — yl.
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Substituting from Proposition 4 (ii) in the above relation, we get
1

429)  [hP0x) = PO = AE I f 1+ (12, l))U (9] dé)lx =yl
0

Since h{"(x) = 0 for all x € [a, b], comparing (4.26) and (4.29) and letting r = 1,
f=h,in (4.27), we get

g = S0+ a2 fllqﬁ"‘“’(é)ldé Mn+1-p
n\"t) =7I ﬂ s 47\‘ o .

j=1

The proof may now be completed as in Theorem 2.
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SINGULARITIES OF SOLUTIONS TO EXTERIOR ANALYTIC
BOUNDARY VALUE PROBLEMS FOR THE HELMHOLTZ
EQUATION IN THREE INDEPENDENT VARIABLES.

I: THE PLANE BOUNDARY

R. F. MILLART

Abstract. A method is developed for locating singularities of solutions to boundary value
problems for the Helmholtz (or Laplace) equation in three independent variables. It relates sing-
ularities in the analytically continued boundary data to real singularities in the solution. On the plane
boundary z =0, an analytic Neumann, Dirichlet, or linear boundary condition is prescribed. For the
first two, the unknown boundary data are determined by integrals over the boundary, whereas in the
third case the unknown satisfies a two-dimensional, linear integral equation. The kernels of the
integrals are singular, but a method of E. E. Levi is used to extend them analytically into the complex
domain of x and y on z =0 as far as their singularities. For the third boundary condition, the integral
equation is solved iteratively in the large in the complex domain, and the singularities of the boundary
data are located. Under certain conditions, it is found that the singularities in the unknown data
coincide with those in the prescribed data. They may be carried through the complex x,y,z-domain on
characteristic surfaces, and possible real singularities are found where the characteristics pierce the
real domain. For purposes of illustration, the method is applied to an elementary problem for the
Laplace equation. However, a second example shows that this naive application of characteristic
theory may not yield all the real singularities of the solution, and indicates that further examination of
this aspect of the problem is warranted.

1. Introduction. When solving an analytic boundary value problem for an
elliptic partial difterential equation, one often finds that it would be useful to know
the location of singularities in the analytic continuation of the solution across the
boundary. Their importance stems from the fact that they are the fundamental
sources of the solution, in terms of which it may be represented in a more or less
elementary fashion. For example, Handelsman and Keller [13] have obtained
solutions to axially symmetric potential problems in the exterior of slender bodies
by relating the solution to an axial source distribution interior to the body, and
Geer and Keller (8] have studied analogous two-dimensional problems. More
recently, Miloh [27] has stressed the importance of knowing the system of
singularities of an exterior potential field, and has located them within a triaxial
ellipsoid with a view to application in problems of ship hydrodynamics. The
singularities also play an important role in the so-called inverse problems of
geophysics. This is discussed briefly in [23], where additional references are given;
see also [28]. Knowledge of the location of singularities is useful as well in a
somewhat different, if related, context. When a formal solution to the Laplace or
Helmholtz equation is obtained by separation of variables in polar coordinates,
the domain in which the series converges is determined by the geometry of the
singularities of the solution [23], [24].

It is clear that procedures for locating singularities are of considerable
practical importance; moreover, knowledge of their position and character is of
some theoretical interest, since they determine the extent to which analytic
continuation of the solution is possible. Of course, if the results of such procedures
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are to be useful in determining representations for the solution, it should not be
necessary to determine the unknown boundary values first.

The problem of locating singularities of a solution to a linear analytic elliptic
equation of the second order in two independent variables, satisfying an analytic
boundary condition, has been recently discussed [25], [26]. It was shown how a
representation for the solution u in terms of its boundary data—values of u and of
its normal derivative du/dv—and a fundamental solution could be used to
continue the data analytically into the complex domain of arc length on the
boundary. In particular, without first solving the problem for the unknown data,
we located their singularities. Then, by considering the continuation problem for u
as a Cauchy problem in the complex domain [7, Chap. 16], we were able to use the
theory of characteristics to relate these singularities to real singularities of u that
lay outside the original domain of definition.

The present paper is a first attempt to extend these ideas to second order
equations in three independent variables. Here the literature is much less exten-
sive than for problems in the plane. Most relevant, perhaps, are the papers of
Filippenko [6] and Lewy [19]; they considered the possibility of continuing a
solution to the Laplace equation, satisfying a linear analytic boundary condition,
across a bounded portion of a plane boundary and throughout the reflection of the
initial bounded domain. By using function-theoretic methods, Colton [2] has
delimited a domain containing the singularities of axisymmetric solutions to the
Helmholtz equation when the far-field pattern, rather than a boundary condition,
is given. Results of a related nature had been obtained for vector (electromagne-
tic) problems by Weston, Bowman and Ar [33]. Sleeman [29] has succeeded in
removing the limitation of axial symmetry from Colton’s analysis. However, in
none of [2], [29] and [33] have the singularities been located precisely. Sing-
ularities of classes of harmonic functions of three independent variables have been
discussed by Gilbert [9], who uses integral operators and representations. More
recently, Gilbert [34, Chap. VII] has examined the singularities of such functions
that satisfy Cauchy data of a certain kind on a plane. The possibility of a
relationship between Gilbert’s work and that of the present paper has not yet been
explored.

The extension of the earlier analysis to three independent variables presents
certain difficulties, and a corresponding degree of generality has yet to be attained.
There are, however, two particular classes of exterior three-dimensional prob-
lems that are less complex than that in which the boundary is a general closed
analytic surface. One of these is the class of axisymmetric problems, where the
axial symmetry reduces the number of independent variables by one; it is likely
that these can be treated as completely as were the strictly two-dimensional
problems.

The other class consists of problems for which the boundary is a plane, and it
is these that we consider here. Specifically, we shall confine our present attention
to solutions of the Helmholtz equation

(1.1) Uge + Uy U, +ku=0,

that are nonsingular in the half-space z = 0, and we shall search for singularities in
z <0. Usually, we shall assume that k >0, although in one instance we take k = 0.



EXTERIOR ANALYTIC BOUNDARY VALUE PROBLEMS 133

On the boundary z =0, —00 < x <00, ~00 < y < 00, an analytic Neumann, Dirich-
let, or linear boundary condition is prescribed. It is assumed that these data are
holomorphic for all real values of x and y; real singularities in the data would lead
to real singularities in the solution at the same points, and would complicate the
analytic continuation process. (A related problem in two dimensions has been
discussed in [26].)

It is worthwhile to look at this problem for several reasons. The analysis
provides guidance for the treatment of more general equations and boundaries. In
contrast to axisymmetric problems, it is strictly three-dimensional, as is reflected
in the form of singularity of the fundamental solution. It is complicated slightly by
the fact that the boundary is infinite, but its planar character simplifies other
aspects of the analysis. The problem differs from those considered by Filippenko
[6] and Lewy [19], in that the initial domain of definition here is unbounded.

Because of the simple geometry, there is a variety of ways in which we could
formulate the problem. However, we shall only introduce ideas and methods that
can be used in more general situations.

As our point of departure, we again observe that the initially unknown
boundary data u and/or du/dv are analytic and can be continued into the complex
domain of their arguments. This is effected by using the integral equations for the
unknown data that follow from the Helmholtz representation for the solution
when the field point (x, y, z) approaches the boundary. Here the fundamental
solution becomes infinite as 1/r, r denoting distance between (x, y, 0) and an
integration point (&, 1, 0) on the boundary, and to discuss the analyticity of the
integrals we must employ a method devised by Levi [18].

On account of the plane boundary, for Neumann and Dirichlet problems we
shall see that the integral equations reduce to integral representations for the
unknown boundary data. Nevertheless, the singularities in the analytic continua-
tion of the data, and of the solution into z <0, are not located immediately. For
the more general linear boundary condition, such simplification is not found, and
we are obliged to determine analytic properties of the solution to a two-
dimensional integral equation in the complex domain. The results are summarized
in Theorems 3.1, 4.1, and 5.1, and conditions are given to guarantee that all
possible singularities of the unknown data in the finite domain coincide with the
prescribed singularities of the data. Then, having located all singularities in the
data, we use the theory of characteristics to determine real singularities of the
solution.

In § 2, we formulate the problem and derive the integral equations. For the
Neumann problem, the analytic continuation of the boundary data is described in
§ 3, and a simple example is discussed. The Dirichlet problem is treated in § 4, and
in § 5 the linear boundary condition is considered. The emphasis throughout is on
locating singularities of the data, but the example of § 3 is used again in § 6, where
we employ the theory of characteristics to relate singularities of the boundary data
to real singularities of the solution in z < 0. A few concluding remarks are made in
§ 7, and necessary properties of the distance function are derived in the Appendix.

2. Formulation. Let u be a complex-valued analytic solution to the equation

(2.1) Uee + Uy + U, +k*u=0, k=0,
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holomorphic in the unbounded region D ={(x, y, z)|—00 <x <00, —c0<y <00,
z >0} of R and on its boundary S: z =0. Ata point P = (x, y, z) € D, we assume
that u(x, y, z) may be represented as an integral over S in terms of the fundamen-
tal solution e™/r (the Helmholtz representation):

ikr

(2.2) 47ru(P)zL[u(Q')%—%(Q')]%—dS, PeD.

Here d/dv" denotes differentiation along the unit normal to S directed into D at
the integration point Q' and r is the distance between P and Q'. Henceforth we
shall denote (du/dv')(Q’) by v(Q’), and integration is over S unless otherwise
indicated.

For the validity of (2.2), it suffices that u satisfies an outgoing radiation
condition at infinity if kK > 0; more specifically, we shall suppose that

(2.3) u(x,y, z)=f(6, ¢) e**/R+O(R?)

as R » o0, where (R, 6, ¢) are spherical polar coordinates of P with respect to the
origin 0. When k = 0, we shall assume regularity in the sense of Kellogg [16, p.
217]; that is,

u(x,y,z)=0O(R™),

(2.4) u:(x,y,z)=0O(R™?) foré=x,y,orz,

as R —o00.

We have made the assumptions (2.3) and (2.4) to ensure the validity of (2.2)
as well as the uniform convergence of some subsequently occurring integrals. It is
known that (2.2) is valid under milder restrictions than these which, roughly
speaking, mean that the singularities of u are confined to a bounded region of
z <0.

If so-called surface waves are present, (2.3) is violated, and such solutions are
not included directly in our considerations. Nevertheless, in any given cir-
cumstances, our results will remain valid, even if (2.3) or (2.4) are not satisfied,
provided that the representation (2.2) (or a modified version thereof, in which a
known function is added to the right-hand side) still holds, and that uniform
convergence of certain integrals can be established.

If f, denotes the derivative of f with respect to its first argument, then for
k>0,

2.5 v(Q)=~fiem b) e™/p’+O(p™)

as p > 0; here (p, ¢) are polar coordinates of Q' in S. Thus, when k =0, the
integrand in (2.2) is O(p~?) as p >0, and the integral converges uniformly with
respect to x, y, and z in closed subsets of D.

Ifin (2.2) we let P—> Q € §, the first term in the integrand vanishes because S
is a plane, and we obtain the integral equation

(2.6) 277u(Q)=-J v(Q')gi’dS.

r
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If we differentiate (2.2) along the normal v at Q, we find

2.7) 2770(0):%[ u(o')—a—,(em) as.

wv'\r

To facilitate the following discussion, we shall bring the normal derivative in
(2.7) under the sign of integration. This requires some care on two accounts: the
integrand is singular at r =0, and the domain of integration is of infinite extent.
.The problem of the singularity is obviated by subtracting from, and adding to, the
integrand suitable terms, and then proceeding in the manner described by Kellogg
[16, Chap. 6]. Thus we find

eikr

o | w0175 as

=2 [1u(@)- w05 ) ds+uo) [ 2 (<) as,

r ovov' \'r r

(2.8)

Here we have used the result that at all points of D, the potential of a uniform
double layer is constant, so

—a—J-a—,(l>dS=O, PeD.
v J ov' \r

Justification for differentiating under the sign of integration in the last integral of
(2.8) rests on the uniform convergence of the integral. For this reason, too, we may
take the normal derivative of the first integral on the right-hand side of (2.8) under
the sign of integration, provided that we interpret the result as a singular integral
[22]. Then

2wv(O)=r[u(O’)—u(O)] 7 (<) as

v av'\ r
(2.9) .
w0 [ () as
vov'\r r '
Here

*
J ElimJ ,
£=0 Js_s,

where S. denotes a circular disc in S, with center at Q and radius €.

It is (2.6) and (2.9) that we shall use to continue the boundary data
analytically into the complex domain, and to locate their possible singularities. Of
course, it could be argued that an equation simpler than (2.9) can be found by
using the well-known Green’s function for the half-space. But the Green’s
function for most other regions is not known explicitly, whereas integrals similar
to (2.9) arise in all cases. Thus we shall consider (2.9), in keeping with our stated
plan to avoid introducing methods that cannot be carried over to the study of more
general boundaries.

3. Neumann problem. We examine first the Neumann problem. Then v(Q") is
a prescribed analytic function of ¢ and n (where (& 1) are the coordinates of Q')
satisfying (2.5) and is holomorphic for real ¢ and n. Thus (2.6) becomes an integral



136 R. F. MILLAR

representation for the unknown u(Q). These values may be inserted into (2.2) to
give an explicit representation for u(P) in terms of known functions. Nevertheless,
the singularities of its analytic continuation into z <0 are not given directly.

We shall determine the possible singularities of an integral like that in (2.6),
which we rewrite as

3.1 2au(x, y) = —{L(x, y) +ilx(x, y)],
where

62) (x, )= | 0(& MK/ dedn
and

(33) (e, )= o€ mK.(r) dé dn,

Here K, and K are entire functions of r* (= (x — £)*+(y — n)?) and, hence, of x, y,
¢ and 7:

(3.4) Ki(r*) =cos kr,
(3.5) K,(r*)=(sin kr)/r.

The function I, vanishes identically when k = 0.

Since v(¢, m) is holomorphic when ¢ and m are real, and is O(p™?) as
p=(£*+n?%)"?> 00, the continuation of I, is almost immediate: we need only
replace x and y formally by complex variables x, + ix,, y, + iy, and check that the
resultant integral still converges uniformly, to conclude that I, is an entire function
of x and y.

In order to verify convergence, we must examine the behavior of K,(r?) in the
complex domain. To preserve continuity, this is done in the Appendix, where
properties of r will be found. There it is shown that for k >0,

1
Ky(r*) = ﬁ{exp [ik{p — po cOS (dpo— )} + ky cos (¢ — )]

—exp [~ik{p —po cos (do— )} — ky cos (¢ —8) {1+ O(p™ ")},

(3.6)

where
X2=7vyc0sd, y,=vysingd, y=0,

and the remaining quantities may be determined from Fig. 4. Thus, from (2.5) and
(3.6), itis seen that the integral in (3.3) converges uniformly for x and y in closed
subsets of C?, as required.

On the other hand, K,(r?)/r is singular when r =0 and a similar straightfor-
ward approach is not possible. To prove analyticity of I,, and to continue it into the
complex domain of x and y, we employ a procedure devised by Levi [18]; it has
been further exploited by Hopf [14] and others, and is described briefly in [1,
Chap. II, § 6]. Levi developed his method to extend an integral like I, to complex
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values of x and y, and to demonstrate its analyticity in a sufficiently small complex
neighborhood of a real point. Our intent is to use Levi’s procedure and the
Cauchy-Poincaré theorem [30, Chap. IV, § 22] to discuss the continuation of I, in
the large, and to locate its possible singularities.

Forreal x and y, I,(x, y) isdefined as an integral over the real manifold S. This
surface contains the point £ = x, n = y at which 1/r is singular. Following Levi, we
define I,(x, y) for complex x and y as a functional of the integration manifold, by
continuously deforming part of S through the complex £ m-domain in such a
manner that the point ¢ =x, n =y always remains on it. The area element
dS = d¢ dm may then be interpreted as a complex differential form [30, Chap. IV].
For the deformed portion of S, Levi chose the cone-like manifold with the
complex point (x, y) at its vertex, generated by lines passing through (x, y) and a
suitable circle C on S that contains in its interior T the real initial point from which
the continnation has taken place.

It is then possible to show that I, is analytic in x and y. Proofs for a bounded
integration domain may be found, for example, in [18], [14], or [1, Chap. 11, § 6].
Then for the unbounded manifold S, we need only verify that the integral over
S — T converges uniformly at infinity. In the Appendix, it is shown that

Ki(r*)/r=(1/2p)exp [ik{p — po cos (¢o— )} + ky cos (¢ — 8)]
3.7) +exp [—ik{p —po cos (¢o— d)}— ky cos (¢ — 8)]{1+O(p ™)},

which, with (2.5), suffices to guarantee uniform convergence. Thus I, is analyticin
x and y in a complex neighborhood of S.

Levi’s deformation of S is not the only possible choice, for the Cauchy-
Poincaré theorem [30, Chap. IV, § 22] permits us to deform any bounded portion
of a piecewise-smooth integration manifold through the complex domain without
changing the value of the integral, if in so doing we avoid all singularities of the
integrand. Now it is not difficult to show that the singularity manifold, defined in
the complex &, m-space by r =0 for x and y fixed, meets the integration manifold
(deformed in accordance with Levi’s procedure) only in the complex point & = x,
n =y, provided that the imaginary parts of x and y are sufficiently small relative to
the radius of C. Consequently we may obtain the analytic continuation of I; from
real to complex x and y by deforming S arbitrarily through the complex &, n-space
while ensuring that the deformed manifold contains the singularity é =x, n =y
and always avoids other singularities of the integrand.

In this manner, we can prove analyticity of I, first in a neighborhood of S, and
thereafter step by step through the complex domain. A singularity may occur
when it is no longer possible to prevent the integration manifold from sweeping
across other singularities of the integrand as x and y are varied. For example, it
may happen that ¢ = x, n = y approaches another singularity of the integrand; but
these circumstances also arise when the integration manifold becomes trapped or
pinched between two or more singularity manifolds of the integrand that tend to
touch, one from each side of the integration manifold. (See, for example, [5, Chap.
2],[15], or [9, Chap. 1, § 3]. Certain finer points of analysis that were overlooked
in earlier work are discussed in [35].) Points (x, y) for which the integration
manifold is pinched in this way are possible singularities of the integral.
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Necessary conditions for a pinch to occur are well known [9], [5], [15]. We
need only consider the simplest possibility in which the integration manifold is
pinched by r*=0 and a (fixed) singularity manifold of v(& n). For it is easy
to see that r*=0 consists of two, two-dimensional manifolds M; and M, in the
&= &t i&, n=m+in, space:

gl—x1+n2_)’2=0, §z-xz—n1+y1=0, (M)
§1_X1—712+Y2=0- §2_x2+7l|“)’|=0~ (Mz)

Due to their linearity, it is not possible for either M, or M, to form a pinch with
itself, nor can M, and M, form a pinch: their only point of intersection is & = x,
n = y. Thus this simplest possibility is the only possibility in the present case.

Let us suppose that the jth singularity manifold of v is determined by the
analytic relation F'(& n)=0. We assume also that Fi and F! do not vanish
simultaneously on F/ = 0, so that in a neighborhood of any point of F/ = ( we have
either &€ = f;(n) or n = g;(§), with f; and g analytic. Then according to [9], [5], or
[15], the location of a possible pinch of the integration manifold by this singularity
manifold and r*(& n; x, y)=(x — &)’ +(y —n)*> =0 is determined by £ and n that
simultaneously satisfy the equations

(3.9) Fl(&n)=r*(&n;x,y)=0,
(3.10) 1 (r*)e=E/(r),.

This latter equation imposes the condition that F’ = 0 and r* = 0 be tangent at the
points of intersection. (To decide whether or not such solutions do indeed
correspond to a pinch of the integration manifold requires further examination.)
Then the corresponding (x, y) determines a possible singularity—more precisely,
a point on a singularity manifold—of the integral. If, however, (3.9) and (3.10)
have no solution except, possibly, £ = x, n =y, then I, can be continued through
the complex x, y-domain up to singularities of v. From (3.1) we conclude that u
will be holomorphic in this same domain.

Itis possible to describe qualitatively the effect of a pinch in the context of the
present geometry, and this is suggested in Fig. 1. Suppose we have continued the
integral as far as a singularity manifold F’ = 0 of v, and assume that the integration
manifold has been shrunk to the greatest possible extent onto the two faces of a
triangle determined by M, and M,. (This process is described in detail after (5.9).)
We may think of this triangle as a probe into the complex domain. As (x, y) moves
along F’ =0, it may happen that it reaches a point (xo, yo) at which M, (say) is
tangent to F’ = 0: this will be a pinch. Denote this tangential manifold by M¢.
Then unless M7 actually intersects F’ = 0 at (xo, yo), the point (x, y) will not be able
to continue moving along F’ =0: a portion of MY is a barrier to further analytic
continuation. Thus the manifold of possible singularity of the integral consists of a
part of F/ =0 and a part of the tangential manifold Mj.

We may summarize our results in the following theorem.

THEOREM 3.1. Let u(x, y) be determined for real x and y by (2.6), in which
v(Q")=v(§ m) is holomorphic for real ¢ and m and satisfies (2.5) if k >0, or the
second of (2.4) if k = 0. Suppose that the singularity manifolds of v, p in number,
may be represented in the form F'(§m)=0 (j=1,2, .., p), where the F’ are

(3.8)
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F=0
A Im M?
(x0,Y0)
\
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F1G. 1. Effect of a pinch. Broken line represents barrier to further continuation of the integral by
present method.

analytic and where Fl, F; do not vanish simultaneouslyon F' =0(j=1,2, ..., p).
If none of the p sets of simultaneous equations (3.9) and (3.10) has a solution
(& m) # (x, y), then u can be continued analytically into the complex x, y-domain as
far as a singularity of v. If one (or more) of these sets of equations has a solution
(& m) # (x, y), then the corresponding point (x, y) may lie on a singularity manifold
of u.

Remark. Since F' =0 defines a two-dimensional manifold in the four-
dimensional space C?, the singularity manifolds of v do not form all or part of the
boundary of a domain in C*. Thus all points on every singularity manifold of v can
be reached by analytic continuation from the real domain, provided (3.9) and
(3.10) have no solution (&, 1) # (x, y).

3.1. An example. We shall illustrate the above conclusion by a simple
example, with a known solution, for the Laplace equation (k = 0). Consider the
potential of a point singularity at (0, 0, —h) (h >0) in the &, 7, {-coordinate system.
The potential at (x,y, z) is u(x,y,z)=1/R, where R*=x’+y*+(z+h)%
u(x, y, z) is regular at infinity in the sense of Kellogg. [This problem has the
following geophysical significance. Suppose that the Earth is represented by the
half-space ¢ =0. Its density is assumed to decrease as { decreases, so that the
resultant gravitational field is finite and uniform in { 0. Let a homogeneous (or
even radially stratified) sphere of radius =h be imbedded in this medium with its
center at (0, 0, —h). Then the uniform field in { =0 is perturbed by that of the
sphere. The singularity in the potential of the perturbing field will be at the center
of the sphere, so the following discussion, coupled with that in § 6, helps to locate
the perturbing body.]
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Let us suppose that z>0. As in § 2, we express u(x, y, z) in terms of the
(known) data on ¢ = 0. On letting z tend to zero, we obtain the integral represen-
tation (see (2.6))

2mu(x, y) == (o1& m)/) ddn,

in which

v(&m)=—h(&+n*+h") "
Here p=1,
(3.11) F'¢m=&+n"+h,

and F;, F, do not vanish simultaneously on F'=0.

Itis not difficult to verify that (3.9), (3.10) have no solution in any finite region
of & m-space. Therefore no pinch can develop, and u can be continued, and is
analytic, except on the singularity manifold of v. This agrees with the known form
of u(x, y) (=u(x, y, 0):

u(x, y)=(x*+y*+h*""

We shall return to this example later when we wish to locate the real
singularities from knowledge of the singularities in the boundary data.

4. Dirichlet problem. When u is prescribed, and is holomorphic for real £ and
7, we use (2.9). On evaluation of the derivatives, this becomes

2ot y) = | (& m) = u(x, )11 ikr) dé dn

+u(x,y) J[e”"(l—-—rikr)—_l} dédn.

Let ro>0 and write (4.1) as

(4.1)

* ik

2wt )= e m— ey (1~ ik) dgdn
*(1 - ikr)~ 1
(4.2) +u(x,y)j [%] dé dn

+L,ﬂ [u(f, n)e™ (1;ikr)—u(x, Y)] dé dn,

where r'=[(x,— £)>+ (y.—1)*]"?. Itis easy to verify that the third integral in (4.2)
converges uniformly as &+m°—->00 when x and y are complex and k =0.
Furthermore, if we choose r, so that rj> x3+ y3, then r will not vanish (see (A.3))
and this integral will be a holomorphic function of x and y in a neighborhood of
the real x, y-domain.

Consider next the first two integrals in (4.2). If we write e* =1
+(cos kr —1) +i sin kr, we see that they may be written as

(4.3) j w dé dn

'<rg
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plus integrals with less singular integrands at r =0, of the type discussed previ-
ously. Then it is easy to apply Levi’s method to show that these integrals,
excepting (4.3), are holomorphicin x and y in a complex neighborhood of the real
domain; their analytic continuation may be effected in the above manner.

We show that (4.3), too, is analytic in x and y, by expressing it as an ordinary
convergent integral to which Levi’s method applies. For real x and y, we have

I* u(§’ n)r:u(x’ Y) dé.dn
(4.4) =j u(é,m)—u(x, y)—(é—xssug(x, y)—(m=y)u,(x, y) dé dn
+j* (€ —x)ue(x, y):rs(n—y)un(x, Y)dgdn.

The last integral in (4.4) vanishes, as is seen by introducing polar coordinates on S,
with the pole at (x, y). Again, an application of Levi’s method demonstrates the
analyticity of the other integral on the right-hand side. We find

3 dédn

r'<ry r

27o(x, y) = J' U ;% y) = (E=x)ue(x, y) —(n = y)u, (x, y)

cos kr—1
s U@ ey g an

“J U nz; X, y) sin krdgdn
r'<ry r r
4.5 : .
(4.5) —ikj U 7:2, X, y) ™ dt dn
ikr . _
+u(x, y) J [%] dé dn
ikr . _
+J [u(é n)e (1r31kr) u(x, y)] dé dn,
wherein
(4.6) U s x, y)=u(é n)—u(x,y).

Having established the analyticity of these integrals (and hence of v) by Levi’s
method, we may continue them into the complex domain by deforming that part
of S determined by r' <r, in the manner described in § 3. The process is repeated
step by step until a singularity is encountered. As in § 3, we have the following.

THEOREM 4.1. Let v(x, y) be determined for real x and y by (